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1 | INTRODUCTION

Hemophilia B (HB; OMIM 306900) is a rare X-linked re-
cessive hemorrhagic disorder caused by a deficiency or
abnormality in coagulation factor IX (FIX) due to muta-
tions in the F9 gene, affecting 1 in 30,000 male live births
(Bolton-Maggs & Pasi, 2003). HB is diagnosed based on
clinical manifestations and laboratory results. Based on
residual plasma FIX activity, HB is classified as severe
(FIX:C <1%), moderate (FIX:C 1%-5%), or mild (FIX:C
5%-40%) (Goodeve, 2015). At present, under clinical or
preclinical investigation, the only radical cure for HB,
gene therapy, is not yet mature (Hasbrouck & High, 2008;
Maitituoheti et al., 2011). And the main treatment is FIX
replacement therapy (Srivastava et al., 2013), which places
a heavy burden on the family and society. The detection of
causative genetic variants in HB families has attracted the
attention of clinicians to predict the development of inhib-
itors and provide genetic counseling.

As of February 2020, more than 1244 F9 mutations
have been recorded in the FIX Variant Database (http://
www.factorix.org/). These mutations include point muta-
tions, deletions, insertions, duplications, insertions, and
deletions(InDel), complex mutations, and polymorphisms.
Most of the reported mutations are point mutations, which
account for more than 70% of these mutations (McVey
et al., 2020).

Based on the reported spectrum of F9 mutations in dif-
ferent populations—for example, Americans, Colombians,
Italians, Canadians, etc.—the spectrum of F9 mutations
differs across populations (Belvini et al., 2005; Chen
et al., 2020; Li et al., 2014; Natalia, Jayne, Shawn, Paula,
& David, 2013; Parrado Jara, Yunis Hazbun, Linares, &
Yunis Londono, 2020). Therefore, enriching the FIX vari-
ant database enables us to analyze the distribution of F9
mutations in different populations and provides more de-
tailed annotation information on these variants. Here, we
performed genetic analyses of 76 unrelated HB pedigrees
in China and examined the 9 gene to enrich the spectrum
of F9 mutations in China.

predicted to be disease-causing. However, no potentially causative mutations were
found in the F9 coding sequences of the four remaining HB pedigrees. In addition,
two HB pedigrees carrying additional F8/F9 mutations were discovered.

Conclusion: The identification of these mutations enriches the spectrum of F9 mu-

tations and provides further insights into the pathogenesis of HB in the Chinese

F9, hemophilia B, molecular diagnosis, next-generation sequencing

2 | MATERIALS AND METHODS

2.1 | Ethical statement

Informed consent was obtained from all study partici-
pants. This study was approved by the Ethics Committee
of Nanfang Hospital (Approval no. NFEC-2016-035) and
in accordance with the Principles of the Declaration of
Helsinki.

2.2 | Subjects

The study analyzed 285 subjects from 76 unrelated Chinese
pedigrees with HB diagnosed at Nanfang Hospital, Southern
Medical University (Guangzhou, China) from March 2017 to
December 2019. Basic information of this cohort is described
in Table S1.

2.3 | Sample collection and DNA extraction
Peripheral blood was collected from each participant in
EDTA tubes. Genomic DNA was extracted from 200 pl of
peripheral blood using Nucleic Acid Isolation or Purification
reagent (Guangzhou Darui Biotechnology). DNA concentra-
tions were assessed using the Qubit dsDNA HS Assay Kit
in a Qubit 3.0 Fluorometer (Life Technologies) following
the manufacturer's instructions, and the extracted DNA was
stored at —20°C.

