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Abstract

Bridging advances in neurodevelopmental assessment and the established onset of common 

psychopathologies in early childhood with epidemiological data science and computational 

methods holds much promise for identifying risk for mental disorders as early as infancy. In 

particular, we propose the development of a mental health risk algorithm for the early detection of 

mental disorders with the potential for high public health impact that applies and adapts methods 

innovated in and successfully applied to early detection of cardiovascular risk. Specifically, we 

propose methods to advance risk prediction of early developmental psychopathology by creating 

synthetic cohorts that contain complete behavioral and neural data in the first years of life, as the 

basis for a robust and generalizable risk algorithm. The application of computational approaches 

within synthetic cohorts, an approach increasingly applied in psychiatry, may be particularly well 

suited to advancing risk prediction in early childhood mental health. We propose new research 

directions using these methods to generate an early childhood mental health risk calculator that 

could significantly advance early mental health risk detection to direct preventive intervention 

and/or need for more intensive assessment within a pragmatic framework for maximal clinical 

utility. The availability of such a tool in early childhood, a period of high neuroplasticity, holds 

promise to reduce the burden of mental disorder by identifying risk early in the clinical sequence 

and delivering prevention that targets the neurodevelopmental vulnerability phase.
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1. Introduction

There has been an increasing awareness that many major mental disorders have 

developmental antecedents, some of which manifest as early neurodevelopmental 

vulnerability beginning in infancy (Casey, Oliveri, & Insel, 2014; Mittal & Wakschlag, 

2017). Advances in developmentally sensitive assessment methods over the last two decades 

have detected such neurodevelopmental vulnerabilities for a number of common mental 

disorders including mood (depression) and anxiety disorders (Generalized Anxiety Disorder, 

Separation Anxiety Disorder), disruptive disorders and Attention Deficit Hyperactivity 

Disorders (ADHD) (Clauss & Blackford, 2012; Wakschlag et al., 2019). Further, the advent 

of developmentally appropriate diagnostic interviews and dimensional measures that assess 

for the age adjusted symptom manifestations early in life have facilitated recognition of 

impairing forms of psychopathology as detailed above as early as age 2 (Egger & Angold, 

2006; Wakschlag et al., 2005, 2019). The importance of the earliest possible identification 

and intervention in mental disorders is underscored by the relatively large effect sizes and 

cost effectiveness of interventions delivered earlier rather than later in life during periods of 

high plasticity (Campbell et al., 2014; Dawson, Ashman, & Carver, 2000). Based on this, 

there is an increasing imperative to identify malleable markers of risk at the earliest phase of 

the clinical sequence (i.e. high risk children) to prevent escalation of vulnerability to 

clinically impairing symptoms (Finlay-Jones et al., 2019). Translation of this knowledge to 

application requires pinpointing which vulnerable children are likely to go on to develop 

psychopathology and which are not to inform clinical-decision making and target resources 

efficiently (Ozonoff, 2015). Currently, the lack of reliable methods for this determination is a 

major impediment to clinical application.

Distinction between normative extremes and markers of risk: sensitivity and specificity:

There has been a burgeoning developmental literature identifying infant markers of risk as 

well as increasing emphasis on the identification of neural substrates of emergent 

psychopathology (Bilgin et al., 2018; Graham et al., 2016; Hay et al., 2014; Rogers et al., 

