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Abstract
BACKGROUND 
Colorectal cancer (CRC) is an important disease worldwide, accounting for the 
second highest number of cancer-related deaths and the third highest number of 
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new cancer cases. The blood test is a simple and minimally invasive diagnostic 
test. However, there is currently no blood test that can accurately diagnose CRC.

AIM 
To develop a comprehensive, spontaneous, minimally invasive, label-free, blood-
based CRC screening technique based on Raman spectroscopy.

METHODS 
We used Raman spectra recorded using 184 serum samples obtained from 
patients undergoing colonoscopies. Patients with malignant tumor histories as 
well as those with cancers in organs other than the large intestine were excluded. 
Consequently, the specific diseases of 184 patients were CRC (12), rectal 
neuroendocrine tumor (2), colorectal adenoma (68), colorectal hyperplastic polyp 
(18), and others (84). We used the 1064-nm wavelength laser for excitation. The 
power of the laser was set to 200 mW.

RESULTS 
Use of the recorded Raman spectra as training data allowed the construction of a 
boosted tree CRC prediction model based on machine learning. Therefore, the 
generalized R2  values for CRC, adenomas, hyperplastic polyps, and 
neuroendocrine tumors were 0.9982, 0.9630, 0.9962, and 0.9986, respectively.

CONCLUSION 
For machine learning using Raman spectral data, a highly accurate CRC 
prediction model with a high R2 value was constructed. We are currently planning 
studies to demonstrate the accuracy of this model with a large amount of 
additional data.

Key Words: Colorectal cancer; Raman spectroscopy; Machine learning; Blood; Serum; 
Diagnosis
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Core Tip: We developed a comprehensive, spontaneous, minimally invasive, label-free, 
blood-based colorectal cancer (CRC) screening technique based on Raman 
spectroscopy. We used Raman spectra recorded using 184 serum samples obtained 
from patients undergoing colonoscopies. Use of the recorded Raman spectra as training 
data allowed the construction of a boosted tree CRC prediction model based on 
machine learning. The generalized R2 values for CRC was 0.9982. For machine 
learning using Raman spectral data, we are currently working on the construction of a 
more accurate CRC prediction model with a large amount of additional data.

Citation: Ito H, Uragami N, Miyazaki T, Yang W, Issha K, Matsuo K, Kimura S, Arai Y, 
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Y. Highly accurate colorectal cancer prediction model based on Raman spectroscopy using 
patient serum. World J Gastrointest Oncol 2020; 12(11): 1311-1324
URL: https://www.wjgnet.com/1948-5204/full/v12/i11/1311.htm
DOI: https://dx.doi.org/10.4251/wjgo.v12.i11.1311

INTRODUCTION
Colorectal cancer (CRC) is an important disease worldwide. According to Globocan 
2018 (http://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf
), among all cancers, CRC accounted for the second highest number of deaths and the 
third highest number of new cases[1]. The blood test is a simple minimally invasive 
diagnostic test. However, presently, no blood test method can accurately diagnose 
CRC. Tumor marker tests such as those for carcinoembryonic antigen[2], carbohydrate 
antigen 19-9 (CA 19-9)[3], CA72-4[4], and CA125[5] are minimally invasive tests for CRC 
patients and can be performed in many medical institutions. However, these 
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conventional tumor markers have low-detection sensitivity for CRC[6]; they are mostly 
used for prognostic[7] and recurrence predictions[8] rather than early diagnosis. The 
presence of cell-free DNA[9] and microRNA (miRNA)[10] has been reported in the blood 
of CRC patients; however, these tests have not yet become common practice. 
Circulating cancer cells[11] can be detected in the blood of CRC patients, but it is unclear 
whether the detection of circulating cancer cells is useful for the early diagnosis of 
CRC[12].

