
Brain and Behavior. 2020;10:e01836.	 ﻿	   |  1 of 10
https://doi.org/10.1002/brb3.1836

wileyonlinelibrary.com/journal/brb3

 

Received: 10 August 2020  |  Accepted: 22 August 2020
DOI: 10.1002/brb3.1836  

O R I G I N A L  R E S E A R C H

Neural and physiological relations observed in musical beat and 
meter processing

T. Christina Zhao  |   Patricia K. Kuhl

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Brain and Behavior published by Wiley Periodicals LLC.

Institute for Learning and Brain Sciences, 
University of Washington, Seattle, WA, USA

Correspondence
T. Christina Zhao, Institute for Learning and 
Brain Sciences, University of Washington, 
Portage Bay Building, Box 357988, Seattle, 
WA 98195-7988, USA.
Email: zhaotc@uw.edu

Funding information
Apollo Music Foundation

Abstract
Introduction: Music is ubiquitous and powerful in the world's cultures. Music listen-
ing involves abundant information processing (e.g., pitch, rhythm) in the central nerv-
ous system and can also induce changes in the physiology, such as heart rate and 
perspiration. Yet, previous studies tended to examine music information processing 
in the brain separately from physiological changes. In the current study, we focused 
on the temporal structure of music (i.e., beat and meter) and examined the physiol-
ogy, neural processing, and, most importantly, the relation between the two areas.
Methods: Simultaneous MEG and ECG data were collected from a group of adults 
(N = 15) while they passively listened to duple and triple rhythmic patterns. To char-
acterize physiology, we measured heart rate variability (HRV), indexing the para-
sympathetic nervous system function (PSNS). To characterize neural processing of 
beat and meter, we examined the neural entertainment and calculated the beat-to-
meter ratio to index the relation between beat-level and meter-level entrainment. 
Specifically, the current study investigated three related questions: (a) whether lis-
tening to musical rhythms affects HRV; (b) whether the neural beat-to-meter ratio 
differed between metrical conditions, and (c) whether neural beat-to-meter ratio is 
related to HRV.
Results: Results suggest that while at the group level, both HRV and neural process-
ing are highly similar across metrical conditions, at the individual level, neural beat-to-
meter ratio significantly predicts HRV, establishing a neural–physiological link.
Conclusion: This observed link is discussed under the theoretical “neurovisceral in-
tegration model,” and it provides important new perspectives in music cognition and 
auditory neuroscience research.
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1  | INTRODUC TION

Music is one of the most ubiquitously communicative sounds across 
the world's cultures. Listening to music is a powerful experience that 
engages the whole body. It not only requires neural processing of 
abundant musical information, such as the melody line, the rhythm, 
the instrument, and the genre, but it also induces responses in the 
physiology of the listeners, such as changes in heart rate and perspi-
ration. So far, the physiological responses have been almost solely 
studied in the context of music-evoked emotion, with the common 
approach to measure the physiology of the listeners while they lis-
ten to musical excerpts that are meant to elicit strong emotions. 
However, while it is known that physiological can also be affected 
by other factors, such as cognitive factors (Shaffer, McCraty, & 
Zerr, 2014), the relation between physiology and music information 
processing in the brain remains largely understudied.

The physiological responses related to music-evoked emotion 
are robust and have been documented repeatedly (e.g., (Koelsch & 
Jäncke, 2015)). For example, when listening to happy, sad, and fear-
ful music, participants were observed to show differential physio-
logical response patterns, such as in blood pressure, heart rate, skin 
conductance, and respiration (Krumhansl, 1997). In another study, 
participants were assigned to either listen to relaxing music or si-
lence after a stressful task. Participants who listened to relaxing 
music exhibited significantly more reduced cortisol level than the 
silent control group (Khalfa, Bella, Roy, Peretz, & Lupien,  2003). 
When participants experience a “chill” response (i.e., an intense 
emotional response) to music, it was observed that they demon-
strated enhanced skin conductance and heart rate (Grewe, Kopiez, 
& Altenmüüller, 2009).

