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ABSTRACT
Radon (222Rn) and thoron (220Rn) are radioactive gases emanating from geological
materials. Inhalation of these gases is closely related to an increase in the probability
of lung cancer if the levels are high. The majority of studies focus on radon, and
the thoron is normally ignored because of its short half-life (55.6 s). However, thoron
decay products can also cause a significant increase in dose. In buildings with high
radon levels, the main mechanism for entry of radon is pressure-driven flow of soil
gas through cracks in the floor. Both radon and thoron can also be released from
building materials to the indoor atmosphere. In this work, we study the radon and
thoron exhalation and emanation properties of an extended variety of common
building materials manufactured in the Iberian Peninsula (Portugal and Spain) but
exported and used in all countries of the world. Radon and thoron emission from
samples collected in the closed chamber was measured by an active method that uses
a continuous radon/thoron monitor. The correlations between exhalation rates of
these gases and their parent nuclide exhalation (radium/thorium) concentrations
were examined. Finally, indoor radon and thoron and the annual effective dose were
calculated from radon/thoron concentrations in the closed chamber. Zircon is the
material with the highest concentration values of 226Ra and 232Th and the exhalation
and emanation rates. Also in the case of zircon and some granites, the annual
effective dose was higher than the annual exposure limit for the general public of
1 mSv y−1, recommended by the European regulations.

Subjects Atmospheric Chemistry, Environmental Contamination and Remediation
Keywords Radon, Thoron, Building materials, Exhalation rate, Annual effective dose

INTRODUCTION
Radon and thoron are significant contributors to the average dose from natural
background sources of radiation. They represent approximately half of the estimated
dose from exposure to all natural sources of ionizing radiation (United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR), 2008).

Inhalation of these radioactive gases and their decay products can cause health risks,
especially in poorly ventilated areas. Long-term exposure to high levels of radon/thoron
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in home and working area increases risk of developing lung cancer (World Health
Organization, 1988; Brenner, 1994). Radon is the second leading cause of increase of the
probability of lung cancer after tobacco smoke (World Health Organization, 2009).

After its formation, these two radioisotopes are susceptible to escape, firstly from the
grains constituting the material (known as emanation), and secondly, from the surface of
the material (known as exhalation). These parameters depend, among other factors, on
the half-life, consequently affecting the accumulation rate of these gaseous radioisotopes in
indoor environments, and therefore, to the exposure of the human body to radiation.
For radon, the half-life is 3.825 days while for thoron, just 55.6 s so, due to this difference,
the effective dose from thoron and its progeny (212Pb and 212Bi) is estimated around of
10% of that due to radon and its progeny (214Pb and 214Bi) in indoor environments (United
Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2016).

These factors lead to a complicated thoron measurement technique resulting in,
the majority of the existing studies focus on the radon (Petropoulos, Anagnostakis &
Simopoulos, 2001; Stoulos, Manolopoulou & Papastefanou, 2003; Maged & Ashraf, 2005;
Chen, Rahman & Atiya, 2010; Bavarnegin et al., 2013; López-Coto et al., 2014; Miro et al.,
2014; Saad, Al-Awami & Hussein, 2014; Iwaoka et al., 2015; Andrade et al., 2017;
Turhan et al., 2018). Many of these studies also include measures of 40K, 226Ra and 232Th
and risk indexes definitions trying to evaluate the radiological health hazards of these
radionuclides (Turhan & Gündüz, 2008; De With, De Jong & Röttger, 2014; Kumar et al.,
2015; Kayakökü, Karatepe & Doğru, 2016;Madruga et al., 2018) or the effective dose due to
radon and its progeny (Javied, Tufail & Asghar, 2010).

Nevertheless, despite thoron indoor concentration is generally lower than for the radon,
the 212Pb thoron progeny (half-life of 10.6 h) can accumulate to significant levels in
breathable air, aggravating its inhalation risk (World Health Organization, 2009). Some
studies (Doi et al., 1994;Milić et al., 2010; Kudo et al., 2015) have demonstrated that thoron
concentrations can be comparable to radon and its progeny in some areas of elevated
radiological risk. Furthermore, computational studies (De With & De Jong, 2011) taking
into account factors such as the ventilation and air exchange, the building dimensions,
dispersion and deposition, mitigation measures, and material properties indicates that
thoron effective doses can reach the 35% of the total contribution.

