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ABSTRACT

Nutritional and lifestyle changes remain at the core of healthy aging and disease prevention. Accumulating evidence underscores the impact
of genetic, metabolic, and host gut microbial factors on individual responses to nutrients, paving the way for the stratification of nutritional
guidelines. However, technological advances that incorporate biological, nutritional, lifestyle, and health data at an unprecedented scale and
depth conceptualize a future where preventative dietary interventions will exceed stratification and will be highly individualized. We herein discuss
how genetic information combined with longitudinal metabolomic, immune, behavioral, and gut microbial parameters, and bioclinical variables
could define a digital replica of oneself, a “virtual digital twin,” which could serve to guide nutrition in a personalized manner. Such a model may
revolutionize the management of obesity and its comorbidities, and provide a pillar for healthy aging. Adv Nutr 2020;11:1405–1413.
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Introduction
Precision medicine is transforming clinical practice. A
record-high number of new precision drugs, pharmaco-
genetic, and cancer risk-related genetic tests have been
approved by the US FDA during the last 2 y, testimony to
the practical benefits of extensive research on genetic and
lifestyle factors impacting human health. The FDA approvals
address the need to reshape health care by redefining
drug target populations and provide patients with the
most clinically effective, safe, and cost-effective personalized
treatment options. The new era of data-driven medicine,
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vis-à-vis technological advances, provide the foundation for
“the assessment and management of human health at an
unprecedented level of resolution” (1), referred to as high-
definition medicine. In a forward-thinking review article,
Torkamani et al. (1), envisioned the future of high-definition
technologies towards an “actual digital twin” health model
in which deep phenotypic and molecular characteristics of
a diseased person are most closely matched to thousands or
millions of patients with the same disease and similar molec-
ular profile, allowing better prediction of individualized
treatment and health outcomes. Various computational, in
vitro and in vivo “humanized” models align to this concept,
particularly in oncology (2–4).

Several lines of evidence call for a major conceptual and
practical shift in dietetics towards high-definition nutrition
that would parallel progress in precision medicine. We herein
discuss this evidence, emphasizing the need to combine
genetic, immune, metabolic, behavioral, bioclinical, and
meta-genomic data to guide nutrition in a truly personalized
manner. Extending the “actual digital twin” health model
(1), we conceptualize a future in which these health and
biomolecular parameters will endow the definition of a
digital replica of oneself, a “virtual digital twin” (Figure 1),

Copyright C© The Author(s) on behalf of the American Society for Nutrition 2020. Adv Nutr 2020;11:1405–1413; doi: https://doi.org/10.1093/advances/nmaa089. 1405

mailto:eliopag@med.uoa.gr
mailto:gkouskoukal@med.uoa.gr
https://doi.org/10.1093/advances/nmaa089


FIGURE 1 Genetic, epigenetic, immune, metabolic, microbial, and behavioral paths to nutrition interact, highlighting the need for a
“holistic” approach to precision nutrition. A “virtual digital twin” could be constructed as a digital replica of oneself by combining
longitudinal high-definition -omics data, bioclinical and phenotypic variables, and behavioral aspects (dietary habits, physical activity,
sleeping patterns, etc.) of the same individual, collected through internet of things health care platforms and managed by machine
learning algorithms to simulate specific dietary and lifestyle strategies in silico. Such a highly individualized platform may revolutionize the
management of obesity and its comorbidities, and provide a pillar for healthy aging.

that could provide the most acceptable, adaptable, efficient,
and cost-effective dietary and lifestyle recommendations.

Current Status of Knowledge
Genetic and epigenetic paths to precision nutrition
A plethora of twin and genome-wide association studies
(GWAS) underscore a strong genetic influence on both
human thinness (5) and obesity (6–8). Twin studies indicate
that ∼40–70% of interindividual variability in BMI could be
attributed to genetic factors (9), and >800 single nucleotide
polymorphisms (SNPs) and copy number variations (CNVs)
have been associated with obesity (6–8). Many of these
genetic variants impinge on key hypothalamic circuits that
regulate appetite, emotional eating, and food intake (6),
indicating that eating behavior—influenced by genetics—
may significantly affect body mass. Other SNPs relate to
energy metabolism and expenditure, insulin secretion and
action, adipogenesis, and other key biological processes (6).
As individual variants may have small or intermediate effects
on BMI, genetic risk scores (GRSs) have been proposed as
the most relevant source of identifying high-risk individuals
who would benefit most from early lifestyle changes or
preventative treatments (10). It should be noted, however,
that an obesogenic environment is likely to preferentially
uncover inherited susceptibility among those with highest
genetic risk, in accord to the “missing heritability” reported
in several obesity GWAS. Polygenic risk scores are emerging
as the new frontier, by evaluating a large number of genetic

loci, not only those significantly associated with a defined
phenotype or response (11).