However, most of the measurements in these studies target the 
sympathetic nervous system (SNS) (e.g., heart rate, skin conductance, 
cortisol level). Parasympathetic nervous system (PSNS), another in-
tegral component of the autonomic nervous system, has largely not 
been a focus of music research (Wehrwein, Orer, & Barman, 2016). 
While the SNS is generally considered associated with arousal to 
prepare one for action, PSNS is thought of as bringing the system 
back to homeostasis (i.e., a balanced state) (Francis & Oliver, 2018). 
PSNS function is indexed by the measurement of heart rate variabil-
ity (HRV), that is, changes in the variability of the time intervals be-
tween successive heartbeats (Berntson et al., 1997; Laborde, Mosley, 
& Thayer, 2017). Specifically, the higher the HRV, the stronger the in-
fluence PSNS has on the autonomic nervous system; moreover, very 
low resting HRV has been found to be associated with increased 
risk of disease (Thayer, Yamamoto, & Brosschot, 2010). A handful of 
studies have examined HRV during music listening, for example, HRV 
was found to be lower when listening to excitative music in compar-
ison to sedative music (Iwanaga, Kobayashi, & Kawasaki, 2005) and 
the effect from excitative music may have been induced mainly by 
the change in tempo (Kim, Strohbach, & Wedell, 2018).

PSNS is an important topic to study in music perception as it 
serves as a possible bridge between music processing in the central 
nervous system and peripheral physiology. Multiple theories have 

been proposed (see a review by (Shaffer et al., 2014)) that connect 
HRV with important higher-level functions, for example, social/emo-
tional function and development (“Polyvagal theory”)(Porges, 2007), 
neural and cognitive functions (“neurovisceral integration model”) 
(Thayer, Åhs, Fredrikson, Sollers, & Wager,  2012; Thayer, Hansen, 
Saus-Rose, & Johnsen, 2009), as well as self-regulation (McCraty & 
Childre,  2010). Specifically, the “neurovisceral integration model” 
emphasizes a neural–physiological relation, mapping out anatomi-
cal pathways that connect the cerebral cortex to the heart (Thayer 
et al., 2012).

The current study aims to bridge the gap in the literature and 
examines the relation between central neural processing of music 
and peripheral physiological activities. Specifically, we focus on the 
HRV given the importance of PSNS and theoretical frameworks re-
lating HRV to higher-level neural processes. At the same time, most 
studies concerning physiology in the music emotion literature have 
used naturalistic music excerpts to elicit different emotions. While 
this is a more ecologically valid approach, it precludes us from under-
standing precisely which components of the music are connected to 
physiology and therefore effective for inducing changes. Therefore, 
in this study, we focus on a specific component of music, namely the 
temporal structure (i.e., beat and meter).

The temporal structure hierarchically organizes rhythmic infor-
mation in music. The beat-level temporal structure provides the 
sense of regular pulses that are perceived to occur at equal time 
intervals (i.e., isochronous); and the meter-level temporal structure 
involves further organizing beats into groups or units through ac-
centing some beats, for example, duple meter as marching rhythm 
(strong-weak-strong-weak) and triple meter as waltz rhythm (strong-
weak-weak-strong-weak-weak). Beat and meter processing is a cru-
cial skill as it has been shown to be associated with higher-level 
cognitive skills, such as attention (Khalil, Minces, McLoughlin, & 
Chiba, 2013), syntactic skills (Gordon et al., 2015), and reading (Carr, 
White-Schwoch, Tierney, Strait, & Kraus, 2014).

Various neuroscientific approaches have been used to under-
stand how the brain processes beat and meter in music. To track 
beat, it has been shown that motor regions (e.g., basal ganglia, sup-
plementary motor areas, premotor cortex), in addition to auditory 
regions, are serving crucial roles (Geiser, Notter, & Gabrieli, 2012; 
Grahn & Brett, 2007; Grahn & McAuley, 2009). Using MEG, addi-
tional studies have demonstrated brain activity in sensorimotor 
areas coupled with beat-level frequency as well as beta-band oscilla-
tory patterns (highly associated with sensorimotor systems) that are 
related to processing of isochronous beats (Fujioka, Trainor, Large, 
& Ross, 2009, 2012; Morillon & Baillet, 2017). A recently proposed 
model suggests that a large subcortical–cortical network that incor-
porates the frontal cortex, basal ganglia, and cerebellum in addition 
to the auditory system is in play when processing beat-level tempo-
ral structure (Schwartze & Kotz, 2013).