Therefore, these studies demonstrate the recent and growing interest that has emerged
in recent decades by the study of thoron (Misdaq & Amghar, 2005; Kanse et al., 2013;
Mehta et al., 2015; Jónás et al., 2016; Chitra et al., 2018;DeWith et al., 2018;Magnoni et al.,
2018; Semwal et al., 2018; Prajith et al., 2019) in building materials (Hafez, Hussein &
Rasheed, 2001; Sharma & Virk, 2001;DeWith, De Jong & Röttger, 2014; Kumar et al., 2015)
although no further studies has been reported yet focusing in the assessment of the thoron
risk index in the building materials used in buildings.

Among the methods to measure both exhalation rate and emanation factor of radon
and thoron isotopes in building materials, passive methods, that use solid-state nuclear
track detector, accumulation chamber methods and active methods with radon/thoron
monitors, can be found (Zhang et al., 2012).
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In previous work, the gamma radiations emitted from 226Ra, 232Th and 40K for some of
these materials were studied, as well as the radiological health hazards associated with
the external gamma radiation (Madruga et al., 2018). In another study (Frutos-Puerto
et al., 2018), a technique of measurement of thoron had been developed and applied to
the analysis of exhalation of five materials. In the present work, expanded with more
materials, we study the radon and thoron exhalation and emanation properties of an
extended variety of common building materials used in the Iberian Peninsula (Portugal
and Spain). The correlations between exhalation rates of these gases and their parent
nuclide exhalation (radium/thorium) concentrations were examined. Furthermore,
indoor radon/thoron and the annual effective dose were calculated from radon/thoron
concentrations in the closed chamber. Measurements were carried out by an active method
that uses a continuous radon/thoron monitor RTM1688-2 (SARAD GmbH, Dresden,
Germany).

MATERIALS AND METHODS
Materials and sample preparation
Forty-one samples from quarries and suppliers of the most commonly used building
materials manufactured in the Iberian Peninsula were collected. The mass of each
sample ranged between 1 and 5 Kg. Figure 1 shows the geographical origin of the materials.

Figure 1 Origin of the building materials. (A) NM materials: (1) Concrete, (2) Cement, (3) Marble,
(4) Slate, (5) Granite, (6) Ceramic, (7) Wood, (8) Aggregate, (9) Zircon. (B) PM materials:
(10) Gypsum. Full-size DOI: 10.7717/peerj.10331/fig-1
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The materials were divided in two classes: materials coming from natural sources, NM,
naturally occurring radioactive materials (NORM) incorporating waste after industrial
processing, PM (European Parliament, 2014). Within each classification of materials are
found:

Materials type NM:

� Concretes. Used in bulk amounts:

– Conventional

– 100% of the natural aggregate becomes electrical furnace slags

– 100% of the natural aggregate becomes blast furnace slags

– Self-compacting. High-resistance

– Mortars of resistance 5 and 7.5, respectively

� Cements. Used in bulk amounts and superficial applications:

– Type I Portland cement with less than 3% fly ash

– White cement

– Cement glue

– Rapid cement

� Natural stones. Used as bulk and superficial products:

– Marble

– Granite

– Slate

� Ceramic tiles as refractory and ceramic products to cover floors and walls, mainly:

– Tiles

� Raw materials of very different types and composition:

– Wood collected from Eucalyptus and Castahea Sativa trees

– Aggregates as sand or clay bricks

– Zircon

Materials type PM:

� Industrial products resulting from the sulfates industry of the North of Spain:

– Gypsum

– Plastic cement

Sample preparation consisted in to crushing and drying building materials in an oven
for 48 h at 105 �C, prior to its grounding and sieving (2 mm particle size).
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Gamma spectroscopic analysis
To carry out the γ-emissions measurements, the milled samples were dried and placed in
160 cm3 cylindrical containers made of plastic or in 1,000 cm3 Marinelli beakers, both,
hermetically sealed for 28 or more days. This period is sufficient for equilibrium to
occur between the radioisotopes of 226Ra and 232Th initially contained in the material and
their decay products.