There has been a long debate whether the macronutrient
composition of dietary interventions impacts weight loss in
individuals with obesity. In a seminal randomized clinical
trial entailing 4 diets that differed in the percentages of
essential macronutrients, the patterns of weight loss in
overweight and obese were found similar for each diet
(12). Notably, however, a considerable variation of weight
loss was noted within each of the 4 dietary groups (12),
indicating genetic influences in the response to dietary in-
terventions. Beyond macronutrients, genetics may interplay
with responses to micronutrients. For example, the associa-
tion between vitamin D concentrations and cardiovascular
disease risk varies among ethnic groups and likely reflects
polymorphisms in genes involved in the biological activity of
vitamin D (13).

Indeed, various clinical studies, including the POUNDS
(Preventing Overweight Using Novel Dietary Strategies)
Lost (12), the DioGenes (Diet, Obesity, and Genes) trial
(14), PREDIMED (Prevención con Dieta Mediterránea)
(15), Food4Me, and others, have uncovered genetic variants
that may predict weight loss mostly in relation to specific
macronutrients (16, 17). For example, obese individuals
carrying the AA genotype of FTO rs1558902 respond to
a high-protein diet with a significant reduction in BMI
compared to those with a TT genotype (18). The AA
genotype of HNF1A rs7957197 is associated with greater
weight loss among individuals assigned to a low-fat diet
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compared to those with TT alleles (19). Eating behavior has
also been linked to specific variants. Thus, a high-protein diet
significantly reduces the appetite of carriers of the A allele
of rs9939609 at the FTO locus, whereas individuals with an
A allele at MC4R rs7227255 display increased appetite when
assigned a low-fat diet (20, 21). Variants at the AMY1-AMY2
(amylase) locus (rs11185098) have been associated with
weight loss irrespective of diet (22). Although association
does not connote causation, several gene-diet associations
have been experimentally validated in model systems [see, for
example, (17, 23, 24)].

GRSs have also been explored in relation to responses to
dietary components. For example, high coffee consumption
has beneficial effects on weight loss only among those
individuals with a high obesity GRS (25). A 32 SNP-based
GRS can predict those individuals who are more susceptible
to the adverse effects of sugar-sweetened beverages on obesity
(26, 27) and a 13 risk allele GRS predicts reduction in
blood triglycerides in individuals fed a diet supplemented
with n–3 PUFAs (28). These are only a few examples of
gene-diet interactions which, collectively, underscore the
potential of genetically guided dietary recommendations for
the management of obesity and for personalized healthy
lifestyles (29). This area is rigorously explored by both the
academic (30) and industrial sectors (31), including our
teams.

Unlike the wealth of available information regarding the
impact of genetic variants on BMI and nutritional responses,
data on epigenetic effects is lagging behind. Whole genome
DNA methylation profiles of adipose tissue and blood
sampled from obese versus never obese individuals have
identified a relatively small number of methylated genetic
loci associated with BMI (32). Differential CpG methylation
was predicted to affect genes involved in lipid and lipoprotein
metabolism, substrate transport, and inflammatory pathways
but appears to be predominantly the consequence rather than
the cause of adiposity (32).

Nevertheless, there are several observations that un-
derscore the need to continue exploring epigenetics in
the context of precision nutrition. First, nutrition is a
major environmental factor that may affect the epigenome,
including DNA methylation. Second, the association of a
subset of DNA methylation markers with BMI is stronger
in certain populations (32). Third, the epigenetic hetero-
geneity observed at some of the differentially methylated
loci among individuals, coupled with the graded relation
between methylation and BMI, are indicative of epigenetic
reprogramming, likely in adipocytes (32), which could be
addressed by dietary and lifestyle interventions. This hypoth-
esis aligns with the “epigenetic clock” model proposed by
Steve Horvath in 2013 (33), which stipulates that “epigenetic
age” is not only significantly related to biological age but
is also both an indicator of overall health and subject
to a healthy lifestyle (34). Along these lines, epigenetic
reprogramming can ameliorate age-related hallmarks in vivo
(35).