For meter-level temporal structure processing, research has 
demonstrated that higher-level processes play an important role and 
that this is reflected in neural responses. ERP studies have demon-
strated that listeners’ cortical responses to identical sounds differ 
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when the sounds were at metrically stronger locations in musical 
passages vs. weaker locations (Fitzroy & Sanders, 2015) and disrup-
tion to metrically strong locations elicit stronger neural responses 
(Brochard, Abecasis, Potter, Ragot, & Drake,  2003). Similarly, par-
ticipants’ beta-band oscillatory activity in response to isochronous 
tones was measured after they have been primed to hear the streams 
in metrical patterns (e.g., strong-weak-strong-weak); beta-band ac-
tivities were observed to decrease more after perceptually stronger 
(or accented) beats than weaker beats even though the sounds were 
identical (Fujioka, Ross, & Trainor, 2015). In addition, neural detec-
tion of meter violation also differed based on the type of metrical 
structure (e.g., duple vs. triple), possibly due to different amounts of 
exposure (i.e., duple meter is more prevalent), although the exact na-
ture of the difference remains unclear (Abecasis, Brochard, Granot, 
& Drake, 2005; Fujioka, Zendel, & Ross, 2010; Zhao, Lam, Sohi, & 
Kuhl, 2017).

In recent years, a new method has emerged to further study 
beat and meter processing, namely neural entrainment to beat and 
meter through frequency tagging (Nozaradan, 2014). That is, neural 
activity entrains, or modulates in a periodic manner, following the 
periodic beat and meter in the sound stream. Peaks in the power 
spectrum of the neural signal, at the frequencies that corresponds 
to periodicity related to beat and meter, can therefore be observed. 
In the original study, musicians listened to isochronous beats while 
their neural activities were measured by EEG. They were instructed 
to imagine the isochronous beats in different metrical structures 
(i.e., duple or triple). In the power spectrum of their recorded EEG, 
peaks at these imagined meter-level frequencies were observed 
along with the peak at the beat-level frequency, demonstrating that 
meter processing involves mental grouping and the organization of 
beats (Nozaradan, Peretz, Missal, & Mouraux,  2011). Using this 
method, the authors further observed that the neural entrainment 
to beat and meter-related frequencies are selectively amplified 
compared to unrelated frequencies in complex rhythms, providing 
more evidence of the endogenous aspect of beat and meter pro-
cessing (Nozaradan, Peretz, & Mouraux,  2012). Moreover, using 
ecologically valid music, it was demonstrated that entrainment 
to meter, not beat, can be disrupted with conflicting cues, further 
showing that meter processing may involve higher-level processes 

(Tierney & Kraus,  2015). Most recently, Li and colleagues exam-
ined neural entrainment using simultaneous EEG-fMRI and ob-
served networks that are distinct to beat vs. meter entrainment (Li 
et al., 2019).

The current study adapted the neural entrainment method 
to examine the neural processing of music beat and meter. Adult 
participants passively listened to 5-min blocks of duple and triple 
meter rhythm while their neural activities were measured by mag-
netoencephalography (MEG) (Figure  1a). We also measured their 
simultaneous cardiac activities using ECG during these blocks. 
In addition, resting ECG was also measured for 5 min prior to the 
sound presentation. Following the neural tagging method, we first 
calculated the power spectrum of the MEG signal and focused on 
the power values at the beat-level frequency and the meter-level 
frequency. Different from previous studies, we further calculated 
the ratio between the power values for beat-level and meter-level 
frequencies (i.e., beat-to-meter ratio = beat-level power value/ me-
ter-level power value) for each individual. This ratio indexes the re-
lation between beat and meter processing, that is, the higher the 
ratio, the more neural entrainment tags the beat while the lower 
the ratio, the more neural entrainment tags the meter. For the ECG 
data, we extracted heart rate variability (HRV) measures that can 
index PSNS function. Our main question concerns the relation be-
tween neural processing and physiology; in addition, we are inter-
ested in whether there are differences between duple and triple 
meter conditions given that previous studies have reported pro-
cessing differences between the two meters (Abecasis et al., 2005; 
Fujioka et al., 2010; Zhao et al., 2017).

We addressed three specific questions: (a) Whether HRV dif-
fered across resting state, duple meter, and triple meter conditions. 
We hypothesized that HRV will be higher during resting state than 
during sound presentation. We did not have specific hypotheses 
regarding differences between triple and duple meter conditions. 
(b) We examined the beat-to-meter ratio between duple and triple 
meter conditions, and we anticipated differences between the two 
conditions, given the difference in difficulty for error detection be-
tween these two conditions (Zhao et al., 2017). (c) Most importantly, 
we conducted regression analyses to examine relations between the 
neural beat-to-meter ratio and HRV at the individual level.