2017). Autism Spectrum Disorder (ASD) represents one area where such data are actively 

shaping clinical guidelines using measures of typical and atypical social development, 

cognition, brain function, and behavior (Bosl, Tager-Flusberg, & Nelson, 2018; Ozonoff et 

al., 2014). However, in other areas of psychopathology and to a lesser extent in ASD, much 

more work is needed before these findings can meaningfully inform clinical decision 

making. We here focus on the common preventable psychopathologies of early childhood, 

i.e., internalizing and externalizing syndromes including depression, anxiety, ADHD and 

disruptive disorders. Achieving reliable identification of internalizing/externalizing risk, 

requires a big data approach to reliably demarcate the distinction between normative 

variation and transient developmental extremes from markers of clinical risk that predict 

high risk for impairing psychopathology. As neurodevelopmental vulnerability to 

psychopathology in infancy is a relatively new concept, there are not yet population-based 
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estimates of natural course remittance (i.e., the percentage of young children who exhibit 

neurodevelopmental vulnerability but do not develop psychopathology), critical information 

that is established in other neurodevelopmental disorders. However, while 

neurodevelopmental vulnerability exponentially increases risk of psychopathology, many 

children who exhibit such vulnerability will not go on to develop mental health problems 

(Chronis-Tuscano et al., 2009; Ozonoff, 2015) (e.g. 60% of children with language delays 

do not go on to develop language disorders). Thus, a careful balance of sensitivity and 

specificity in this domain is necessary before such markers can be harnessed to inform the 

earliest risk detection. Deriving optimal “sensitivity-specificity” cut-points are particularly 

important in early childhood when developmental extremes that might be labelled as 

symptoms in older children are more likely to reflect transient and normative variation 

(Cole, Luby, & Sullivan, 2008; Wakschlag, Tolan, & Leventhal, 2010). We propose that this 

determination be based on high probabilistic risk of impairing psychopathology by 

preschool age (Wakschlag et al., 2019).

Risk calculators in early mental health:

The most widely used Framingham risk calculator has transformed clinical care and 

prevention in cardiovascular disease and has accelerated precision medicine approaches. Its 

utility lies in its modern risk prediction approach that utilizes the most parsimonious, lowest 

burden and/or most readily available set of indicators that achieve sensitive and specific risk 

prediction (Pencina & D’Agostino Sr, 2012). The lack of validated risk calculators 

represents a major gap in translational science in mental health as advances in 

neurodevelopmental discovery and validation of early childhood mental disorders has yet to 

be leveraged for practical application to clinical decision making. Risk calculators could 

greatly facilitate pragmatic public health efforts towards prevention and early intervention in 

common and preventable mental disorders by providing a widely accessible tool to guide 

clinical decision making about young children’s mental health. In stark contrast to physical 

disorders (Corbelli et al., 2014; Pencina & D’Agostino Sr, 2012), pragmatic risk calculation 

is nascent in psychiatry (Bernardini et al., 2017). For prevention and intervention targeting 

neurodevelopmental vulnerability to mental disorder, we lack a “science of when to worry” 

(Wakschlag et al., 2019). Such a tool could provide clinically-feasible empirically derived 

guidance for clinical decision making in the first 3 years of life, when these disorders have 

their roots (Shaw, 2013). A risk calculator could serve as the basis for tiered prevention. 

Even at preschool age, where the validity of many forms of psychopathology are well-

established, entrenched “they’ll grow out of it” myths (Luby, 2012) continue to impede wide 

acceptance of the need for early identification and prevention. Thus, tools are now needed 

that “embrace rather than erase” developmental heterogeneity, harnessing it for clinical 

decision making and tailored prevention in the first years of life, an approach we have 

termed “Mental Health, Earlier” (Wakschlag et al., In Press).

Fig. 1 shows the Framingham calculator and a hypothetical infant mental health calculator 

optimized for clinical use using only survey measures. A key aspect of the risk prediction 

method that has proven so successful in Framingham is its emphasis on a pragmatic 

assessment approach (Glasgow, 2013). A key element of this is that its risk prediction 

models give preference to low intensity methods, requiring more intensive methods (such as 

Luby et al. Page 3

Behav Res Ther. Author manuscript; available in PMC 2020 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observation, interviews and imaging) to demonstrate sufficient clinical added value to justify 

their added burden and cost (Lloyd-Jones, 2010; Pool, Ning, Wilkins, Lloyd-Jones, & Allen, 

2018). This has been widely studied in cardiovascular disease but remains underexplored in 

mental health prediction.