To obtain the 232Th and 226Ra content an HPGe semiconductor detector was employed
according to the methodology followed by Madruga et al. (2018). The 232Th activity
was determined by means of the γ-emissions of 228Ac (911 KeV) and 208Tl (583.01 KeV)
and that of 226Ra by means of those from 214Bi (609.3 and 1764.5 KeV) and 214Pb (351.9
KeV) assuming that both radioactive series are left in secular equilibrium.

A 50% relative efficiency broad energy HPGe detector (Canberra BEGe model BE5030),
with an active volume of 150 cm3 and a carbon window was used for the gamma
spectrometry measurements. A lead shield with copper and tin lining shields the
detector from the environmental radioactive background. Standard nuclear electronics
was used and the software Genie 2000 (version 3.0) was employed for the data acquisition
and spectral analysis. The detection efficiency was determined using NIST-traceable
multi-gamma radioactive standards (Eckert & Ziegler Isotope Products, Berlin,
Germany) with an energy range from 46.5 KeV to 1,836 KeV and customized in a
water-equivalent epoxy resin matrix (density of 1.15 g cm−3) to exactly reproduce the
geometries of the samples. GESPECOR software (version 4.2) was used to correct for
matrix (self-attenuation) and coincidence summing effects, as well as to calculate the
efficiency transfer factors from the calibration geometry to the measurement geometry
(whenever needed). The stability of the system (activity, FWHM, centroid) was checked at
least once a week with a 152Eu certified point source. The acquisition time was set to
15 h and the photopeaks used for the activity determination were: 295.2 KeV (Pb-214),
351.9 KeV (Pb-214) and 609.3 KeV (Bi-214) for 226Ra; 238.6 KeV (Pb-212), 583.2 KeV
(Tl-208) and 911.2 KeV (Ac-228) for 228Ra and 1,460.8 KeV for K–40. Figure 2 presents
as an example a gamma-ray spectrum for a granite sample. The overall quality control
of the technique is guaranteed by the accreditation of the laboratory according to the
ISO/IEC 17025:2005 standards and through the participation in intercomparison exercises
organized by international organizations (Merešová, Wätjen & Altzitzoglou, 2012;
Xhixha et al., 2017). In summary, the activity concentration for 232Th and 226Ra (A)
was calculated by the following expression:

C ¼ N
t P M ef

(1)

where N stands for net counts, t for data collection time, P for emission probability, M for
mass of the sample and ef for efficiency of the detector for the corresponding peak. Besides,
uncertainty in the yield is also include since several γ-ray peaks were used for the
calculation of 232Th and 226Ra activity.
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Determination of massic exhalation rate and emanation factor
Exhalation is the amount of radon (radon activity) as obtained from a given layer
(geological material on the surface/surface exposure) mainly the outer thinner part of the
crust and it is given in Bq h−1, according to the Netherlands Standardization Institute
(Netherlands Standardization Institute, 2001). Exhalation can be related to the mass of
the samples (massic radon/thoron exhalation, and its value is expressed Bq Kg−1 h−1).
The method already referred (Miro et al., 2014; Frutos-Puerto et al., 2018) and similar to
that of other authors (Hassan et al., 2011) was employed to assess the massic exhalation of
222Rn and 220Rn and it is schematized in Fig. 3.