F I G U R E  1   Stimulus waveforms (top panel) and power spectra (bottom panel) for (a) duple and (b) triple condition. In the power spectra, 
peaks at beat-level frequencies are shaded in blue while peaks in meter-level frequencies are shaded in yellow
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2  | METHOD

2.1 | Participants

16 individuals were recruited to participate in this study at the 
University of Washington. One individual opted to discontinue after 
consent. The age of the 15 participants (7 males) ranged from 23 
to 32 years old (mean age = 26.87 years [SD = 2.77]). None of the 
participants reported any speech, language, or hearing difficulties. 
Three participants reported growing up with another language aside 
from English in the household. Others were native, monolingual 
speakers of American English. Self-reported formal music training 
(i.e., private lessons) ranged from 0–17  years (mean  =  6.48  years 
[SD  =  6.16]). All procedures were approved by the University of 
Washington Institution Review Board, and all participants were 
compensated monetarily for their participation.

2.2 | Stimuli

Two stimuli (~10s long each) were generated that varied in metrical 
structure (i.e., duple vs. triple meter). The metrical structures were 
established by playing strong and weak complex tones in specific se-
quences in a stream (Figure 1 Top Row shows stimulus waveforms). 
In both stimuli, the inter-onset interval was 300ms. The complex 
tone (Duration: 100ms, Sampling frequency: 44.1kHz) was synthe-
sized to have a fundamental frequency of 220 Hz (A3) and a “grand 
piano” timbre along with a “woodblock” sound in the Overture soft-
ware (Version 4, Sonic Scores). This complex tone (weak tone) was 
amplified by 10dB in Audacity software (Version 2.0, Sound Forge) 
to create the strong tone. Such stimuli have been widely used in the 
literature (Hannon & Trehub, 2005b; Winkler, Haden, Ladinig, Sziller, 
& Honing, 2009; Zhao et al., 2017).

The spectra of the stimuli, calculated through Fourier transform, 
can be visualized in Figure 1 Bottom Row. In both stimuli, beat-level 
rhythm energy has a peak at 3.33  Hz (corresponds to the ISI of 
300ms), while meter-level rhythm energy has a peak at 1.67 Hz (cor-
responds to inter-strong-beat intervals of 600ms) for duple meter 
and 1.11 Hz (corresponds to inter-strong-beat intervals of 900ms) 
for triple meter.

2.3 | Experimental design and procedure

During an experimental session, participants were first consented 
and then completed a brief language and music background ques-
tionnaire. Simultaneous MEG and ECG recordings were completed 
inside a magnetically shielded room (MSR)(IMEDCO America Ltd, 
IN). For MEG, an Elekta Neuromag system was used with 204 planar 
gradiometers and 102 magnetometers. In preparation, five head po-
sition indicator (HPI) coils were attached to each participant's head. 
Head positions under the MEG dewar were collected from these 
sensors at the beginning of each block. Then, three landmarks (left 

preauricular, right preauricular, and nasion) and the HPI coils were 
digitized along with 100 additional points along the head surface 
with an electromagnetic 3D digitizer (Fastrak®, Polhemus, Vermont, 
U.S.A). In addition, a pair of electrocardiography sensors (ECG) were 
placed on the front and backside of the participants’ left shoulder to 
record cardiac activity and 2 pairs of electro-oculogram (EOG) sen-
sors were placed (one pair placed above and below left eye and one 
pair lateral to each eye) to measure eye blinks and saccades.

The stimuli were processed such that the RMS values were ref-
erenced to 0.01, and it was further resampled to 24,414 Hz for the 
TDT (Tucker-Davis Technologies Inc., FL). The normalization process 
ensured that the overall intensity level of the stimuli was equal; how-
ever, the power relation for the beat and meter frequencies are dif-
ferent as can be seen in Figure 1b. Then, the stimuli were delivered 
from a TDT RP 2.7 device, controlled by custom python software on 
a HP workstation to a speaker with a flat frequency response at a 
comfortable listening level of 65 dB SPL, measured under the MEG 
dewar. The stimuli were presented in blocks (~6 min each block). In 
each block, the same trial (~10s long) was repeated 30 times with ~2s 
breaks between repetitions. The order of the blocks was randomized 
across individuals.