Raman spectroscopy is a non-destructive method[13] used to analyze the components 
contained in a sample. This technique can analyze samples in various states (gases, 
liquids, and solids) without labeling. Research has also been conducted using Raman 
spectroscopy to diagnose cancer using a blood sample. Raman spectroscopy is useful 
for  the  d iagnos is  o f  colorectal[14], gastric[15], esophageal[16], pancreatic[17], lung[18], 
breast[19], prostate[20,21], and bladder[22] cancers. Lin et al[14] reported the results of analysis 
of serum obtained from 38 CRC patients and 45 volunteers by gold nanoparticle-based 
surface-enhanced Raman spectroscopy, which had diagnostic sensitivity and 
specificity of 97.4% and 100%, respectively. However, the effectiveness of Raman 
spectroscopy in cancer diagnosis has not yet been evaluated. We recorded the highly 
sensitive surface-enhanced Raman scattering spectra of human serum samples using a 
silver nanocomplex biochip[23,24]. There were significant differences in the scattered 
light intensities of Raman shifts, attributed to specific molecular bonds, between the 
serum samples of cancer patients with stomach or colon cancer and those with benign 
disease. However, the procedure was complicated, and the detection of substances 
was limited by the fact that specific silver nanoparticles should be used. Thus, we 
decided to develop another comprehensive, label-free Raman technique to detect 
known and unknown substances in the serum. The subsequent preliminary study 
showed that our Raman spectroscopy system could detect spontaneous Raman 
scattering spectra from untreated human serum samples within 1 min[25]. Hence, we 
considered that serum analysis based on Raman spectroscopy could provide a rapid 
cancer diagnosis.

In this study, we confirmed the correlation between the Raman scattering spectra of 
the serum samples collected before examination and the endoscopic diagnosis of 
patients who underwent colonoscopies. Additionally, we constructed a model that 
predicts cancer with increased accuracy based on machine learning.

MATERIALS AND METHODS
Patients
This study included patients who underwent colonoscopies at the Showa University 
Koto Toyosu Hospital (Tokyo, Japan) between September 2018 and September 2019. 
Patients were excluded if they were < 20-years-old, > 80-years-old, had a history of 
malignancy, or had malignant diseases in organs other than the colon. The protocol in 
this study complied with the Declaration of Helsinki and the Clinical Trial Act in 
Japan. The study protocol was reviewed and approved (No. 18T5005) by the 
Institutional Review Board of Showa University Koto Toyosu Hospital. All 
participants provided written consent for their participation in this study. The study 
protocol was registered in the University Hospital Medical Information Network 
clinical trial registry (UMIN-CTR, No. UMIN000034306).

Based on previous clinical research at the Showa University Koto Toyosu Hospital, 
at least 150 patients were required to capture > 3 CRC patients. Therefore, 184 patients 
were recruited for the study (110 men and 74 women, aged between 20 and 80 years). 
The median and average ages were 57 and 56.9 years, respectively (Table 1).

In addition to colonoscopy, gastroscopy, computed tomography, ultrasonography, 
and magnetic resonance imaging were performed in 100, 51, 5, and 5 cases, 
respectively.

The primary diagnoses of the 184 patients recruited in this study were: CRC in 12 
cases (3, tumor-node-metastasis [TNM] stage 0; 1, TNM stage I; 2, TNM stage II; 5, 
TNM stage III; 1, TNM stage IV), rectal carcinoids in 2 cases, colorectal adenomas in 68 
cases, colon hyperplastic polyps in 18 cases, other diseases in 54 cases (1, leiomyoma; 
9, nonspecific colitis; 2, ulcerative colitis; 24, colon diverticulum; 3, nonspecific ileitis; 
and 15, internal hemorrhoid), and no specific finding in 30 cases (Table 2). One CRC 
patient was also diagnosed with colorectal adenoma and another with ulcerative 
colitis. Sixteen of sixty-eight patients with colorectal adenoma were also diagnosed 
with colorectal  hyperplastic polyps.  All  cancers and adenomas were 
histopathologically diagnosed by at least two qualified clinical pathologists. Polyps 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/


Ito H et al. Highly accurate colorectal cancer prediction model

WJGO https://www.wjgnet.com 1314 November 15, 2020 Volume 12 Issue 11

Table 1 Patients and evaluations

Parameters n = 184

Sex

Male 110

Female 74

Age in yr, mean (range) 56.9 (20-80)