Figure 2 Gamma-ray spectrum of a granite sample. Full-size DOI: 10.7717/peerj.10331/fig-2

Figure 3 Schematic experimental set-up for the radon/thoron concentration measurements.
Full-size DOI: 10.7717/peerj.10331/fig-3
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The calculation of 222Rn and 220Rn exhalation was carried out according to the
expressions presented in Miro et al. (2014) from the formula of the temporal variation of
the radon concentration C(t), in Bq m−3:

dc
dt

¼ EM
V

� �C � aC (2)

where E (Bq Kg−1 h−1) is the radon-specific exhalation rate,M (Kg) the mass of the sample,
V (m3) the air volume of the container, � (h−1) the 222Rn or 220Rn decay constant and
a (h−1) the leakage rate from the container. The bound exhalation rate determined by
hermetically closing the sample in a container can be equal to the free exhalation
corresponding to the actual room conditions only in the case that the sample volume
would be less than the one-tenth of the container volume. Under these circumstances,
the “back diffusion” effect has no influence on exhalation rate measurements (Krisiuk
et al., 1971). The numeric calculation are made by adjusting by least squares of the C vs
t experimental data to the mathematical function given by Eq. (3). The a values obtained
range approximately from 0.009 to 0.04 h−1. For each material, such a values were
considered for the calculation of the 222Rn and 220Rn exhalation.

By solving Eq. (2), the radon concentration growth as a function of time is given by:

C tð Þ ¼ EM 1� e� �það Þt� �
�þ að ÞV þ C0e

� �það Þt (3)

being C0 (Bq m−3) the radon concentration at t = 0.
The 222Rn exhalation (ERn222) and a numeric calculation are made by adjusting by

least-squares of the C vs t experimental data to the mathematical function given by Eq. (3).
However, due to its short half-life, after the first cycle (2 h) of measurements, the

concentration of thoron in the container will reach its maximum value, remaining
constant until the end of the measurements. So, from Eq. (3) the massic thoron exhalation,
ERn220, can be calculated from the expression Eq. (4), which does not consider a value
because it is much smaller than the thoron decay constant, �Rn220:

ERn220 ¼ CRn220 �Rn220 V
M

(4)

where CRn220 (Bq m−3) is the average concentration of thoron in the container during the
interval of measurement from the first cycle of 2 h.

The emanation factor (amount of radon and thoron atoms that escape from the
grains constituting the material into the interstitial space between the grains), εRn, was
calculated by the following equation for both radioisotopes (Stoulos, Manolopoulou &
Papastefanou, 2003):

eRn ¼ ERn
Ci�d

(5)

where Ci is the
226Ra or 232Th content (Bq Kg−1) of the sample for radon and thoron,

respectively, �d , the decay constant and ERn the exhalation.

Frutos-Puerto et al. (2020), PeerJ, DOI 10.7717/peerj.10331 7/18

http://dx.doi.org/10.7717/peerj.10331
https://peerj.com/


Equation (5) is applicable for all measured building materials, because the dimensions
of the samples were chosen to be equal to the diffusion length of these gases for these
materials, around 4 cm (Stoulos, Manolopoulou & Papastefanou, 2003).

Determination of annual effective dose
The 222Rn/220Rn content accumulates in the surrounding air in a dwelling room, from
building materials, depends on factors such as the room dimension, the parent element
concentration, the subsequent exhalation directly from the soil and building materials
in walls or soil (radon gain), the air exchange and the isotope radioactive decay.
Therefore, building materials may cause an excess in the indoor 222Rn or 220Rn activity
concentrations, which is described by the following equation (Amin, 2015):

ARn ¼ EA S
Vr �v

(6)

where, ARn, is the
222Rn or 220Rn activity concentration (Bq m−3) in the air of the room;

EA is the surface exhalation rate (Bq m−2 h−1); S is the exhalation area (m2); Vr is the
volume of the room (m3) and �v is the ventilation rate of the room (h−1). Ratio S/V is
taken to be 2 and �v, 0.5 h−1 (United Nations Scientific Committee on the Effects of
Atomic Radiation (UNSCEAR), 2016). Considering the value of the sample emanation
surface in the container (0.0078 m2; circumference of 5 cm2), and the mass of the sample
(M), the surface exhalation rate EAð Þ for the building materials can be calculated, using the
following equation:

EA ¼ ERn
M

0:0078
(7)

This radon concentration model can then be used to determinate the annual effective
doses of 222Rn by Eq. (8), recommended by the United Nations Scientific Committee on
the Effects of Atomic Radiation (United Nations Scientific Committee on the Effects of
Atomic Radiation (UNSCEAR), 2016):