Availability of developmentally appropriate surveys and clinical interviews:

Developmentally-sensitive surveys and clinical interviews have identified valid clinical 

patterns that show predictive validity across the infant-toddler-preschool period (Biedzio & 

Wakschlag, 2018; Briggs-Gowan, Carter, Bosson-Heenan, Guyer, & Horwitz, 2006; Egger, 

H. L. & Angold, A., 2006; Gaffrey & Luby, 2012; Lorber, Del Vecchio, & Slep, 2015). More 

recently, developmentally-specified dimensional measurements designed to capture an 

ordered normal:-abnormal spectrum have shown utility for mapping to neural correlates 

(Grabell et al., 2018; Wakschlag et al., 2018). Direct assessments including observations 

during evocative tasks also enable performance-based assessment of key processes (e.g., 

standardized clinical observation, visual attention) that complement parental perspective and 

enhances earlier detection of children at high risk as well as those at intermediate risk 

(Halperin & Marks, 2019; Miller, Iosif, Young, Hill, & Ozonoff, 2016; Wakschlag et al., 

2005). The availability of valid multi-level biobehavioral methods suggest that a 

neurodevelopmental toolkit for early clinical risk identification is within reach, although 

such algorithms have yet to be developed. Integrative approaches that weight unique 

information from these different sources including generation of multiple thresholds of risk 

that are optimized for clinical feasibility are a key next step (Bufferd, Dyson, Hernandez, & 

Wakschlag, 2016).

The role of neural and other biomarkers:

There has been a proliferation of feasible and developmentally sensitive neurobehavioral 

measures in the last decade, providing the capacity for more intensive characterization of 

infants and young children. Such quantitative measures are particularly important in early 

childhood to address the difficulties of making inferences about the internal mental states of 

young children. The use of neural measures in infancy including non-invasive methods such 

as electroencephalography (EEG) and structural and functional magnetic resonance imaging 

(fMRI) have provided new clues to alterations in brain structure and function detected at 

birth and during the first year of life. Many of these measures have proven useful to identify 

very early markers of ASD and other forms of psychopathology. For example, resting state-

functional MRI (rs-fMRI) is a tool that elucidates the functional connectivity of brain 

networks in the sleeping infant without requiring task engagement (Eggebrecht et al., 2017; 

Rogers et al., 2017; Smyser et al., 2016; Sylvester et al., 2017). Rogers and colleagues as 

well as others have used this technique in longitudinal studies to relate infant functional 

connectivity to subsequent measures of early childhood psychopathology. Variability in 

early childhood internalizing symptoms has been linked to variation in functional 

connectivity of the amygdala (Graham et al., 2018; Rogers et al., 2017) and cortical 

networks (Sylvester et al., 2017) as early as the neonatal period. Others have demonstrated 

that functional connectivity during later infancy can predict ASD symptoms (McKinnon et 

al., 2019) and diagnoses (Emerson et al., 2017) at age 2 years. Conversely from behavior to 

brain, early childhood depressive syndromes have been associated with alterations in 
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patterns of cortical thinning in middle childhood (Luby et al., 2016) as well as concurrent 

alterations in hippocampal volume (Barch et al., in 2019). Consistent with this, we have also 

recently discovered associations between cortical thickness and early transdiagnostic 

indicator of INT/EXT risk, i.e., early irritability, a pattern replicated across two independent 

and diverse samples (Norton et al., Manuscript in preparation).