Gastroscopy 100

Computed tomography 51

Ultrasonography 5

Magnetic resonance imaging 5

Table 2 Main diagnosis

Main diagnosis n = 184

Cancer 12

Colon, TNM stage 0-II 5

Colon, TNM stage III or IV 3

Rectum, TNM stage III or IV 3

Colon and rectum, double, TNM stage IIA 1

Malignant potential tumor 2

Rectal neuroendocrine tumor 2

Adenoma 68

Hyperplastic polyp 18

Other diseases 54

Leiomyoma 1

Nonspecific colitis 9

Ulcerative colitis 2

Colon diverticulum 24

Nonspecific ileitis 3

Internal hemorrhoids 15

No specific findings 30

TNM: Tumor node metastasis.

were diagnosed endoscopically as hyperplastic polyps are not usually treated.

Materials
Blood samples were collected prior to endoscopic examinations. Serum samples were 
obtained by centrifuging blood samples for 5 min (1500 × g). The extracted serum 
samples were dispensed into 2.0 mL hyperplastic polypropylene microtubes 
(Biosphere® plus; Sarstedt Ag & Co. Kg, Sarstedtstraße, Nümbrecht, Germany), which 
were free from DNA, DNase/RNase, polymerase chain reaction inhibitor, adenosine 
triphosphate, and pyrogens/endotoxins. The specimens were preserved at -80 °C in an 
ultralow temperature freezer (MDF-C8V1; Panasonic Corporation, Osaka, Japan).

Raman spectrometer
A Nomadic Raman microscope with a computer-controlled electrical stage running 
Pathologic System Software Version 1.0.1.0 (BaySpec Inc., San Jose, CA, United States) 
was used for analysis. The details of the Raman microscope used in this study have 
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been described in a previous paper[25], and the outline is given below. A wavelength of 
1064 nm was selected as the excitation laser. The power of the laser was set to 200 mW. 
A 20 × magnifying objective lens with a correction collar with near-infrared 
microscopy (LCPLN20XIR; Olympus Corporation, Tokyo, Japan) and a 2048 × 64 pixel 
thermoelectric cooled indium gallium arsenide, charge-couple device (CCD) detector, 
with a spectral range of 100-3200 cm-1 (grating 4 cm-1) were used to record the spectra. 
A CCD camera with 1392 × 1040 colors and a maximum acquisition rate of 30 frames 
per second (Lw135R; Lumenera Corporation, Capella Court, Ottawa, ON, Canada) 
was used for focusing before each Raman scattering spectral acquisition (Figure 1). The 
dark background noise of the CCD camera was acquired in the form of a spectrum in 
the absence of a sample and was subtracted from all spectra acquired in which the 
sample was present. Baseline correction was performed for each spectrum with the 
Pathologic System Software (BaySpec Inc.). Moreover, some figures in this paper were 
created using RaspWin Ver 8.0.1 (HT SoftLab) and Adobe Illustrator CS6 Version 
16.2.0 (Adobe Systems Incorporated, San Jose, CA, United States).

Measurements
An overview of the measurement and analysis processes is summarized in Online 
resource 10. The cryopreserved serum was thawed immediately before the 
measurement and was set at 25 °C. We manually placed a drop of the serum stock 
solution on the tip of a thin stainless-steel tube. The serum was irradiated with a 1064-
nm wavelength laser three times for 15 s, and the average value was recorded as the 
Raman scattering spectra. A new droplet was then prepared, and the same 
measurement was repeated three times for each serum sample.

Data analysis
The scattered light intensity (15 range, A1-A15) of the Raman shift related to nucleic 
acids[26-34], proteins[28,30-32,34,35], and lipids[27,28,30,32,34,36-41] in serum was extracted from the 
obtained Raman spectra (Figures 2 and 3, Table 3). The average values of the three 
extracted scattered light intensities from each spectrum were analyzed as training data 
by the boosted tree model[42] with the use of JMP® Pro 14.3.0 (SAS Institute Inc., Cary, 
NC, United States). The average values for the three extracted scattered light 
intensities among the patient groups were evaluated for normality using the Tukey 
test. Intergroup differences in non-normally distributed data were compared using the 
Steel-Dwass nonparametric test. All analyses were performed using JMP® Pro 14.3.0 
(SAS Institute Inc.).