The participants listened passively and watched silent vid-
eos during recording. And all recordings were completed using a 
1,000  Hz sampling rate. A 5-min long empty room recording was 
done prior to each participant's session. In addition, a 5-min rest-
ing-state ECG recording was also done for each participant prior to 
stimulus presentation.

2.4 | Data processing

HRV analysis was done using in-house MATLAB software for pro-
cessing ECG data. QRS complexes (peaks indexing heartbeats) were 
first identified through algorithms and were then manually edited to 
ensure that all peaks were correctly labeled. The inter-beat intervals 
(IBIs) were subsequently extracted and used to calculate the RMSSD 
for each condition, the outcome measure for HRV. The RMSSD is 
defined as the square root of the mean of the sum of the squares of 
differences between adjacent inter-beat intervals (IBIs). The meas-
urements and analysis have been well established and standardized 
in the field of HRV research (Laborde et al., 2017).

All MEG processing and analyses were done using the MNE-
python software (Gramfort et al., 2013). MEG data were first pre-
processed using the temporally extended spatial signal separation 
(tSSS) method (Taulu & Hari, 2009; Taulu & Kajola, 2005) and head 
movement compensation to suppress sensor noise and magnetic in-
terference originating from outside of the MEG dewar. MEG data 
were low-pass filtered at 40  Hz and high-pass filtered at 0.1 Hz. The 
artifacts from heart beats as well as eye movements were further 
suppressed using the signal-space projection method (SSP)(Uusitalo 
& Ilmoniemi, 1997) as implemented in MNE-python. Epochs (−1 to 
11s) were extracted and averaged to generate the evoked responses 
to the stimuli. Subsequently, the power spectral density (PSD) of the 
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evoked response for each sensor was calculated using the Welch's 
method (Welch,  1967) in MNE-python, and then, the PSDs were 
averaged across sensors with 0.05  Hz resolution. Individual- and 
group-level PSD for Duple and Triple conditions can be visualized 
in Figure  3a and Figure  3b. Peak values between 3.2 and 3.5  Hz 
were extracted for beat-level energy for both conditions. For me-
ter-level energy, peak values between 1.6 and 1.9 were extracted 
for the duple condition and peak values between 1.0 and 1.4 were 
extracted for the triple condition. Mean frequency values at which 
beat-level energy occurs are 3.35 Hz (SD = 0.01) for duple condition 
and 3.35 Hz (SD = 0.00) for the triple condition. Mean frequency 
values at which meter-level energy occurs are 1.65 Hz (SD = 0.00) 
for duple condition and 1.11  Hz (SD  =  0.02) for the triple condi-
tion. The mean power for the beat-level energy was 3.94  ×  10–25 
Tesla2 (SD = 1.56) for the duple condition and 3.82 × 10–25 Tesla2 
(SD  =  1.77) for the triple condition. The mean power for the me-
ter-level energy was 2.05 × 10–25 Tesla2 (SD = 1.61) for the duple 
condition and 1.94 × 10–25 Tesla2 (SD = 1.16) for the triple condition. 
The beat-to-meter ratio was calculated by dividing the beat-level 
peak energy by the meter-level peak energy for each individual.

Power spectral density (PSD) was also calculated at the source 
level for each individual for secondary explorative analyses. Forward 
modeling used the boundary element method (BEM)-isolated skull 
approach with inner skull surface extracted from the averaged adult 
brain (Fischl, Sereno, Tootell, & Dale, 1999). Both the source space 
and the BEM surface were then aligned and scaled to optimally 
fit each subject's head shape revealed by head digitization points. 
Inverse source modeling was performed on the sensor power spec-
tral density, using the dynamic statistic parametric mapping method 
(dSPM) without dipole orientation constraints and with data from 
both gradiometers and magnetometers (Dale et  al.,  2000). The 
source activities were normalized to the noise covariance computed 
from the corresponding empty room recording, which underwent 
the same preprocessing steps except for the movement compensa-
tion. This procedure resulted in statistically normalized scores for 3 
dipole components at each source location for each frequency (i.e., 
dipole strengths in 3 orthogonal directions). Lastly, the magnitude 
was calculated across the 3 dipole components at each source lo-
cation and was taken as the power spectral density for that source 
location. Left hemisphere PSD was calculated by averaging across all 
source locations in the left hemisphere and similarly, and right hemi-
sphere PSD was calculated by averaging across all source locations 
in the right hemisphere. The beat-to-meter ratios were extracted 
and calculated separately from the left and right hemisphere PSD, 
using the same method as for the sensor-level analysis.