DRn222 ¼ ARn222 Fe Ta CFRn222 (8)

where DRn222 is the annual effective dose of
222Rn (Sv y−1); ARn222 is the activity

concentration for 222Rn (Bq m−3); CFRn222 is the dose conversion factor for 222Rn progeny
(Sv per Bq h m−3); Fe is the equilibrium factor for 222Rn and its progeny; and Ta is the
annual work time. The standard parameters were estimated using the RP 122 publication
of EC 2002 (European Commission, 2002). The values of CFRn222 were assumed to be
9 × 10−9 Sv per Bq h m−3 and the Ta, 7,000 h y−1. The value of Fe was assumed to be 0.4 as
reported in (United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR), 2008).

Similarly, for 220Rn:

DRn220 ¼ ARn220 Fe Ta CFRn220 (9)

where, DRn220 is the annual effective dose of
220Rn (Sv y−1); ARn220 is the activity

concentration for 220Rn (Bq m−3); CFRn220 is the dose conversion factor for 220Rn
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progeny (40 × 10−9 Sv per Bq h m−3) and Ta is the annual work time, 7,000 h y−1

(European Commission, 2002). Fe is the equilibrium factor for 220Rn and its progeny, 0.1
(United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR),
2008).

However, since the diffusion length of 220Rn is very short it is complex and ambiguous
to calculate the internal exposure due to 220Rn exhaling from the building material.
The indoor thoron concentration in air depends on the distance from the wall (Doi et al.,
1994; Javied, Tufail & Asghar, 2010) as presented in the following equation:

ARn220 Xð Þ ¼ EARn220ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Rn220Deff

p exp �
ffiffiffiffiffiffiffiffiffiffiffiffi
�Rn220

Deff

s
X

 !
(10)

where, ARn220 Xð Þ is the220Rn concentration at a distance, X, from the wall. EARn220 is
the 220Rn estimated surface exhalation rate by Eq. (7), Def is the effective diffusion
coefficient herein taken as 1.8 m2h−1 (Javied, Tufail & Asghar, 2010), �Rn220 is the decay
constant of 220Rn, 45 h−1.

It is reasonable to assume that the human respiratory organs are not more than 40 cm
distance from the wall. Therefore, the 220Rn concentration at the distance of 40 cm
calculated by Eq. (10), ARn220, is used to determinate the annual effective doses of 220Rn
with Eq. (9).

RESULTS
The results of activity concentration for 226Ra, CRa, massic exhalation, ERn222, and
emanation factor, εRn222, for

222Rn are summarized in Table 1.
In all samples, activity concentration for radium was above the detection limit (DL)

except for the wood sample. In many samples, the exhalation rate was lower than the
DL (because of ERn222 < DL) with exception of all samples of slate, granite and zircon.

Table 1 Activity concentration for 226Ra, CRa, massic exhalation, ERn222, and emanation factor, εRn222, for
222Rn of different building

materials.

Building materials No. of samples
(ERn222 > DL)

CRa (Bq Kg−1) ERn222 (mBq Kg−1 h−1) εRn222 (%)

Mean SD Range Mean SD Range Mean SD Range

NM Concrete 9 (7) 27.0 31.8 7.6–87.3 12.2 8.7 4.3–29.0 8.9 6.7 1.5–17.6

Cement 5 (1) 28.2 25.1 21.5–76.6 21.0 3.9 18.4–23.8 11.2 – –

Marble 2 (1) 22.8 25.3 4.9–40.7 26.3 – – 8.6 – –

Slate 2 (2) 28.7 0.2 28.6–28.9 16.0 97.4 10.4–21.6 7.4 3.6 4.9–9.9

Granite 9 (9) 122.2 52.9 51.0–239.1 70.3 71.4 20.5–221.4 8.5 8.7 2.0–24.9

Ceramic 7 (1) 126.4 105.8 49.9–335.0 0.7 – – 0.2 – –

Wood 1 (0) – – – – – – – – –

Aggregate 2 (1) 69.9 39.7 41.8–97.9 162.5 – – 22.0 – –

Zircon 2 (2) 2070 14.4 48.7–4090.0 429.5 16.4 36.0–823.0 6.2 5.0 2.7–9.8

PM Gypsum 2 (1) 4.4 3.1 2.2–6.6 1.4 – – 142.6 – –
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The maximum value on average was obtained for zircon, 429 mBq Kg−1 h−1, which is
much higher than that found for the aggregate and the granites.

