Table 3.
Training | Validation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Accuracy | AUC | 95% CI of AUC | Sensitivity | Specificity | Accuracy | AUC | 95% CI of AUC | |||
Lower | Upper | Lower | Upper | |||||||||
Initial DBN a | 0.786 | 0.754 | 0.756 | 0.836 | 0.794 | 0.879 | 0.842 | 0.594 | 0.619 | 0.772 | 0.653 | 0.891 |
Logistic b | 0.907 | 0.798 | 0.807 | 0.915 | 0.884 | 0.946 | 0.880 | 0.831 | 0.835 | 0.914 | 0.879 | 0.944 |
DBN‐logistic c | 1.000 | 0.994 | 0.995 | 1.000 | 1.000 | 1.000 | 0.947 | 0.123 | 0.212 | 0.559 | 0.486 | 0.633 |
DBN including d | ||||||||||||
Age+Orange | 0.786 | 0.754 | 0.756 | 0.845 | 0.803 | 0.886 | 0.737 | 0.712 | 0.714 | 0.730 | 0.606 | 0.854 |
Age+Leather | 0.875 | 0.708 | 0.720 | 0.853 | 0.815 | 0.890 | 0.737 | 0.700 | 0.704 | 0.751 | 0.623 | 0.880 |
Age+Cinnamon | 0.839 | 0.726 | 0.735 | 0.856 | 0.818 | 0.893 | 0.895 | 0.600 | 0.630 | 0.779 | 0.672 | 0.886 |
Age+Peppermint | 0.821 | 0.738 | 0.744 | 0.864 | 0.825 | 0.903 | 0.737 | 0.676 | 0.683 | 0.736 | 0.608 | 0.863 |
Age+Banana | 0.893 | 0.674 | 0.690 | 0.852 | 0.812 | 0.892 | 0.737 | 0.759 | 0.757 | 0.771 | 0.650 | 0.893 |
Age+Lemon | 0.839 | 0.711 | 0.720 | 0.846 | 0.807 | 0.885 | 0.737 | 0.688 | 0.693 | 0.753 | 0.636 | 0.870 |
Age+Liquorice | 0.839 | 0.717 | 0.726 | 0.851 | 0.813 | 0.889 | 0.684 | 0.735 | 0.730 | 0.766 | 0.649 | 0.883 |
Age+Coffee | 0.839 | 0.738 | 0.745 | 0.850 | 0.809 | 0.891 | 0.842 | 0.594 | 0.619 | 0.766 | 0.645 | 0.887 |
Age+Cloves | 0.839 | 0.707 | 0.716 | 0.843 | 0.802 | 0.884 | 0.842 | 0.635 | 0.656 | 0.773 | 0.655 | 0.891 |
Age+Pineapple | 0.786 | 0.754 | 0.756 | 0.844 | 0.803 | 0.885 | 0.737 | 0.729 | 0.730 | 0.750 | 0.637 | 0.864 |
Age+Rose | 0.893 | 0.677 | 0.693 | 0.854 | 0.815 | 0.893 | 0.737 | 0.718 | 0.720 | 0.767 | 0.643 | 0.890 |
Age+Fish | 0.857 | 0.704 | 0.715 | 0.853 | 0.816 | 0.891 | 0.789 | 0.671 | 0.683 | 0.772 | 0.660 | 0.885 |
Age+MMSE+Orange | 1.000 | 0.808 | 0.822 | 0.947 | 0.929 | 0.964 | 0.722 | 0.888 | 0.872 | 0.826 | 0.715 | 0.937 |
Age+MMSE+Leather | 1.000 | 0.839 | 0.851 | 0.953 | 0.937 | 0.968 | 0.684 | 0.873 | 0.854 | 0.783 | 0.664 | 0.902 |
Age+MMSE+Cinnamon | 1.000 | 0.833 | 0.846 | 0.952 | 0.936 | 0.968 | 0.778 | 0.877 | 0.867 | 0.838 | 0.731 | 0.946 |
Age+MMSE+Peppermint | 1.000 | 0.805 | 0.819 | 0.951 | 0.934 | 0.968 | 0.722 | 0.865 | 0.851 | 0.817 | 0.703 | 0.932 |
Age+MMSE+Banana | 1.000 | 0.853 | 0.864 | 0.958 | 0.944 | 0.972 | 0.632 | 0.862 | 0.839 | 0.743 | 0.623 | 0.863 |
Age+MMSE+Lemon | 1.000 | 0.840 | 0.852 | 0.951 | 0.935 | 0.967 | 0.684 | 0.837 | 0.822 | 0.767 | 0.652 | 0.881 |
Age+MMSE+Liquorice | 1.000 | 0.843 | 0.855 | 0.951 | 0.935 | 0.967 | 0.684 | 0.844 | 0.828 | 0.774 | 0.657 | 0.890 |
Age+MMSE+Coffee | 1.000 | 0.789 | 0.805 | 0.949 | 0.931 | 0.967 | 0.789 | 0.756 | 0.760 | 0.793 | 0.683 | 0.903 |
Age+MMSE+Cloves | 1.000 | 0.833 | 0.846 | 0.956 | 0.940 | 0.971 | 0.737 | 0.830 | 0.821 | 0.792 | 0.679 | 0.905 |
Age+MMSE+Pineapple | 1.000 | 0.832 | 0.844 | 0.950 | 0.934 | 0.967 | 0.789 | 0.825 | 0.822 | 0.836 | 0.730 | 0.942 |
Age+MMSE+Rose | 1.000 | 0.848 | 0.859 | 0.952 | 0.937 | 0.968 | 0.667 | 0.845 | 0.827 | 0.775 | 0.649 | 0.901 |
Age+MMSE+Fish | 1.000 | 0.849 | 0.860 | 0.959 | 0.945 | 0.973 | 0.632 | 0.904 | 0.876 | 0.777 | 0.655 | 0.899 |
Incident dementia was only dependent on age.
Multivariable logistic regression model using the variables based on the bidirectional stepwise selection.
Incident dementia was dependent on the variables used in the multivariable logistic regression.
Discrete Bayesian networks (DBN) including dependency of incident dementia on the variables below.