2.4 | Library preparation and next-
generation sequencing

Using a designed panel targeting the most important regions
of the F8, F9, and VWF genes (coding sequences, untrans-
lated regions, and 10 bp of exon-intron junction regions,
GenBank accession no. NM_000132.3, NM_000133.2,
NM_000552.3, respectively, human genome hgl9),
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libraries were prepared using an Ion AmpliSeq Library Kit
2.0 (Life Technologies) following the manufacturer's in-
structions. In this process, each library was labeled with
a unique barcode using Ion Xpress Barcode Adaptors
1-96 Kit (Life Technologies) and diluted to a concentra-
tion of ~100 pM. Subsequently, libraries to be sequenced
were pooled in equimolar proportions and subjected to
emulsion PCR on an Ion OneTouch™ 2 Instrument (Life
Technologies). After template enrichment, the positive
templates were loaded on a semiconductor chip and se-
quenced by synthesizing on an Ion Torrent sequencing
platform (Life Technologies).

2.5 | Next-generation sequencing
data analysis

The raw sequencing data were processed using lon Torrent
Suite v5.4.0 (Life Technologies). After running the Variant
Caller plug-in, a VCF file for each sample was generated.
For variant annotation and interpretation, an in-house bio-
informatics pipeline that integrates several population and
mutation databases (dbnsfp33a, 1000Genomes, ExAC,
gnomAD, ClinVar, and HGMD) and bioinformatics tools
was run. The clinical significance of each identified variant
was characterized according to the American College of
Medical Genetics and Genomics (ACMG) criteria as fol-
lows: pathogenic, likely pathogenic, variant of unknown
significance, likely benign, or benign. Candidate variants
were checked in the EAHAD F9 variant database (http://
f9-db.eahad.org), LOVD (https://databases.lovd.nl/share
d/genes/F9), and CHBMP (http://www.cdc.gov/hemop
hiliamutations/). SIFT (Kumar, Henikoff, & Ng, 2009),
PolyPhen-2 (Adzhubei et al., 2010), and PROVEAN (Choi,
Sims, Murphy, Miller, & Chan, 2012) were used to evalu-
ate the deleterious nature of the novel missense mutations.
All causative mutations in each pedigree identified by
next-generation sequencing (NGS) were validated by com-
parison with the results of Sanger sequencing or Multiplex
Ligation-dependent Probe Amplification assays.

An Ion Reporter workflow was created to call the copy
number variation (CNV) using Ion Reporter Software version
5.10 (Thermo Fisher Scientific). CNV detection algorithm of
Ton Reporter is based on the Hidden Markov Model (HMM),
the algorithm uses read coverage to detect the copy number
states. The coverage is corrected for GC bias and contrasted
against a “baseline” coverage that is constructed from one
or more controls. Subsequently, copy number segments and
their ploidies were computed.

All variants identified were further checked manually
using the Integrative Genomics Viewer (IGV, Broad Institute)
with BAM files.
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FIGURE 1
Chinese hemophilia B (HB) pedigrees: 38 (64.41%) were missense

The frequency of the 59 variants identified in 76

mutation, nine (15.25%) were nonsense mutations, five were small
deletions (8.47%), four were large deletions (6.78%), and two were
splicing mutations (3.39%). The remaining one was an intronic

mutation
3 | RESULTS
3.1 | Mutation spectrum

On average, 98.79% of the target region had at least 20X cov-
erage required for confident variant calls and 97.37% of the
target region had more than 100X coverage. From 285 cases
representing 76 HB pedigrees, 59 different variants were iden-
tified in 72 pedigrees: 38 (64.41%) missense mutations, nine
(15.25%) nonsense mutations, five small deletions (8.47%),
four large deletions (6.78%; Figure 1), and two splicing muta-
tions (3.39%). In addition, an intronic mutation classified as
variants of unknown significance was detected in two carriers
and one patient from HB423. The details of these mutations
are listed in Table 1. Of the 59 identified variants, 49 had been
reported and 10 were novel mutations. No mutations in the
targeted F9 region were found in four pedigrees.