Along this line, EEG and event-related potentials (ERPs, EEG responses time-locked to 

stimuli) have also been useful and highly pragmatic tools to assess neural correlates of 

emotion in infants and young children. For example, resting EEG patterns in children as 

young as 3 months old have been found to predict ASD diagnosis with greater than 95% 

sensitivity/specificity, which is far greater than is currently possible with behavioral 

measures (Bosl et al., 2018). Resting EEG asymmetry has also been associated with mental 

health outcomes; children with low positive emotionality and high negative emotionality at 

age 3 subsequently developed reduced left hemisphere activity, a pattern associated with 

depression in adults (Goldstein et al., 2018). ERPs during reward or error detection tasks 

have proven useful for parsing heterogeneity in clinical outcomes for children with 

behaviorally homogenous risk profiles at preschool age. ERP responses during reward tasks 

differentiate acutely depressed from healthy preschool children (Barch et al., 2019; Belden 

et al., 2016) as well as predict response to treatment (Barch et al., 2019). ERPs also may 

serve to differentiate clinical heterogeneity, informing which young irritable children will 

subsequently develop internalizing versus externalizing psychopathology (Kessel et al., 

2016). Although generally not included in standard neuroimaging consortia protocols, EEG 

has high potential clinical utility relative to MRI, with the advantage of being low cost and 

feasible in a clinic setting, despite the disadvantage of offering poor localization of the 

neural signal. Evidence from other non-invasive methods such as eye-tracking and cardiac 

orienting response obtained via biosensor, also hold promise for detecting abnormality in the 

first year of life more reliably than behavioral indicators and with less cost and time required 

(Finlay-Jones et al., 2019).

Limitations of neural markers:

Despite intriguing progress in this domain, neural markers have not yet proven reliably 

useful in clinical decision making for the detection and diagnosis of risk states and clinical 

mental disorders. Importantly, infant MRI and EEG/ERP studies to date have largely 

included small sample sizes and the replicability of findings has not been assessed 

(McWeeny et al., Manuscript in preparation), much less jointly considered in terms of their 

relative contribution to clinical risk prediction. Further, the lack of specificity of many of 

these neural findings may prevent them from being pragmatically useful in clinical risk 

algorithms. However, pending further progress, neural markers are potentially very fruitful 

domains as some neural substrates may serve as screeners signaling the need for more 

intensive assessment. In other cases, neural markers may outperform behavioral measures in 

predicting relevant mental health outcomes in terms of greater accuracy or earlier 

assessment (Finlay-Jones et al., 2019).
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Need for neurobehavioral norms in early childhood:

The mapping of early emotional, behavioral, and neural patterns as basis for 

neurodevelopmental norms that draw clear distinctions between typical and atypical 

trajectories are needed as the first step in developing the proposed risk calculator. Ideally, 

this would take the form of a pediatric growth chart that would map expectable milestones of 

emotional and behavioral regulation. While a great deal of early neurodevelopmental data is 

now available, these have not yet been used to generate meaningful developmental norms for 

public health use. It is clear that this would require a big data approach to achieve the needed 

power and precision, including sufficient numbers of cases and to account for the complex 

individual differences that characterize this period of rapid development. However, given the 

complexity of brain-behavioral relationships, and the numerous and multi-faceted forms of 

data that are generated, it is less clear how to combine these big, multi-level data sets in a 

clinically informative way. Clinical utility requires not only reliable and valid differentiation 

of salient behavioral patterns but also feasibility, which requires parsimonious optimized 

algorithms. Notably, this contrasts with typical research designs where the most 

comprehensive and deep assessment methods are considered a strength. The key 

methodologic question for clinical application of a neurodevelopmental risk algorithm thus 

being, “when more is not better, what is enough?” (Pickett et al., 2009).