The relevant definitions were: Entropy R-squared = 1 − Loglike(model)/Loglike(0); 
Generalized R-squared = {1 − [L(0)/L(model)](2/n)}/[1 − L(0)(2/n)]; Mean Logp = 
∑−Log[ρ(j)]/n; Root-mean-square error = √∑[y(j) − ρ(j)]²/n; Mean absolute deviation = 
∑|y(j) − ρ(j)|/n; and Misclassification rate = ∑[ρ(j) ≠ ρMax]/n (Supplementary Table 1
). The detailed conditions for the analysis based on the boosted tree model were: 
Number of layers = 200 (maximum number of layers to include in the final tree is 200); 
Splits per tree = 3 (number of splits for each layer is 3); Learning rate = 0.1; Overfit 
penalty = 0.0001; Minimum size split = 5; Row sampling rate = 1; and Column 
sampling rate = 1 (Supplementary Table 2).

RESULTS
Boosted tree model using Raman spectra of patient serum as data
Raman spectra of all serum samples were recorded, and the highest values of the 
scattered light intensity, ranging from A1 to A15, were extracted (Figures 2 and 3). The 
boosted tree model was used to predict CRC, and a highly accurate model was 
constructed based on a generalized R2 value of 0.9977 and an entropy R2 value of 
0.9982 (Supplementary Table 3). Similarly, the boosted tree model was used to predict 
colorectal adenomas and hyperplastic polyps, and a highly accurate adenoma 
prediction model was constructed based on a generalized R2 value of 0.9269, and an 
entropy R2 value of 0.9630 (Supplementary Table 4). Furthermore, a highly accurate 
hyperplastic polyp prediction model was constructed based on a generalized R2 value 
of 0.9947 and an entropy R2 value of 0.9962 (Supplementary Table 5). The boosted tree 
model was used to predict rectal neuroendocrine tumors based on data from two 
patients, and a highly accurate rectal neuroendocrine tumor prediction model was also 
constructed based on a generalized R2 value of 0.9985 and an entropy R2 value of 
0.9986 (Supplementary Table 6).

https://f6publishing.blob.core.windows.net/87711ef7-2976-4142-90f1-7d27b7a72e2c/WJGO-12-1311-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/87711ef7-2976-4142-90f1-7d27b7a72e2c/WJGO-12-1311-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/87711ef7-2976-4142-90f1-7d27b7a72e2c/WJGO-12-1311-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/87711ef7-2976-4142-90f1-7d27b7a72e2c/WJGO-12-1311-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/87711ef7-2976-4142-90f1-7d27b7a72e2c/WJGO-12-1311-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/87711ef7-2976-4142-90f1-7d27b7a72e2c/WJGO-12-1311-supplementary-material.pdf