3  | RESULTS

The data reported in this study are openly available in Open Science 
Framework (Zhao, 2019). To address question 1, we conducted a re-
peated measures analyses of variance (ANOVA) of HRV across the 
resting condition, duple meter condition, and triple meter condition 

(SPSS Version 19). Results (Figure 2) show a significant main effect of 
conditions (F (2, 28) = 4.760, p = .035 with Greenhouse-Geiser cor-
rection), η2 = 0.234). Post hoc comparisons between conditions with 
Bonferroni correction suggest that the effect was mainly contrib-
uted to by a significant difference (p = .039) between resting-state 
condition (mean  =  55.18, 95% CI [39.99, 70.34]) and duple meter 
condition (mean  =  48.9, 95% CI [35.66, 62.14]. No significant dif-
ferences were observed between duple and triple meter condition 
(Triple mean = 48.95, 95% CI [35.95, 61.94], p = 1.00), or between 
resting state and triple meter condition (p = .18).

To address question 2, we estimated the mean of sensor-level 
beat-to-meter ratios using the boostrap method with 1,000 repeti-
tions (Efron & Tibshirani, 1994). The bootstrap mean of beat-to-me-
ter ratio is 2.48 with a 95% confidence interval between [1.91, 3.15] 
in the duple condition (Figure 3c left column). Similarly, the boostrap 
mean of beat-to-meter ratio for the triple condition is 2.52 with 
95% confidence interval between [1.79 3.31] (Figure  3c right col-
umn). Further, we explored whether there was a hemisphere differ-
ence in the beat-to-meter ratio for each condition. Related samples 
Wilcoxon signed rank tests (SPSS Version 19) were used to compare 
left and right hemisphere beat-to-meter ratio as the ratios did not 
follow a normal distribution as shown by the Kolmogorov–Smirnov 
test. For both conditions, no hemisphere differences were observed 
(p = .75 for duple condition and p = .91 for triple condition). The re-
sults suggest that despite the different ratios observed in the sound 
stimuli between beat and meter energy (duple condition: beat-to-
meter ratio in stimulus = 0.39, triple condition: beat-to-meter ratio 
in stimulus = 1.04), in adults, the brain tracks the beat-level rhythm 
about 2.5 times stronger than the brain tracks the meter-level 
rhythm at the group level.

To address question 3, we conducted regression analyses be-
tween beat-to-meter ratios (i.e., neural processing measure) and 
RMSSD (i.e., physiological HRV measure). Both beat-to-meter ra-
tios and RMSSD were first log-transformed to ensure normal dis-
tribution. Regression analyses suggested a significant linear relation 
between beat-to-meter ratio and RMSSD in the duple condition 
(Pearson r  =  0.694, R-square  =  0.481, p  =  .004, slope = −0.56, 

F I G U R E  2   Heart rate variability across resting state, duple 
meter, and triple meter conditions
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intercept = 1.83) (Figure 4a) and a marginally significant linear re-
lation between the two measures in the triple condition (Pearson 
r = 0.485, R-square = 0.23, p = .067, slope = −0.29, intercept = 1.74) 
(Figure 4b).

We conducted a few additional explorative analyses. First, we ex-
plored the relations between resting-state RMSSD with sensor-level 
beat-to-meter ratios. Results showed that resting-state HRV is cor-
related to beat-to-meter ratio only in the duple condition (Pearson 
r = −0.524, p = .045), not in the triple condition (Pearson r = −0.239, 
p = .391). Second, we explored relations between RMSSD with left 
and right hemisphere beat-to-meter ratios for potential hemispheric 
differences. Correlational analyses suggest that in both conditions, 
significant correlations were only observed between right hemi-
sphere beat-to-meter ratio and RMSSD (duple condition: Pearson 
r = −0.55, p =  .033; triple condition: Pearson r = −0.70, p =  .003). 
There were no significant relations observed between left hemi-
sphere beat-to-meter ratio and RMSSD (Duple condition: p =  .276; 
Triple condition: p = .189).