Utility of risk prediction in medicine:

Risk prediction models have been successfully employed in other areas of medicine 

(Pencina & D’Agostino Sr, 2012). Whereas traditional predictive models are posthoc (i.e. 

the outcome is known), prognostic risk prediction models statistically estimate the 

probability that a specific individual in the population will develop a condition in the future, 

based on a parsimonious set of risk indicators. These models are derived from large studies 

to generate reliable and generalizable estimates with two objectives: (1) assign each 

individual in the population a score based on some combination of risk that can be translated 

into a personalized estimate of probability of developing a disorder over a specific period of 

time and (2) assign a categorical risk classification (e.g., positive/negative) for clinical 

decision making about therapeutic indications. These models have the added advantage of 

parsimony and therefore clinical application because incremental predictive value is based 

on potential for reclassification and/or discrimination rather than simply statistical 

significance (Pencina & D’Agostino Sr, 2012). They are further optimized for clinical 

feasibility because intensity/expense of methods has a higher threshold for inclusion based 

on demonstrating incremental utility. Risk prediction algorithms have been successfully 

developed using epidemiologic data science for many physical diseases, including 

incorporation into standard clinical care for the prevention of CVD (Pencina & D’Agostino 

Sr, 2012). Indeed, the Framingham risk score and the Pooled Cohort Equation are currently 

the gold standard for CVD risk assessment, predicting 10 year coronary event risk from the 

“simple seven” parameters (Greenland, LaBree, Azen, Doherty, & Detrano, 2004).

Computational models to inform risk prediction in mental health:

Of note, the question of how neural markers might inform clinical risk prediction and 

diagnostic processes has been difficult in psychiatry in general, much less applied to early 
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childhood mental health. The rapid and often non-linear developmental changes in early life 

known across these domains further complicate such attempts. To begin to address this issue, 

there has been an emerging interest in the use of computational risk prediction models as a 

tool to combine complex data bridging clinical and neuroscience research. This approach, 

increasingly explored in adult psychiatry provides methods for integrating multiple, dense 

data streams and big data to achieve greater precision in diagnostic criteria, risk prediction 

and treatment response (Bernardini et al., 2017). This paradigm shift moves from emphasis 

on statistical significance of between group differences to an explicit focus on risk 

prediction, noting that such approaches often identify different indicators (Paulus, Huys, & 

Maia, 2016). While promising, to date these studies have focused on populations that are 

already far advanced along the clinical risk trajectory. A central tenet of the Mental Health, 

Earlier framework is the use of risk prediction models beginning in the first years of life or 

potentially in some cases even at birth. This is the crucial next frontier for realizing 

neurodevelopmentally-based prevention prior to the onset of mental disorders (see Fig. 1). In 

particular, mental disorders are a domain in which the earlier identification of risk is 

particularly potent because this capitalizes on periods of greater neuroplasticity for more 

powerful intervention effects.

The advent of computational psychiatry employing both data-driven (e.g. machine learning) 

and theory-driven (e.g., Bayesian model comparison) methods now enables identification of 

regularities in large neurodevelopmental datasets with application to understanding 

brain:behavior relationships, reflecting the larger imperative towards cumulative science as 

the wave of the future (Curran, 2009). Such findings may be particularly useful to inform the 

prediction of dimensional clinical phenotypes in heterogeneous populations (Ferrante et al., 

2018). The capacity for computational approaches to map covariation of risk markers at 

brain, behavior and contextual levels as they unfold across development is of particular 

relevance to identifying infant predictors of mental health outcomes. The novelty of this 
approach, if successful, is that it would enable for the first time identification of 
vulnerability to mental disorder beginning from birth. This method is highly applicable to 

generating risk prediction models in mental disorders where a central determination is when 

neural data may have added value for clinical classification over and above less expensive 

and more feasible measures. Fig. 1 highlights this clinical risk calculation approach for 

established CVD methods and a theorized calculator for predicting probabilistic risk of 

preschool psychopathology.