Ito H et al. Highly accurate colorectal cancer prediction model

WJGO https://www.wjgnet.com 1316 November 15, 2020 Volume 12 Issue 11

Table 3 Assignment of serum sample

Assignments
Raman shift, cm-1

Nucleic acids Proteins Lipids

A1 611-631 Phenylalanine

A2 700-720 Cholesterol, C-N-C

A3 751-771 DNA, pyrimidines Tryptophan

A4 830-859 Tyrosine, pro C-C

A5 993-1013 Phenylalanine

A6 1060-1080 Skeletal C-C, C-N Skeletal C-C

A7 1091-1111 PO2 stretching, DNA Skeletal C-C

A8 1123-1143 Skeletal C-C, C-N Skeletal C-C

A9 1244-1264 Adenine, thymine, cytosine Amide III =CH, CH2

A10 1275-1295 Amide III

A11 1322-1343 Guanine, adenine CH3CH2 CH

A12 1408-1428 COO-

A13 1448-1468 CH2 CH2

A14 1596-1616 Cytosine Phenylalanine, tyrosine

A15 1647-1667 Thymine, guanine, cytosine Amide I C=C

Figure 1 Schematic of the confocal micro-Raman spectrometer used in this study. A nomadic Raman microscope with an excitation laser at a 
wavelength of 1064 nm was used in this study. A 20 × magnifying objective lens with a correction collar with near-infrared microscopy (LCPLN20XIR; Olympus 
Corporation, Tokyo, Japan) and a 2048 × 64 pixel thermoelectric cooled indium gallium arsenide (InGaAs), charge-couple device (CCD) detector, with a spectral 
range of 100-3200 cm-1 (grating 4 cm-1) were used to record the spectra.

Raman shifts contributed to the prediction of colorectal disease
The major Raman shifts[17-19,21-37,43-45] that contributed to the prediction of the presence of 
CRC (effect > 0.1) were higher in the order of A10 (1275-1295 cm-1; amide III), A8 (1123-
1143 cm-1; C-N and skeletal C-C), and A3 (751-771 cm-1; DNA, pyrimidines [cytosine, 
thymine, uracil], and tryptophan). The major Raman shifts that contributed to the 
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Figure 2 Raman spectra of serum samples from patients. The spectra of the serum samples from patients with rectal cancer, colon adenoma, and colon 
hyperplastic polyp, and the patient with no specific findings.

Figure 3 Raman spectra of patient serum samples and assignments. Raman spectra of serum sample from the patient with internal hemorrhoid (53-
years-old, female), and selected range of Raman shift.

prediction of the presence of colorectal adenoma (effect > 0.1) were higher in the order 
of A4 (830-859 cm-1; tyrosine and pro C-C), and A10 (1275-1295 cm-1; amide III). The 
major Raman shifts that contributed to the prediction of colorectal polyps (effect > 0.1) 
were higher in the order of A7 (1091-1111 cm-1; PO2 stretching and skeletal C-C), A1 
(611-631 cm-1; phenylalanine), and A4 (830-859 cm-1; tyrosine and pro C-C). A10 (1275-
1295 cm-1; amide III) was the Raman shift that affected the prediction of the presence of 
cancer and adenomas. A4 (830-859 cm-1; tyrosine and pro C-C) was the Raman shift 
that influenced the prediction of both adenomas and polyps. The only Raman shift 
that influenced the prediction of rectal neuroendocrine tumors was A11, which was 
different from those for the prediction of cancer, adenomas, and polyps (Table 4, 
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Table 4 Boosted tree model for the prediction of colorectal disease

Cancer Adenoma Hyperplastic polyp NET

Measure Training

Entropy R-square 0.9977 0.9269 0.9947 0.9985

Generalized R-square 0.9982 0.9630 0.9962 0.9986

Raman shift, cm-1 Effect

A1 611-631 0.0176 0.0285 0.2404 0.0148

A2 700-720 0.0191 0.0636 0.0476 0.0062

A3 751-771 0.1716 0.0479 0.0274 0.0182

A4 830-859 0.0580 0.2008 0.1936 0.0246

A5 993-1013 0.0084 0.0478 0.0054 0.0324

A6 1060-1080 0.0052 0.0555 0.0407 0.0000

A7 1091-1111 0.0686 0.0370 0.2886 0.0180

A8 1123-1143 0.1873 0.0722 0.0563 0.0412

A9 1244-1264 0.0481 0.0548 0.0129 0.0022

A10 1275-1295 0.2291 0.1146 0.0224 0.0000

A11 1322-1343 0.0505 0.0463 0.0149 0.7714

A12 1408-1428 0.0663 0.0551 0.0132 0.0662

A13 1448-1468 0.0089 0.0066 0.0041 0.0000

A14 1596-1616 0.0145 0.0758 0.0293 0.0049

A15 1647-1667 0.0470 0.0936 0.0033 0.0000

NET: Neuroendocrine tumor.