Finally, we explored whether music training background is as-
sociated with either beat-to-meter ratio or RMSSD measures. Years 
of private music lessons were taken as a measure for music train-
ing background, similar to previous studies (Zhao & Kuhl, 2015). No 
significant correlations were observed between music training and 
either measures in either condition (all p > .5).

4  | DISCUSSION

The current study examined three interrelated research questions 
that aimed to shed light on the connection between neural process-
ing of music and physiological responses to music. Specifically, we 
focused on beat and meter processing and measure the neural en-
trainment to beat and meter in duple and triple metrical structures. 

We calculated the ratio between the power values at beat-level and 
meter-level frequencies (i.e., beat-to-meter ratio) to index the rela-
tion between beat and meter-level neural entrainment in individu-
als. We also measured the heart rate variability (HRV), a key index 
of the PSNS function prior to and during sound presentation. Our 
first question tested whether HRV differed between the three con-
ditions (i.e., resting, duple meter, and triple meter). Results suggest 
that, as expected, HRV decreased during sound presentation, index-
ing decreased PSNS function as the brain activates to process in-
coming musical information. However, at the group level, there was 
no difference between duple and triple meter condition. Similarly, 
for our second question, despite the difference between the spectra 
of stimuli of duple and triple condition, as well as previous research 
suggesting differential processing for duple and triple meters, the 
results showed nearly identical beat-to-meter ratios between duple 
and triple meters at the group level, demonstrating very similar rela-
tions between beat and meter processing across conditions. Most 
interestingly and importantly, at the individual level, the beat-to-me-
ter ratio characterizing neural processing of musical beat in relation 
to meter, significantly predicts HRV values, indexing PSNS function, 
supporting a link between neural processing and physiological re-
sponse to music. More specifically, the more the brain tracks the 
meter-level rhythm (i.e., lower beat-to-meter ratio), the higher the 
HRV(i.e., higher PSNS function, which is generally interpreted as a 
closer to homeostasis, less-stressed state).

To date, physiological responses have mostly been studied in the 
context of music emotion, with physiology being an integral aspect 
of emotion measurement along with subject rating and behavioral 
responses (Swaminathan & Schellenberg,  2015). However, little is 
known how physiology is related to music processing. At the group 
level, we observed a reduction in HRV from resting state to music 
processing blocks but there was no difference between duple and 
triple conditions. The lack of difference between duple and triple 

F I G U R E  3   (a) Individual power spectrum density for duple (left) and triple (right) conditions. Blue shaded peak corresponds to beat-level 
rhythm, and yellow shaded peak corresponds to meter-level rhythm. (b) Group average power spectrum density for duple (left) and triple 
(right) conditions. (c) Bootstrap distributions of beat-to-meter ratios over 1,000 simulations for duple (left) and triple (right) conditions. Mean 
of distribution (center red vertical line) and 95% confidence interval (left and right red vertical lines) are marked shown

F I G U R E  4   Scatter plots between log-transformed beat-to-meter ratio and log-transformed RMSSD for A) duple and B) triple conditions. 
The best fitting regressions lines are shown on the graph
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meter in HRV can be explained from two perspectives: (a) The stim-
uli are highly reduced and are not meant to elicit any emotional 
responses. Therefore, processing duple vs. meter alone does not 
affect physiology. (b) The tempo of the two conditions are the same 
(i.e., inter-beat-intervals are both 300 ms). Given that previous re-
search demonstrated the effect of tempo on physiological responses 
(Gomez & Danuser, 2007; Kim et al., 2018), future studies may fur-
ther test whether tempo is an crucial component of music-evoked 
emotion by examining whether tempo alone affects both HRV and 
subject rating of emotion, even with highly reduced musical beats.