The field of infant mental health is one that has the potential to be greatly catalyzed by such 

computational approaches. The stage is set for such work due to advances in neuroimaging 

and assessment techniques described above, coupled with challenges in decision-making 

approaches that balance false positives and false negatives, particularly salient in early 

childhood. The clinical promise of early neurodevelopmental discovery has also been 

impeded by diagnostic uncertainty based on concerns about false positives at this young age 

(e.g., “stigmatizing young children”) (Luby, 2012; Ozonoff, 2015). However, importantly, 

the cost of false negatives (e.g., the negative cascade that is initiated when early patterns of 

dysfunction go unchecked (Shaw & Gilliam, 2017) is also high. Further, the central feature 

of early intervention for the dysregulation that presages both internalizing and externalizing 

problems is promotion of self-regulation, an endeavor that benefits all children (Smith et al., 
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In Press; Wakschlag et al., 2019). Moreover, the rapid changes in brain-behavior relations 

across development necessitate creation of flexible tools that can be adapted in ways that 

function similarly at different ages (Mittal & Wakschlag, 2017). As such, early childhood 

mental health is a domain in which computational tools that can account for variation in 

timing of the same construct might be uniquely useful.

2. Synthetic cohorts and Computational Models to advance risk prediction

Risk prediction models require large, prospective “pooled” cohorts in which “disease-free” 

participants are followed to capture disease onset over a set time (Pencina & D’Agostino Sr, 

2012). In an ideal world we would have a very large and generalizable cohort with data that 

included all potential surveys, interviews, direct assessment and neural markers of interest 

starting at birth and spanning every age of interest to develop a mental health risk prediction 

tool. However this ideal dataset is not currently available nor is it feasible. Integrative data 

analyses (IDA) methods have been developed to analyze multiple separate datasets as if they 

were a single one. To initiate a cost effective and expedient approach to data integration for 

early childhood mental health research we can borrow methods innovated within 

epidemiologic data science to advance risk prediction in CVD.

As a result of method/design variance across studies, traditional pooling methods have 

extensive missing data, introducing imprecision and potential bias. This constrains the 

ability to capture normative variation, sensitive periods, and other nonlinear patterns of 

central importance to neurodevelopmental risk prediction (Pine, 2017). One integrative data 

analysis method for pooled data utilizes observed data from each cohort using statistical 

models that take into account missing data due to varying assessment points across cohorts 

(Allen, Ning, Jones, Zhao, & Siddique, 2017). However, because not all the common and 

unique elements are consistent across samples, a large amount of missing data precludes 

traditional pooled methods from estimating detailed longitudinal developmental patterns 

(Siddique et al., 2015). Our emphasis on the use of the synthetic cohort approach within the 

broader context of computational methods resting on pooling of multiple datasets, is the 

unique advantage the synthetic approach has for maximizing full information making it 

optimal for capturing nuanced developmental variation that might be lost if whole time 

points were routinely treated as missing. In particular, relative to other pooling approaches, 

the synthetic method enables a richer developmental characterization. It does this by 

enabling the analysis of the same individuals across the full developmental period of interest 

by imputing missing time points for each individual specifically. In contrast, traditional 

pooling methods rest on the assumption that individuals are interchangeable taking into 

account measured, but not unmeasured, differences between the individuals to inform 

developmental patterns.

To address these limitations, a novel epidemiologic method was developed by several of the 

co-authors (omitted blind review) for CVD risk prediction with minimal loss of precision 

(e.g., < 1%) relative to traditional pooling. This synthetic cohort approach uses multi-level, 

multiple imputation models to fill in missing data arising from variations in design (i.e. 

different exam ages and/or exam components) across pooled studies. The resultant synthetic 

cohort combines observed and imputed behavioral data at all timepoints to substantially 
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reduce loss of information. CVD research has used a synthetic cohort approach when 

traditional pooled cohort methods were not feasible. In contrast, the synthetic cohort 

approach treats varied measures and time-points inherent in a pooled approach as a “missing 

data problem,” using multiple imputation to fill in gaps while taking into account individual 

and cohort-specific differences (Siddique et al., 2015). These models can be used to impute 

longitudinal data incorporating assessment/age (temporal effects/calendar year), individual 