The results of activity concentration for 232Th, CTh, massic exhalation, ERn220, and
emanation factor, εRn220, for

220Rn are summarized in Table 2.
The highest mean value for 232Th activity concentration is shown by zircon (340 Bq Kg−1),

and the lowest mean value is obtained for wood (0.6 Bq Kg−1). The mean values of
the 220Rn massic exhalation rate range from 2.2 of the ceramic to 169 Bq Kg−1 h−1 for
zircon, respectively.

A correlation study of 222Rn mass exhalation rate with respect to 226Ra content, as
shown in Fig. 4A, showed a good linear correlation coefficient (R2 = 0.9961). These results
show that the 222Rn mass exhalation rate increases as the 226Ra content is higher in the
samples. This good linear correlation has already been observed by other authors, some

Table 2 Activity concentration for 232Th, CTh, massic exhalation, ERn220, and emanation factor, εRn220, for
220Rn of different building

materials.

Building materials No. of samples CTh (Bq Kg−1) ERn220 (Bq Kg−1 h−1) εRn220 (%)

Mean SD Range Mean SD Range Mean SD Range

NM Concrete 9 14 9.8 3.9–35 6.3 2.4 1.9–10 1.2 0.6 0.6–2.1

Cement 6 9.2 5.5 1.1–14 3.4 1.3 1.7–5.4 1.6 0.6 0.4–5.9

Marble 2 2.9 1.4 1.8–3.9 3.5 0.3 3.3–3.8 3.1 1.3 2.2–4.0

Slate 2 73 2.9 71–75 20 2.7 20–21 0.6 0.1 0.6–0.7

Granite 9 51 33 10–124 31 46 2.6–144 1.1 1.4 0.2–4.8

Ceramic 7 43 27 3.1–80 2.2 1.6 1.5–5.8 0.3 0.4 0.0–1.1

Wood 1 0.6 – – 78 – – 29 – –

Aggregate 2 47 30 41–54 11 3.6 7.8–13 2.4 2.6 0.5–4.2

Zircon 2 340 21 1.6–676 169 228 6.9–330 5.4 6.0 1.1–9.6

PM Gypsum 1 1.4 – – 2.7 0.3 2.5–2.9 4.0 – –

Figure 4 Linear correlation analysis between 226Ra content and (A) 222Rn mass exhalation rate, and
(B) 222Rn emanation factor. Full-size DOI: 10.7717/peerj.10331/fig-4

Frutos-Puerto et al. (2020), PeerJ, DOI 10.7717/peerj.10331 10/18

http://dx.doi.org/10.7717/peerj.10331/fig-4
http://dx.doi.org/10.7717/peerj.10331
https://peerj.com/


of them with values very close to 1 (Amin, 2015). As could be expected (Fig. 4B), no
correlation (R2 = 0.0109) was found between the 222Rn emanation factor and the 226Ra
content.

A similar correlation of 220Rn mass exhalation rate with 232Th content is shown in
Fig. 5A, which shows a more weak correlation between the two quantities (R2 = 0.8336).
These results show that the 220Rn mass exhalation rate increases for samples with higher
232Th contents, as observed before for the 222Rn exhalation rate and 226Ra contents.

Moreover, as could be expected (Fig. 5B), no correlation (R2 = 0.0115) was found
between the 220Rn emanation factor and the 232Th content. Finally, no correlation
(R2 = 0.118) was found between the 222Rn emanation factor and the 220Rn emanation
factor as shown in Fig. 5C.