The highly similar group-level beat-to-meter ratios between 
conditions are surprising and interesting. The ratio is the same at 
around 2.5 for both conditions despite the fact the ratios were very 
different in the actual sound stimuli and that previous studies have 
demonstrated differences between duple and triple meter process-
ing (Abecasis et  al.,  2005; Zhao et  al.,  2017). This result provides 
important new information regarding beat and meter processing 
that has not been previously examined, that is, the relation between 
beat and meter processing by calculating the beat-to-meter ratio. 
Previous studies have largely examined beat and meter processing 
separately. For example, the most common analyses consider beat-
level processing as a group and meter-level processing as a group (Li 
et al., 2019; Nozaradan et al., 2011). Here, we show that while there 
may be differences for beat and meter processing, there may be a 
neural transformatory mechanism that organizes and represents me-
ter-level and beat-level information in a set proportion to each other. 
Although not reported explicitly in previous papers, similar ratios 
can be visualized in the figures when participants merely imagined 
the metrical structures (Nozaradan et al., 2011). Future replication 
studies are warranted to further validate this idea by adding a wider 
range of rhythmic stimuli with various beat and meter frequencies 
and test a larger sample of subjects. On the other hand, our cur-
rent finding is different from previous studies showing processing 
differences between duple and triple meters (Abecasis et al., 2005; 
Zhao et al., 2017). Previous studies involve maintaining the metrical 
temporal structure and detecting violations while the current study 
only involves maintaining the structure. It is possible that only during 
the more demanding tasks are differences between conditions ob-
served. Future studies will need to systematically examine the effect 
of task demand as well as the utility of attention (passive vs. active) 
on beat and meter processing.

Most importantly, our finding that the beat-to-meter ratio at 
the individual level is highly predictive of HRV, an indicator of PSNS 
function, is novel. This suggests a link between neural processing 
of music information and physiology across individuals. More spe-
cifically, the higher the HRV (more PSNS function), the lower the 
beat-to-meter ratio, that is, the neural processing focuses more on 
the higher-level meter processing.

Our finding should be distinguished from neuroimaging research 
that focuses on the neural mechanisms underlying music emotion 
(Koelsch,  2014), in which highly evocative music is used to elicit 
strong emotion. Here, we use highly reduced stimuli to study music 
information processing (i.e., beat and meter) and observed a robust 

neural–physiological connection. This result is consistent with the 
“neurovisceral integration model” (Thayer et  al.,  2009), in which a 
neural network that is responsible for higher-level information pro-
cessing (cognitive, social, emotional), including the prefrontal cortex, 
cingulate cortex, and insula, can affect and regulate cardiac activi-
ties through a series of subcortical structures in a top-down manner. 
Given the correlational nature of this relation, the causal relation be-
tween music processing and physiological response remains elusive. 
Our post hoc analyses may suggest that an individual's general state 
(higher vs. lower HRV) is related to how their brain tends to pro-
cess music beat and meter, given that the resting-state HRV prior to 
stimulus blocks is correlated to beat-to-meter ratio, but only in the 
duple condition. Further research can take the approach to manip-
ulate resting-state HRV (e.g., given participants a stressful task) and 
then measure neural processing of a wider range of rhythmic stimuli 
to elucidate the causal relations. Future research should also incor-
porate subjective and behavioral evaluation of emotional response 
to map out the relations between physiology, music processing, and 
music emotion.

There were several interesting findings from the secondary anal-
yses as well. While there were no hemisphere differences with re-
gard to the beat-to-meter ratios for either condition at the group 
level, significant correlations were observed only between right 
hemisphere beat-to-meter ratios and HRV. These results are in line 
with (a) the idea that music rhythm processing relies on distributed 
neural networks in both hemispheres (Doelling & Poeppel,  2015; 
Fujioka et al., 2010), but that (b) the right hemisphere HRV correla-
tion may suggest that the top-down connection from the brain to the 
heart may rely more on contralateral pathways originating from the 
right hemisphere.

It is natural to ask whether such connections can be modulated 
by experience as well as development. Our post hoc analysis suggests 
that years of music training are not related to either the beat-to-me-
ter ratio or HRV, which points to a more fundamental mechanism. 
However, many studies have found music training-related effects 
in beat and meter processing (Doelling & Poeppel,  2015; Zhao 
et al., 2017). Future studies will need to disentangle the differences 
between the paradigms and measurement methods and identify 
processes that are basic to beat and meter processing as opposed 
to ones that can be modulated by experience. Another approach in 
future research would be to examine the effects of experience and 
development by studying developmental populations. For example, 
previous studies have demonstrated changes in beat and meter pro-
cessing in infancy that are related to the musical environment that 
infants experienced. These changes can now be simulated by a learn-
ing model (Hannon & Trehub, 2005a, 2005b; Tichko & Large, 2019).

5  | CONCLUSION

The current study reported on an important link between neural 
processing of music beat and meter information and the physiologi-
cal response to it across individuals. This neural–physiological link 
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has not previously been reported, and it sheds light on the research 
direction that examines the interconnection between music cogni-
tion and emotion.
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