Supplementary Tables 3-6). We investigated the maximum scattered light intensities of 
the Raman shifts of A10, A8, and A3 that contributed to the prediction of the presence 
of CRC. Compared with the group with adenomas, hyperplastic polyps, and no 
specific findings and/or other diseases, the mean scattered light intensity of A8 tended 
to be higher, and the mean scattered light intensities of A3 and A10 tended to be lower 
in the cancer samples (Figure 4). However, there was no significant difference based 
on the Steel-Dwass test (Supplementary Table 7).

DISCUSSION
Numerous studies have been performed to diagnose cancer using blood tests. 
However, tumor markers, free DNA[9], miRNA[10], and circulating cancer cells[11] have 
been the main targets of blood-based CRC diagnostic techniques. To date, high-
precision technologies have not been developed. Additionally, standard blood-based 
procedures for cancer diagnosis have not yet been established. Raman spectroscopy is 
an analytical method that can quickly evaluate the components of unlabeled samples 
that have not been pre-treated[46]. However, the measurement of Raman spectra is 
strongly inhibited by autofluorescence[47], and thus it is difficult to analyze a biological 
sample with high accuracy. Furthermore, given that the detection sensitivity of label-
free, spontaneous Raman spectroscopy is lower than other labeling techniques, it is 
difficult to detect minute quantities of target substances. Correspondingly, it is 
necessary to enhance scattered light using various methods, including the use of 
surface-enhanced Raman spectroscopy. In fact, most Raman spectroscopic analyses of 
blood performed to date have utilized surface-enhanced Raman spectroscopy[19,20,48-50]. 
Some studies have used small sample sizes for blood-based diagnoses of CRC with 
Raman spectroscopy. Almost all of these studies have been based on the surface-
enhanced Raman scattering technique[14,51-54]. Principal component analysis (PCA)[51], 
partial least squares[52,53], linear discriminant analysis (LDA)[52], and PCA-LDA[14,54] were 

https://f6publishing.blob.core.windows.net/87711ef7-2976-4142-90f1-7d27b7a72e2c/WJGO-12-1311-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/87711ef7-2976-4142-90f1-7d27b7a72e2c/WJGO-12-1311-supplementary-material.pdf
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Figure 4 Comparison of intensity. Outlier box plot depicting the intensity of the scattered light of the sera from the studied patients. The bottom and top parts of 
the box show the lower and upper quartiles, and the band across the box indicates the median. The lower and upper bars at the ends of the whiskers show the lowest 
data point within a range spanning 1.5 interquartile ranges of the lower quartile, and the highest data point within a range spanning 1.5 interquartile ranges of the 
upper quartile. The dots denote outliers that extend beyond the whiskers. The diagonal square indicates average values. However, with no significant deference, the 
mean scattered light intensity of A8 is higher in the cancer group (235.6) than in the adenoma (229.4), hyperplastic polyp (229.7), and other disease and/or no 
specific findings (231.0) groups. In addition, with no significant deference, the mean scattered light intensity of A10 is lower in the cancer group (263.4) than in the 
adenoma (272.4), hyperplastic polyp (272.1), and other disease and/or no specific findings (271.6) groups. With a slight difference, the mean scattered light intensity 
of A3 tended to be lower in the cancer group (251.3) than that in those with adenomas (255.2), hyperplastic polyps (254.9), and other disease and/or no specific 
findings (253.9).

used for evaluation, and respective diagnostic sensitivities and specificities of 86.4%-
100% and 80%-100% were reported[14,51-54]. However, the surface-enhanced Raman 
scattering technique is highly sensitive. Furthermore, target substances are limited by 
the designed specifications of colloids based on precious metals, such as gold and 
silver. Therefore, important unknown substances that can be used for the detection of 
cancer may escape when surface-enhanced Raman scattering techniques are used. In 
fact, significant molecular bonds present in the serum and involved in cancer detection 
have varied[14,51-54]. Furthermore, the Raman scattered light enhancement technique 
does not have the advantages of Raman spectroscopy. For example, it is not label-free, 
more complex, and its response is slower. It would therefore be ideal if diagnosis 
could be established at high accuracy using ordinary, spontaneous Raman 
spectroscopy. Our label-free, spontaneous Raman spectroscopy system could detect 
known and unknown substances in a comprehensive manner. In this study, a highly 
accurate CRC prediction model with a generalized R2 value that exceeded 0.99 was 
constructed. We used a near-infrared laser as the excitation light source that was 
hardly affected by autofluorescence. Furthermore, a microtube was developed for 
serum measurements. Therefore, the Raman spectra of the serum could be obtained 
without a surface-enhanced Raman technique.

