Skip to main content
. 2020 Nov 16;16(1):115–123. doi: 10.1007/s11548-020-02286-w

Table 2.

Classification metrics on the test dataset using the different architecture of deep transfer learning models and also proposed ensemble method. For each model, average (± std.) performance measure is reported over the best 5 trained model checkpoints

Model Precision Recall F1-score Accuracy AUC
EfficientNetB0 0.847(± 0.03) 0.822(± 0.11) 0.815(± 0.05) 0.82(± 0.02) 0.907(± 0.02)
EfficientNetB1 0.727(± 0.06) 0.718(± 0.09) 0.712(± 0.03) 0.71(± 0.02) 0.809(± 0.02)
EfficientNetB2 0.768(± 0.03) 0.768(± 0.12) 0.768(± 0.05) 0.77(± 0.03) 0.859(± 0.03)
EfficientNetB3 0.769(± 0.03) 0.765(± 0.07) 0.763(± 0.03) 0.76(± 0.03) 0.851(± 0.01)
EfficientNetB4 0.791(± 0.02) 0.789(± 0.05) 0.788(± 0.01) 0.79(± 0.01) 0.877(± 0.01)
EfficientNetB5 0.817(± 0.03) 0.817(± 0.11) 0.817(± 0.05) 0.82(± 0.03) 0.886(± 0.01)
Inception_resnet_v2 0.773(± 0.03) 0.774(± 0.12) 0.773(± 0.05) 0.77(± 0.02) 0.856(± 0.01)
InceptionV3 0.825(± 0.03) 0.814(± 0.07) 0.815(± 0.03) 0.82(± 0.02) 0.897(± 0.02)
NASNetLarge 0.772(± 0.06) 0.770(± 0.09) 0.768(± 0.03) 0.77(± 0.01) 0.836(± 0.03)
NASNetMobile 0.759(± 0.03) 0.757(± 0.12) 0.757(± 0.05) 0.76(± 0.04) 0.823(± 0.02)
ResNet50 0.807(± 0.03) 0.808(± 0.11) 0.807(± 0.05) 0.81(± 0.03) 0.875(± 0.01)
Xception 0.738(± 0.06) 0.739(± 0.09) 0.738(± 0.03) 0.74(± 0.04) 0.782(± 0.04)
DenseNet121 0.768(± 0.03) 0.768(± 0.03) 0.768(± 0.03) 0.77(± 0.02) 0.868(± 0.04)
SeResnet50 0.755(± 0.03) 0.745(± 0.07) 0.745(± 0.03) 0.75(± 0.02) 0.818(± 0.02)
ResNext50 0.810(± 0.03) 0.806(± 0.12) 0.806(± 0.05) 0.81(± 0.02) 0.843(± 0.02)
Proposed ensemble model 0.857(± 0.02) 0.854(± 0.05) 0.852(± 0.01) 0.852(± 0.01) 0.91(± 0.01)