The immunome path to precision nutrition
Obesity is characterized by low-grade, subclinical systemic
inflammation which affects several tissues and organs
and impacts insulin sensitivity and secretion, and glucose
homeostasis. As a result, obesity-associated inflammation
is regarded as a driver of type 2 diabetes mellitus and a
predisposing factor for the development of nonalcoholic fatty
liver disease (NAFLD), nonalcoholic steatohepatitis (NASH),
and several types of human malignancies (36).

Several studies have addressed changes in immune cell
content in the peripheral blood in relation to BMI (37).
The consensus drawn from the majority of these studies
is that the immunophenotype of individuals with obesity
differs from that of normal weight people, having increased
numbers of white blood cells, neutrophils, intermediate
CD14+CD16+ monocytes, and total CD3+ and CD4+

T cells, but reduced numbers of CD8+ T cells and of
regulatory T (Treg) lymphocytes, a CD4+ T cell subset
which functions to counterbalance exaggerated inflamma-
tory responses and maintain self-tolerance. Individuals with
very low Treg cell counts (<1.06%) have a 9.6-fold higher
risk of developing an inflammatory obese phenotype (38).
Elevated total lymphocyte counts, monocytes, and CD4+ T
cells are also found in the peripheral blood of overweight
(39, 40). In contrast, effector memory CD4+ T cells,
which produce IFN-γ and TNF, are increased in obese
but not in overweight individuals (40). We have recently
reported experimental obesity-related changes in monocyte-
macrophage responses to insulin characterized by increased
glycolysis and a unique phenotype which may contribute
to insulin resistance-associated inflammation (41). Several
proinflammatory factors are also elevated in the plasma of
individuals with obesity, including leptin, TNF, IL-6, and C-
reactive protein (CRP) (42). CRP concentrations increase
progressively with BMI (40) and decrease following weight
loss (43). The aforementioned observations rationalized the
development and use of inflammatory scores, which have
uncovered associations with insulin resistance, BMI, waist
circumference, and blood pressure (44).

Notably, systemic low-level inflammation is also a hall-
mark of aging. Dubbed “InflammAging” by Franceschi and
colleagues (45), this aging-related inflammatory phenotype
is typified by elevated serum concentrations of proinflam-
matory factors that include TNF, IL-6, and CRP, and are
associated with frailty and increased morbidity and mortality
in older adults (46). Elevated mortality risk in older people is
also influenced by BMI (47). Effector memory CD4+ T cells
also increase with age (48), similar to the obese immunophe-
notype (40). Therefore, monitoring inflammatory markers
could serve to mobilize dietary and lifestyle changes towards
both healthy aging and obesity prevention.

Along these lines, dietary supplementation with n–3 PU-
FAs in healthy adults, and overweight and obese individuals
has been correlated with reduced serum CRP, TNF, and IL-
6 concentrations in several studies (49, 50). Notably, genetic
variants have been found to interact with dietary fatty acids
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to influence inflammatory responses (28, 51, 52). Micronu-
trients may also have significant effects on immune function;
vitamin D3, for example, influences innate and adap-
tive immunity and confers anti-inflammatory properties,
including positive effects on Treg cell numbers (53). Several
polymorphisms have been identified in vitamin D receptor
and vitamin D metabolism-associated genes that affect or-
ganismal vitamin D status and health outcomes (54), further
underscoring the need to combine genotypic, bioclinical,
and nutritional data to achieve improved immunological
outcomes.

The advent of novel technologies, such as single-cell
profiling with mass cytometry (CyTOF), which enables >50
parameters to be assayed on single cells, is anticipated
to provide high-definition immunophenotypic information
and revolutionize our understanding of the interplay between
nutrition and immunity. The “10,000 Immunomes Project”
(55), which aspires to define all the genes and proteins that
constitute the immune system, will also accelerate research
towards this goal.

Microbiota: a novel path to precision nutrition
Advances in genomic technologies have dramatically ex-
panded our appreciation of the extent of microbial coloniza-
tion in different organs and tissues and its impact on both
human physiology and disease (56, 57). These analyses so far
suggest that the microbiota is an essential partner of various
biological functions of the host, including development and
training of the immune system, defense against pathogenic
microorganisms, digestion of food components, and syn-
thesis of certain micronutrients and bioactive compounds
such as SCFAs and other metabolites [(56); see also next
section].