In this study, our system could accurately predict the presence of CRC, adenomas, 
and hyperplastic polyps. Even though our system could also predict the presence of 
rectal neuroendocrine tumors, the number of patients with rectal neuroendocrine 
tumors in this study was only two. Accordingly, findings should be confirmed with 
additional future studies. There is a possibility that our less invasive blood-based test 
could be used for screening CRC. In addition, this technique can comprehensively 
detect all known and unknown molecules contained in a sample. Therefore, by 
constructing an optimal algorithm based on the Raman spectrum, there is a possibility 
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that it can be applied to the diagnosis of various diseases, including congenital, 
genetic, and metabolic diseases.

The Raman shifts (effect > 0.1) in our CRC prediction model were in the ranges of 
1275-1295 cm-1 (amide III), 1123-1143 cm-1 (C-N and skeletal C-C), and 751-771 cm-1 

[DNA, pyrimidines (cytosine, thymidine, uracil), and tryptophan] (Table 3). 
Additionally, the scattered light intensities of 1275-1295 cm-1 (amide III), 1123-1143 cm-1 
(C-N and skeletal C-C), and 751-771 cm-1 [DNA, pyrimidines (cytosine, thymidine, 
uracil), and tryptophan] of the sera obtained from CRC patients were respectively low, 
high, and low. Compared with the results of our study, Feng et al[52] reported the exact 
opposite result with a surface-enhanced Raman scattering technique. Hong et al[51] also 
reported that the scattered light of the serum from CRC patients was relatively high 
intensity at 1275-1295 cm-1 (amide III). Other studies reported no difference regarding 
these Raman shifts[14,53,54]. These discrepancies may be attributed to differences between 
spontaneous Raman spectra and surface-enhanced Raman spectra or to the 
inaccuracies of the analyzed results owing to the small data sizes. In this study, only 
the disease was used as an index, and the effects of age, sex, presence or absence of co-
morbidity, total protein concentration, albumin concentration, and other biological 
factors were not considered. We need to carefully analyze more samples after 
matching these factors to enhance our CRC prediction model.

The Raman shift that had a strong effect on the prediction of the presence of 
colorectal adenomas and hyperplastic polyps was partially consistent with the Raman 
shift used for the prediction of CRC. For the prediction of colorectal adenomas, effects 
larger than 0.01 were in the range of 830-859 cm-1 (tyrosine and pro C-C) and 1275-1295 
cm-1 (amide III). Neither our or previous studies have shown a clear link between 
colorectal adenomas and serum tyrosine levels. The “adenoma-carcinoma sequence”[55] 
was estimated. Accordingly, it has been suggested that abnormalities in Wnt signaling 
in colorectal adenomas were associated with the development of CRC[56,57]. In this 
study, the amide III intensity level was a significant factor for CRC and adenomas. 
Furthermore, the amide III intensity level was low in cancer and high in adenomas. 
Thus, serum amide III levels may be used to assess the risk of CRC. For the prediction 
of hyperplastic colon polyps, effects were larger in the ranges of 1091-1111 cm-1 (PO2 
stretching and skeletal C-C), 611-631 cm-1 (phenylalanine), and 830-859 cm-1 (tyrosine 
and pro C-C). The Raman shift at 830-859 cm-1 (tyrosine and pro C-C) was also the 
appropriate Raman shift for the prediction of colorectal adenomas. This overlap may 
be associated with the transition of hyperplastic colorectal polyps to colorectal 
adenomas and may be predictive for the development of colorectal adenomas[58]. In 
this study, all polyps were diagnosed endoscopically. Therefore, the possibility of 
adenomas cannot be ruled out.

