Table 3.
Performance of the predictive models
Training | Validation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Accuracy | AUC | 95% CI of AUC | Sensitivity | Specificity | Accuracy | AUC | 95% CI of AUC | |||
Lower | Upper | Lower | Upper | |||||||||
Initial DBN a | 0.786 | 0.754 | 0.756 | 0.836 | 0.794 | 0.879 | 0.842 | 0.594 | 0.619 | 0.772 | 0.653 | 0.891 |
Logistic b | 0.907 | 0.798 | 0.807 | 0.915 | 0.884 | 0.946 | 0.880 | 0.831 | 0.835 | 0.914 | 0.879 | 0.944 |
DBN‐logistic c | 1.000 | 0.994 | 0.995 | 1.000 | 1.000 | 1.000 | 0.947 | 0.123 | 0.212 | 0.559 | 0.486 | 0.633 |
DBN including d | ||||||||||||
Age+Orange | 0.786 | 0.754 | 0.756 | 0.845 | 0.803 | 0.886 | 0.737 | 0.712 | 0.714 | 0.730 | 0.606 | 0.854 |
Age+Leather | 0.875 | 0.708 | 0.720 | 0.853 | 0.815 | 0.890 | 0.737 | 0.700 | 0.704 | 0.751 | 0.623 | 0.880 |
Age+Cinnamon | 0.839 | 0.726 | 0.735 | 0.856 | 0.818 | 0.893 | 0.895 | 0.600 | 0.630 | 0.779 | 0.672 | 0.886 |
Age+Peppermint | 0.821 | 0.738 | 0.744 | 0.864 | 0.825 | 0.903 | 0.737 | 0.676 | 0.683 | 0.736 | 0.608 | 0.863 |
Age+Banana | 0.893 | 0.674 | 0.690 | 0.852 | 0.812 | 0.892 | 0.737 | 0.759 | 0.757 | 0.771 | 0.650 | 0.893 |
Age+Lemon | 0.839 | 0.711 | 0.720 | 0.846 | 0.807 | 0.885 | 0.737 | 0.688 | 0.693 | 0.753 | 0.636 | 0.870 |
Age+Liquorice | 0.839 | 0.717 | 0.726 | 0.851 | 0.813 | 0.889 | 0.684 | 0.735 | 0.730 | 0.766 | 0.649 | 0.883 |
Age+Coffee | 0.839 | 0.738 | 0.745 | 0.850 | 0.809 | 0.891 | 0.842 | 0.594 | 0.619 | 0.766 | 0.645 | 0.887 |
Age+Cloves | 0.839 | 0.707 | 0.716 | 0.843 | 0.802 | 0.884 | 0.842 | 0.635 | 0.656 | 0.773 | 0.655 | 0.891 |
Age+Pineapple | 0.786 | 0.754 | 0.756 | 0.844 | 0.803 | 0.885 | 0.737 | 0.729 | 0.730 | 0.750 | 0.637 | 0.864 |
Age+Rose | 0.893 | 0.677 | 0.693 | 0.854 | 0.815 | 0.893 | 0.737 | 0.718 | 0.720 | 0.767 | 0.643 | 0.890 |
Age+Fish | 0.857 | 0.704 | 0.715 | 0.853 | 0.816 | 0.891 | 0.789 | 0.671 | 0.683 | 0.772 | 0.660 | 0.885 |
Age+MMSE+Orange | 1.000 | 0.808 | 0.822 | 0.947 | 0.929 | 0.964 | 0.722 | 0.888 | 0.872 | 0.826 | 0.715 | 0.937 |
Age+MMSE+Leather | 1.000 | 0.839 | 0.851 | 0.953 | 0.937 | 0.968 | 0.684 | 0.873 | 0.854 | 0.783 | 0.664 | 0.902 |
Age+MMSE+Cinnamon | 1.000 | 0.833 | 0.846 | 0.952 | 0.936 | 0.968 | 0.778 | 0.877 | 0.867 | 0.838 | 0.731 | 0.946 |
Age+MMSE+Peppermint | 1.000 | 0.805 | 0.819 | 0.951 | 0.934 | 0.968 | 0.722 | 0.865 | 0.851 | 0.817 | 0.703 | 0.932 |
Age+MMSE+Banana | 1.000 | 0.853 | 0.864 | 0.958 | 0.944 | 0.972 | 0.632 | 0.862 | 0.839 | 0.743 | 0.623 | 0.863 |
Age+MMSE+Lemon | 1.000 | 0.840 | 0.852 | 0.951 | 0.935 | 0.967 | 0.684 | 0.837 | 0.822 | 0.767 | 0.652 | 0.881 |
Age+MMSE+Liquorice | 1.000 | 0.843 | 0.855 | 0.951 | 0.935 | 0.967 | 0.684 | 0.844 | 0.828 | 0.774 | 0.657 | 0.890 |
Age+MMSE+Coffee | 1.000 | 0.789 | 0.805 | 0.949 | 0.931 | 0.967 | 0.789 | 0.756 | 0.760 | 0.793 | 0.683 | 0.903 |
Age+MMSE+Cloves | 1.000 | 0.833 | 0.846 | 0.956 | 0.940 | 0.971 | 0.737 | 0.830 | 0.821 | 0.792 | 0.679 | 0.905 |
Age+MMSE+Pineapple | 1.000 | 0.832 | 0.844 | 0.950 | 0.934 | 0.967 | 0.789 | 0.825 | 0.822 | 0.836 | 0.730 | 0.942 |
Age+MMSE+Rose | 1.000 | 0.848 | 0.859 | 0.952 | 0.937 | 0.968 | 0.667 | 0.845 | 0.827 | 0.775 | 0.649 | 0.901 |
Age+MMSE+Fish | 1.000 | 0.849 | 0.860 | 0.959 | 0.945 | 0.973 | 0.632 | 0.904 | 0.876 | 0.777 | 0.655 | 0.899 |
Incident dementia was only dependent on age.
Multivariable logistic regression model using the variables based on the bidirectional stepwise selection.
Incident dementia was dependent on the variables used in the multivariable logistic regression.
Discrete Bayesian networks (DBN) including dependency of incident dementia on the variables below.