In general, a low abundance of the phylum Proteobacteria
and a high abundance of the genera Bacteroides, Prevotella,
and Ruminococcus have been associated with a healthy
adult intestinal microbiota (58). Compared with lean people,
obese individuals have a different microbiota profile that is
largely typified by a higher Firmicutes-to-Bacteroidetes ratio,
reduced bacterial diversity, and altered representation of
bacterial genes and metabolic pathways (59). Such microbial
shifts are likely to pose a functional impact on obesity.
Indeed, a 20% increase in Firmicutes phylum abundance
translates to elevated energy harvest from food in humans
(60). Similarly, the microbiota of leptin-deficient ob/ob mice
enables higher energy extraction from nutrients in the
absence of an increase in food consumption (61). These
seminal observations raise important questions pertinent
to the exploitation of microbiota composition in precision
nutrition.

Currently, microbiome signatures are explored as prog-
nostic markers. Thus, a low bacterial diversity is predic-
tive of a propensity towards developing obesity (62) and
cardiovascular diseases in relation to the consumption of
certain nutrients (63, 64). Individuals with obesity bearing
a low gene-count microbiome were also more refractory
to improvement of inflammatory variables during weight

loss interventions (65). Conversely, stratification according
to the Prevotella-to-Bacteroidesratio improves the outcomes
of nutritional interventions on weight loss (66). Dysbiosis
and reduced abundance of SCFA-producing bacterial genera
are observed in children with a high risk of developing type
1 diabetes mellitus even before the overt manifestations of
the disease (67). Another example entails an algorithm that
integrates microbiota and can accurately predict postprandial
glycemic responses despite variations among individuals
(68).

Due to the complexity and individuality of each person’s
microbiota, the extent to which modulation of microbiota
composition can be realized in the context of precision nu-
trition and the management of obesity is currently unknown
(69). Ideally, personalized intervention strategies could be
developed to “normalize” a deregulated microbiota or further
improve the response to a specific diet. Probiotics, prebiotics,
synthetic stools, and stool transplantation have demonstrated
efficacy towards weight reduction in experimental models
of obesity which warrants further studies in humans. Along
these lines, the obesity-associated reduction in Treg cell
numbers is reversed in mice administered probiotics (70),
pertinent to the inverse correlation between Treg and the
inflammatory obese phenotype in humans (38).

However, the key determinant of human gut microbiota
is diet (71, 72) which is also more amenable to interven-
tion. Adherence to the Mediterranean diet, for example,
leads to increases in the genera Bacteroides, Prevotella, and
Bifidobacteria (73), and long-term consumption of fiber
results in a high abundance of Prevotella genus (74), both
of which are associated with a healthy intestinal microbiota.
Although further clinical studies are required, the available
evidence indicates that normalization of gut microbiota has
the potential to contribute to metabolic health and weight
loss (57). In the context of precision nutrition, it would be
important to proceed beyond the compositional analysis of
microbiota towards understanding its interaction with the
host, including host genetics (57), and microbial metabolites
that may serve as key mediators of the host-microbiota
connection, as discussed in the next section.

Advances in metabolomics of nutrition
The metabolome entails the end-products of metabolic
processes and it has thus attracted significant attention in
nutrition sciences for the identification of biomarkers of
dietary intake and obesity. Several conventional metabolites,
such as nonesterified free fatty acids, triglycerides, and
products of carbohydrate catabolism (e.g. pyruvate and
lactate) are higher in the serum of obese subjects (42,
75). Additional metabolic alterations identified in obese
compared with lean subjects included several branched-
chain essential amino acids, the presence of which correlated
with obesity-associated gut microbiota (42, 75). Functional
studies showed that rats fed a high-fat diet supplemented
with branched-chain amino acids rapidly developed insulin
resistance (42), linking microbiota with circulating amino
acids and obesity-related pathologies. This association was
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further corroborated by the transcriptomic analysis of mi-
croflora from human twins discordant for obesity which
uncovered induction of the de novo biosynthetic pathway
for branched-chain amino acids in the microbiota of obese
compared with lean twins (76). Remarkably, gut bacteria
also produce metabolites capable of stimulating the central
nervous system control of appetite, brain reward signaling,
and emotional eating [reviewed in (77)]. These observations
highlight the interplay between host genetic, metabolic, and
microbial factors and further underscore the need for a
holistic approach to nutritional interventions by combining
several -omics outcomes.