3.2 | Novel mutations

Of the 59 variants identified in 76 HB pedigrees, 10 were
novel (c.190T>G, ¢c.199G>T, ¢.290G>C, c.322T>A,
¢.350_351insACAATAATTCCTA, ¢.391+5delG,

c.416G>T, c.618_627delAGCTGAAACC, c.863delA, and
¢.1024_1027delACGA). These variants were not listed in
ClinVar, HGMD, or the FIX Variant Database (http://www.
factorix.org) as of February 2020. With our in-house bioinfor-
matics pipeline, the clinical significance each of these novel
mutations was interpreted according to the ACMG criteria.
The details are listed in Table 2. Of the 10 novel variants, four
were predicted to be pathogenic (two nonsense mutations and
two frameshift deletions), four were predicted to be likely
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pathogenic (all missense mutations), and two were predicted to
be variants of unknown significance. As is described in Table 2,
four missense mutations were predicted to be likely pathogenic
according to ACMG guidelines, combined evidence to support
the pathogenicity of these four missense mutations are PM1,
PM2, PP2, PP3, PP4, PM1, and PM2 are moderate evidence
of the pathogenicity. PP2, PP3, PP4 are supporting evidence.

3.3 | Families with double mutations

In the 76 HB pedigrees we analyzed, two pedigrees carried
additional F§ gene variants. F9:c.1231A>G(p.Ser411Gly)
and F8:c.6490A>G(p.Ile2164Val) were both detected in
one carrier and two patients from HB309. In the F9 gene,
c.1231A>G was the causative mutation in three HB cases in
previous reports (Johnsen et al., 2017). The other mutation in
the F8 gene, c.6490A>G, was classified as likely pathogenic
and is a novel mutation to our knowledge. Both of the vari-
ants were predicted to be “likely pathogenic” and validated
by Sanger sequencing.

One patient from HB25 had ahemizygous F9:1294G>A(p.
Gly432Ser) mutation and an F8:c.3169G>A(p.Ile2164Val)
mutation. In the F9 gene, ¢.1294G>A(p.Gly432Ser) was
classified as likely pathogenic and has been recorded in HB
patients from India, South Korea, Germany, and the United
States (Johnsen et al., 2017; Kwon, Yoo, Kim, & Kim, 2008;
Miller et al., 2012; Wulff, Schrioder, Wehnert, & Herrmann,
1995).

3.4 | Mosaic mutation

Of the 76 pedigrees analyzed, the mosaic mutation was
discovered in one pedigree. The mutation c¢.199G>T(p.
Glu67Ter) was initially detected only in patient of this pedi-
gree. Subsequently, the proband's mother's BAM file was
checked manually using IGV. The read depth at the site of
this variant was 1730x, which showed that the allele T/G
frequency was 9.36% (162/1730). The Sanger sequencing re-
sults are shown in Figure 2. Results showed that the mother
carried a mosaic mutation.

4 | DISCUSSION
With a detection rate of 94.74%, NGS was performed to an-
alyze 76 unrelated Chinese HB pedigrees and 59 different
variants were identified. Similar to previous reports, these
mutations were distributed over the entire length of the F9
gene.

Consistent with reported rates of 65%—70% (Goodeve,
2015), missense mutations accounted for 64.41% of the

. ) . 70f9
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GAGAATGTATGGAAGAAAAGTGT
240 250

Control

GAGAATGTATGGAAGAAAAGTGT
240 250

Mother

GAGAATGTATGGAATAAAAGTGT
240 250

Proband

FIGURE 2 Sanger sequencing results for the F9 gene. The
proband in this pedigree was hemizygous for ¢.199G>T(p.Glu67Ter).
The mother had a minor mutant T peak at the same location. The
variants are indicated with red arrows