The limitations of this study were as follows. First, the number of subjects was 
small; the total number of subjects was 184, of which only 12 were CRC patients. 
Additionally, since there were only two samples from patients with neuroendocrine 
tumors, we could not give definitive results for neuroendocrine tumors in this study. 
In the future, verification with more subjects must be performed. Second, this study 
did not consider the effects of biological factors other than diseases such as age, sex, 
presence or absence of co-morbidities, and total protein or albumin concentrations. We 
need to revalidate the technology in this study with prospective trials tailored to the 
subject’s background. Third, the patients analyzed in this study received inconsistent 
clinical examinations that may have been associated with various degrees of accuracies 
regarding clinical diagnoses. They may have also had malignancies of organs other 
than the colon. Fourth, it was not clear whether our technology was able to detect 
high-risk states of carcinogenesis or the cancer cells themselves after the onset of 
carcinogenesis. If the moieties detected by our technology are derived from cancer 
cells, this technology can be used to determine the therapeutic effects of cancer.

In summary, we could present a model for diagnosing CRC with serum and 
machine learning in this study. However, the clinical usefulness of this model is still 
undecided. We plan to continue our research in the future to improve the accuracy of 
our results. First, we will include larger cohorts. Second, we will increase the number 
of target cancer types. Third, blood will be collected twice before and after the 
treatment, and the Raman spectra of the serum will be compared. From these results, 
we believe that the significance of our label-free, spontaneous Raman spectroscopy 
technology in cancer treatment will become clearer. Regarding the Raman spectral 
analysis, a comprehensive machine learning method capable of analyzing the entire 
spectrum will be designed and implemented.
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CONCLUSION
We studied a minimally invasive and accurate diagnostic method of CRC, which is the 
second most common cancer-related death worldwide. We evaluated that analysis of 
Raman spectrum of serum by machine learning could be an excellent diagnostic 
method for CRC. Since Raman spectroscopy is greatly affected by autofluorescence, it 
is technically difficult to analyze biological samples by Raman spectroscopy. We have 
succeeded in recording the Raman spectrum of untreated serum with high accuracy by 
using a near-infrared laser, which is less affected by autofluorescence, as the excitation 
light source. Then, using the recorded Raman spectra as data, we constructed a CRC 
prediction model by "Boosted Tree Model" which is a kind of machine learning. 
Although this model may predict CRC with high accuracy, we should analyze more 
clinical data to confirm the clinical usefulness of this model.

ARTICLE HIGHLIGHTS
Research background
Colorectal cancer (CRC) is an important disease worldwide. Among all cancers, CRC 
accounts for the second highest number of deaths and the third highest number of new 
cases. The blood test is a simple minimally invasive diagnostic test. However, 
presently, no blood test method can accurately diagnose cancer.

Research motivation
We have tried to develop a comprehensive, spontaneous, minimally invasive, label-
free, blood-based CRC screening technique based on Raman spectroscopy.

Research objectives
We used Raman spectra recorded using 184 serum samples obtained from patients 
(CRC in 12 patients, rectal neuroendocrine tumor in 2 patients, colorectal adenoma in 
68 patients, colorectal hyperplastic polyp in 18 patients, and others in 84 patients) 
undergoing colonoscopies.

Research methods
We used Raman spectra recorded using 184 serum samples. We used 1064-nm 
wavelength laser for excitation.

Research results
Use of the recorded Raman spectra as training data allowed the construction of a 
boosted tree CRC prediction model based on machine learning. Therefore, the 
generalized R2 values for CRC, adenomas, hyperplastic polyps, and neuroendocrine 
tumors were 0.9982, 0.9630, 0.9962, and 0.9986, respectively.

Research conclusions
We could show a diagnostic model of machine learning using Raman spectral data, a 
highly accurate CRC prediction with a high R2 value.

Research perspectives
We are currently planning studies to demonstrate the clinical usefulness of this model 
with a vast volume of additional data.
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