Metabolomics has also been employed to identify
biomarkers for differential responses to dietary interventions.
Thus, weight loss in metabolically healthy obese women is
accompanied by changes in plasma metabolites that include
microbial products, lipids, and amino acids (78). For
example, trimethylamine, an intermediate metabolite from
the microbial metabolism of dietary carnitine and choline,
is decreased after weight loss (78). Metabolomic studies in
blood and urine from postmenopausal women with low bone
density who received calcium and vitamin D supplements
revealed different metabolic profiles which segregated
with genotype and could partly predict nonresponders to
treatment (79). Another study identified a metabolomic
profile predictive of liver dysfunction in individuals fed a
choline-depleted diet (80). Increased blood concentrations
of acylcarnitines—intermediates of fatty acid and amino
acid oxidation—are associated with cardiovascular diseases.
Mediterranean diet interventions were found to diminish the
risk of stroke associated with higher plasma concentrations
of acylcarnitines before the intervention (81). These
examples underscore the potential of exploring the human
metabolome towards the identification of biomarkers
that could predict responses to food components and
dietary interventions in conjunction with additional -omics
outcomes. Beyond obesity, metabolomics could be further
explored to determine how food metabolites may influence
food allergies or intolerances.

Behavioral aspects of nutrition
High-resolution monitoring of dietary behavior is an integral
part of precision nutrition. A precise quantification of the
type, amount, and frequency of food consumed by a person
should ideally be accomplished by real-time monitoring
rather than 24-h dietary recalls or short-term measurement
of food consumption. Innovative technologies are being de-
veloped and will be increasingly utilized for the recording of
dietary parameters. Table-embedded scales (82), automatic
ingestion monitors that incorporate sensors for jaw motion
with hand gestures and an accelerometer (83), smart-phone
camera applications that calculate contents and calories
through deep learning algorithms (84), and tooth-mounted
sensors capable of recording a wide range of nutrients (85) are
some examples of devices that aim to provide a more accurate
means to log and adjust food consumption than dietary
recalls. In addition to food quantity and quality, monitoring

of food timing is also important as it affects weight loss
effectiveness in conjunction with circadian cycle-related gene
variants (86, 87). Such technologies are often combined with
wearable sensors that offer continuous or frequent recording
of several health parameters, including heart rate, oxygen
saturation, respiratory rate, and blood pressure.

Activity tracking devices may provide additional insight
into physiological measurements, a convenient and indirect
estimate of energy consumption, and an objective reference
for the motivation of specific health-promoting behaviors.
Activity tracking includes monitoring of sleep duration.
Short sleeping behaviors have been associated with irregular
eating, higher total energy intake, and lower quality diets
(88). Therefore, improving sleeping patterns has been pro-
posed as an integral part of health promotion strategies that
extend to weight management (88).

New technological advances may also assist in the assess-
ment of basic emotions which are relevant to eating behavior,
including measurement of hunger and food reward (89). For
example, voice and image analysis has been used to detect
mood disturbances relevant to eating disorders (90). As emo-
tional functions are influenced by social interactions (91),
environmental monitoring at high resolution may further
contribute to the modulation of physiological, cognitive, and
emotional states in the context of precision nutrition.

Furthermore, recent evidence suggests that dietary habits
and behavioral eating have a strong genetic influence (92,
93). For example, of 85 curated habits analyzed, 83 were
found to be significantly heritable and to be associated with
several SNPs (93). Collectively, current evidence suggests that
behavioral aspects of nutrition should be considered through
a combination of genetics and real-time monitoring of food
intake, physical activity, and emotional states.

Future directions and challenges: towards a “virtual
digital twin” model for human nutrition
The adoption of high-definition technologies is leading to
the accumulation of a wealth of data regarding basic health
units (e.g. whole genome SNP profiles, immunophenotypes,
bioclinical data, etc.), behavioral information (e.g. physical
activity tracking), and environmental monitoring (e.g. food
consumption). The UK Biobank represents a prime example
of these efforts that have also led to major discoveries in the
context of gene-diet interactions. Entries from such sources
could aid the identification of “actual digital twins,” a set
of people with similar characteristics at their most basic
health units (1). The health outcomes of “actual digital twins”
could be utilized to formulate basic prognostic models and
actions that are predicted to be more relevant to the person
in question and lead to improved outcomes compared with
current practices.