mutations identified in our study, mainly in serine protease
domains (16/38, 42.11%). Of the 38 missense mutations
we identified, 36 were categorized as likely pathogenic.
The significance of the remaining two missense mutations
(c.26C>G and ¢.59T>C) in the signal peptide is unknown.
However, ¢.59T>C (p.Leu20Ser) has been reported in severe
HB in China and Italy (Belvini et al., 2005; Liu et al., 2000).
Of three intronic mutations, two were splicing mutations
(c.884+1G>T and ¢.391+2T>C) that could lead to the pro-
duction of a truncated FIX protein. Although the predicted
results showed the remaining mutation (c.39145delG) could
not create a new splice site, it may influence the gene expres-
sion effect in other ways. Besides, it was the only F9 gene
mutation detected in the proband, his mother, and a sibling.
At the same location, ¢.3914+5G>A was reported to be a
splicing mutation (Ketterling et al., 1999). Interestingly, the
FIX:C of the sibling was 38%, presenting as mild HB, con-
sistent with reports that in rare symptomatic cases, female
carriers were mildly symptomatic (Gangodkar et al., 2018).
It has been reported that 1.3%-7.8% of HB cases had
more than one mutation (Goodeve, 2015). In our study, two
of 76 HB pedigrees carried double candidate mutations
(briefly mentioned in Li et al., 2020). One patient from ped-
igree HB25 carried the mutations ¢.3169G>A(p.Ile2164 Val)
in the F§ gene and c.1294G>A(p.Gly432Ser) in the F9
gene. Both were missense mutations. With frequencies of
0.00799 and 0.000198 in East and South Asians, respectively,
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¢.3169G>A(p.Ile2164Val) in the F8 gene seems more likely
to be pathogenic (Lyu et al., 2016). In the EAHAD F9 muta-
tion database, c¢.1294G>A(p.Gly432Ser) in the F9 gene has
been identified in patients at different centers (Johnsen et al.,
2017; Kwon et al., 2008; Miller et al., 2012; Wulff et al.,
1995). It remains unclear whether the two mutations work
together to affect clinical severity. The detection of a second
mutation is as important as the first in genetic diagnosis.

We discovered one sporadic case. The mother of the spo-
radic case had a mosaic ¢.199G>T(p.Glu67Ter) mutation in
the 9 gene. Minor peaks at mutation sites can easily be mis-
taken for the background peaks of such mosaic mutations,
causing the mosaic mutation to be overlooked. However, ge-
netic mosaicism may be not a rare event in sporadic hemo-
philia (Kasper & Buzin, 2009; Lannoy & Hermans, 2020;
Lu et al., 2018). In a report that analyzed 804 hemophilia
pedigrees, sporadic cases accounted for 30%—43% of all HB
cases (Kasper & Lin, 2007). Thus, more consideration should
be given to the prenatal diagnosis of sporadic hemophilia.
Family based deep sequencing may help to discover mosaic
mutations.

We were unable to find potentially causative mutations in
four HB pedigrees, perhaps because the mutations that cause
HB to locate in regions that our NGS panel did not cover
(Johnsen et al., 2017). If the entire F9 gene were examined,
mutations might have been found in these four HB pedigrees.
Deep intronic mutations that cause hemophilia A have been
reported (Bach, Wolf, Oldenburg, Muller, & Rost, 2017,
Pezeshkpoor et al., 2013). The role of microRNA in fine-tun-
ing F'8 gene regulation has also been emphasized (Jankowska
et al., 2020). Thus, the entire F9 gene sequence of these four
HB pedigrees will be further determined in our study.

The major limitation of our study was that the resid-
ual plasma FIX activity of each pedigree was not complete
enough to establish the genotype-phenotype correlation. In
addition, target regions were limited to find out potentially
causative mutations in four HB pedigrees.

5 | CONCLUSION

This study identified 59 different causative mutations in
76 Chinese pedigrees with HB. Ten novel mutations were
reported: ¢.190T>G, c.199G>T, c¢.290G>C, c.322T>A,
¢.350_351insACAATAATTCCTA, ¢.39145delG,
c.416G>T, c.618_627delAGCTGAAACC, c.863delA, and
c.1024_1027delACGA. This enriches the spectrum of F9
mutations and provides further insight into the pathogenesis
of HB in the Chinese population.
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