The results obtained for indoor contribution, surface exhalation rate, activity
concentration in the air of the room, and annual effective dose, for the different building
materials had been shown in Tables 3 and 4 for 222Rn and 220Rn, respectively. Therefore,

Figure 5 Linear correlation analysis between 223Th content and (A) 220Rn mass exhalation rate,
(B) 220Rn emanation factor. (C) Correlation analysis between the 222Rn and 220Rn emanation
factors. Full-size DOI: 10.7717/peerj.10331/fig-5

Table 3 222Rn surface exhalation rate, EA, activity concentrationi in the air of the room, ARn222, and annual effective dose, DRn222, for the
different building materials.

Building materials No. of samples EA (mBq m−2 h−1) ARn222 (Bq m−3) DRn222 (µSv y−1)

Mean SD Range Mean SD Range Mean SD Range

NM Concrete 9 (7) 85 47 43–169 0.34 0.19 0.17–0.67 8.6 4.7 4.3 – 17

Cement 5 (1) 189 – – 0.75 – – 19 – –

Marble 2 (1) 212 – – 0.85 – – 21 – –

Slate 2 (2) 162 48 127–196 0.65 0.19 0.51–0.78 16 4.9 12.9 – 20

Granite 9 (9) 802 905 224–2843 3.2 3.6 0.9–11 81 91 23–287

Ceramic 7 (1) 9.2 – – 0.04 – – 0.9 – –

Wood 1 (0) – – – – – – – – –

Aggregate 2 (1) 1985 – – 7.9 – – 200 – –

Zircon 2 (2) 3206 75 219–6193 13 17 0.9–25 323 426 22–624

PM Gypsum 2 (1) 146 – – 0.58 – – 15 – –
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Table 3 shows that the mean values of 222Rn surface exhalation rates varied from 9.2
to 3,206 mBq m−2 h−1 for ceramic and zircon, respectively. The 222Rn contribution of
building materials to indoor 222Rn considering the model room mentioned above, range
from 0.04 for ceramic samples to 13 Bq m−3 for zircon. As a result of this, the annual
effective dose ranged from 0.9 µSv y−1 for ceramic to 323 µSv y−1 for zircon. These values
are in agreement with the worldwide range (Sola et al., 2014; United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR), 2016).

In the case of 220Rn (see Table 4), the surface exhalation rate average varied from
22 to 1264 Bq m−2 h−1 for cement and zircon respectively. Its contribution of building
materials to indoor 220Rn at 40 cm of the wall considering the model mentioned above,
range from 2.0 for the cement to 112 Bq m−3 for zircon. Mean values of the annual effective
dose ranged from 16 µSv y−1 for gypsum to 1,300 µSv y−1 for zircon. These values are
similar to those found by other authors for building materials (Ujić et al., 2010). However,
estimation of annual effective dose from indoor thoron indicated the mean value of
zircon and some values of granites had been higher than the annual exposure limit for the
general public of 1 mSv y−1, recommended by European Directive 2013/59/Euratom
(European Parliament, 2014).

DISCUSSION
In general, results of Table 1 are comparable to those measured in a worldwide scale
(United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1988,
1993, 2008, 2016; Chen & Lin, 1997). Thus, the values for radium content in building
materials are less than the permissible value (370 Bq Kg−1), which is acceptable as a safe
limit (OECD, 1979). The only exception was in the radium concentration in zircon, the
highest value for the mean concentration was 2,070 Bq Kg−1. The values of exhalation
rates reported in Table 1 correspond well with the values reported by other authors

Table 4 220Rn surface exhalation rate, EA, activity concentration in the air of the room at 40 cm from the wall, ARn220, and annual effective
dose, DRn220, for the different building materials.