A “virtual digital twin” could be constructed as a digital
replica of oneself by high-definition data of the same
individual, thereby extending the “actual digital twin” health
model. To achieve a truly personalized platform in nutrition,
the “virtual digital twin” should include a personal health
baseline and enable the incorporation of health and lifestyle
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data in young (disease-free) versus old (disease-prone) age,
along the lines of the longitudinal holo’ome monitoring we
have previously proposed for colon cancer (94). For example,
the obesity GRS could serve as an early-life, albeit incomplete,
virtual representation of a baseline risk of weight gain
which could progressively be enriched by the incorporation
of genomic, metagenomic, immune, behavioral, and deep
phenotypic data to build a “virtual digital twin” (Figure 1).
Integrative -omics technologies, wearable sensors, internet of
things (IoT), and consumer internet behavior are available
tools and potential sources of such data with increasing
capabilities that could spearhead early preventive actions for
health maintenance.

Deviations from health states, such as an increase in BMI,
a reduction in gut bacterial diversity, changes in bioclinical
parameters (e.g. CRP, serum lipid profile), or an elevated
inflammatory score, should enable health professionals to
simulate further specific dietary and lifestyle strategies in
silico by using the patient’s “virtual digital twin.” In this
manner, unwanted, unnecessary, or even harmful dietary
or lifestyle choices could be eliminated and only the most
promising interventions could be applied and monitored. A
“virtual digital twin” may also serve as a powerful motiva-
tional tool that reinforces specific health care choices. Indeed,
various public surveys have indicated that individuals are
more likely to make nutritional choices and adhere to dietary
recommendations if these are based on their molecular
profile (95, 96).

The applicability of this model is underscored by a study
by Price et al. (97) in which several metabolic, bioclinical,
microbiome, and physical activity data were collected from
108 people 3 times over a 9-mo period and coupled to their
genotype. Polygenic risk scores (PRS) and correlation net-
works were generated by integrating these data and identified
clusters of analytes associated with physiology and disease
which assisted in the implementation of behavioral coaching
that helped individuals to improve health biomarkers. The
results of this study represent an elegant example of high-
definition health monitoring comprising a set of health
and behavioral parameters that could serve as a pillar for
the “digital twin” model of precision nutrition and healthy
lifestyle.

Despite technological progress, several conceptual and
practical barriers to the development and implementation
of “digital twin” models need to be overcome. Personalized
dietary advice is strongly determined by the way molec-
ular, phenotypic, and bioclinical data are appreciated and
utilized, calling for a change in the training that health
professionals receive and a stronger interaction among
relevant scientific disciplines. The former is highlighted by
a recently published survey reporting that whereas 93.5%
of dieticians perceived personalized nutrition as of high
importance, only 9.5% of them had received some training on
nutrigenetics (98). Although the cost of -omics technologies
rapidly decreases and their performance increases, stronger
computational tools and capabilities are likely to be required
to accommodate and interrogate the large amount of data

generated. Mathematical models are being developed for
both polygenic prediction of weight/obesity trajectories (7,
26) and in the context of genetically guided nutrition (99)
but further development of machine learning algorithms
will be required to fully realize the potential of big data
exploration in precision nutrition (100). IoT health care
platforms are rapidly emerging to support the networking
of mobiles, wearables, and other physical devices but need
to be extended to facilitate the assembly and integration of
longitudinal biological, nutritional, lifestyle, and health data.
The implementation of “digital twin” models will also require
carefully defined technical means and safeguards to protect
sensitive personal information along with a specialized,
detailed legal framework. Important questions such as who
processes these data, where and how it is stored, who/under
what conditions has access to these data, how can maximum
data access protection be achieved, as well as how safe and
effective database interoperability is ensured, will need to be
carefully addressed.

Conclusions
The rapid progress in the field of precision medicine paves
the way for a major conceptual and practical shift in dietetics
towards high-definition nutrition. It is now evident that the
wealth of information extracted from the human genome,
combined with longitudinal metabolomic, immune, behav-
ioral, and gut microbial parameters and bioclinical variables
could be explored towards improved dietary choices. A guide
for the future will be to develop user-friendly, artificial
intelligence-based “virtual digital twin” platforms (Figure 1)
that will endow health professionals with fully informed
decision-making capabilities, surpassing stratification and
providing nutritional and lifestyle recommendations that are
highly individualized. We propose that such a platform may
revolutionize the management of obesity and its comorbidi-
ties, and provide a pillar for healthy aging.
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