Building materials No. of samples EA (Bq m−2 h−1) ARn220 (Bq m−3) DRn220 (µSv y−1)

Mean SD Range Mean SD Range Mean SD Range

NM Concrete 9 44 18 26–82 3.9 1.6 2.3–7.2 55 39 27–147

Cement 5 22 6.0 18–32 2.0 0.5 1.6–2.9 24 5.8 19–33

Marble 2 27 4.6 24–31 2.4 0.4 2.1–2.7 28 4.8 25–32

Slate 2 214 32 191–236 19 2.8 17–21 220 32.8 197–243

Granite 9 315 478 27–1,530 28 42 2.4–135 325 493 28–1,580

Ceramic 7 24 13 17–53 2.1 1.1 1.5–4.7 25 13 18–55

Wood 1 959 – – 85 – – 989 – –

Aggregate 2 47 109 15–80 4.2 4.1 1.3–7.1 49 48 15–83

Zircon 2 1,264 12 42–2,485 112 153 3.7–220 1,300 1,780 43–2,560

PM Gypsum 2 18 5.9 14–22 1.4 0.3 1.2 – 1.6 16 3.1 14–19
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(Rawat et al., 1991; Porstendörfer, 1994; Stoulos, Manolopoulou & Papastefanou, 2003;
Righi & Bruzzi, 2006; Perna et al., 2018).

The variation in radon exhalation rates (one order of magnitude, in some cases)
can be attributed to variations in radium concentrations, porosity, and surface
crystallography. The emanation factor range from 0.2% to 22.0% for ceramic and
aggregates respectively. These values are similar to the measured in worldwide scales
(OECD, Organization of Economic Cooperation and Development, 1979; United Nations
Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1993, 2016; Stoulos,
Manolopoulou & Papastefanou, 2003).

The results of Table 2 show that the thoron exhalation rate is higher in zircon samples
and lower in ceramic samples. This can presumably be explained by the different
distributions of 224Ra parent element in the different types of samples. It should be noted
how the difference among the values of exhalation rate in granites (range from 2.6 to
144 Bq Kg−1 h−1) reveal their different mineralogical composition. The emanation factor
range from 0.3% to 29% for ceramic and wood, respectively.

The ranges of results of all these parameters are in good agreement with the values
reports by other authors (Ujić et al., 2010; Jónás et al., 2016).

CONCLUSIONS
In this study, the radon and thoron exhalation and emanation properties of building
materials commonly used in the Iberian Peninsula (Portugal and Spain) were measured
by using an active method with a continuous radon/thoron monitor. The correlations
between exhalation rates of these gases and their parent nuclide exhalation (radium/
thorium) concentrations were examined. Finally, on estimation the indoor radon/thoron,
the annual effective dose was calculated.

In general, 226Ra content in building materials is less than the permissible value,
370 Bq Kg−1, except for zircon, which means value was 2,100 Bq Kg−1. For this material
the maximum value on average of 222Rn massic exhalation rate (429 mBq Kg−1 h−1)
was also obtained. The emanation factor 222Rn/226Ra ranges from 0.2% to 22.0% for
ceramic and aggregates, respectively. On average, the highest value for activity
concentration of 232Th and massic 220Rn exhalation rate were showed by zircon,
340 Bq Kg−1 and 169 Bq Kg−1 h−1, respectively. The emanation factor of 220Rn/232Th range
from 0.3% to 29% for ceramic and wood, respectively. The correlation between the
radon mass exhalation rate and the 226Ra contents as well as the correlation between the
thoron mass exhalation rate and 232Th contents are in good agreement.

The mean values of 222Rn surface exhalation rates varied from 9.2 to 3,206 mBq m−2 h−1

for ceramic and zircon, respectively. The 222Rn contribution of building materials to
indoor 222Rn considering the model room mentioned above, range from 0.04 for ceramic
samples to 13 Bq m−3 for zircon. So, the annual effective dose ranged from 0.9 µSv y−1 for
ceramic to 323 µSv y−1 for zircon.

In the case of 220Rn, the surface exhalation rate average varied from 22 to
1,264 Bq m−2 h−1 for cement and zircon respectively. Its contribution of building
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materials to indoor 220Rn at 40 cm of the wall, range from 2.0 for cement samples to
112 Bq m−3 for zircon. Mean values of the annual effective dose ranged from 16 µSv y−1 for
gypsum to 1,300 µSv y−1 for zircon. Therefore, in the case of zircon and some granites,
the annual effective dose was higher than the annual exposure limit for the general public
of 1 mSv y−1, recommended by the ICRP.
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