(birth cohort, demographics), and cohort-specific variables to account for sampling and 

measurement differences. In this method, the missing data for each individual (e.g., the 

preschool data for infancy cohorts and vice versa) are treated as missing data and missing 

observations are multiply imputed. (Of note, at this time, imputation is proposed for 

behavioral data as methods for imaging imputation are not fully developed.) A major 

advantage to this approach for neurodevelopmental studies is that it uses full information for 

imputation. Thus, if various studies collected data on the same construct but at different 

timepoints, imputation will be based on data from all children who provide data on that 

construct from other studies and from other pertinent data on the cohort missing the specific 

timepoint from prior and following timepoints. This adds the richness that is so important to 

developmental modeling. Of note, although missingness due to cross-cohort design 

differences (e.g. measure selection differences) is distinct from missingness due to 

individual participant differences within a cohort (e.g., attrition, incomplete data response), 

synthetic methods treat this as data missing (relatively) at random (MAR) based on the 

likelihood that it is ignorable for making inferences (Brincks et al., 2018; Curran & 

Hussong, 2009).

The resulting “synthetic cohort” is then composed of a combination of observed and 

imputed data at every time point for every measure across all cohorts (Siddique et al., 2015). 

This synthetic cohort approach has been successfully employed for modeling of emergent 

CVD risk as young as 8 years and improved risk estimation of morbidity and mortality at 

earlier ages with minor trade-offs in precision (e.g., < 1%) relative to traditional pooling 

(Allen et al., 2014, 2017). The increased precision yielded by the synthetic cohort approach 

is of particular importance for early life mental health risk determination as modeling in 

early development must account for extensive normative variation, and the potential for 

sensitive periods and other non-linear factors in longitudinal patterning. The generation of 

such a large synthetic cohort also offers the opportunity to incorporate cutting edge neural, 

specifically fMRI, and behavioral markers.

Thus, we propose that synthetic cohorts can offer sample sizes with sufficient statistical 

power to enable transformative, high impact advances in infant mental health. Such cohorts 

might also offer the necessary precision to detect developmental trends that could not be 

achieved from a single cohort alone. In particular, the generation of a large synthetic cohort 

is necessary to achieve more precise mapping of the typical:atypical brain-behavior 

trajectories from birth to age 3 in the context of a complex psychosocial environment known 

to critically impact development (Barch, Belden, Tillman, Whalen, & Luby, 2018; Bick & 

Nelson, 2016). Frequent assessments are particularly critical during this rapid and steep 

early developmental trajectory with multiple internal and external factors of influence. The 

application of such a process is particularly critical in early childhood, when detection of 

non-linear growth requires dense sampling.35 Data harmonization and synthesis of unique 
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brain-function and developmentally-defined behavioral phenotypes beginning in infancy is 

necessary to open new avenues for more powerful exploration of the earliest precursors of 

psychopathology using computational methods. Using this approach by harmonizing 

existing and ongoing data collection, it is possible to develop in a reproducible multi-level 

clinical algorithm for the earliest detection of risk for mental disorders that can be 

disseminated as an online calculator Such an innovation is necessary to accelerate the pace 

of translation from discovery to clinical implementation in mental disorders.44

3. Trade-offs in using the synthetic cohort approach

While the synthetic cohort approach specifically and the risk prediction modeling framework 

overall are very promising for accelerating the pace of translation from neurodevelopmental 

discovery to infant mental health risk calculation, the necessary harmonization is certainly 

not without its disadvantages and practical challenges. By virtue of synthetic and integrative 

modeling approaches’ emphasis on embracing the importance of between-study variability, 

this introduces substantial challenges to internal validity (Curran & Hussong, 2009). These 

have been discussed extensively elsewhere (Brincks et al., 2018; Curran & Hussong, 2009) 

with emphasis on treating them in combination for greatest effectiveness, and are briefly 

summarized here. Threats to internal validity are particularly salient since the integration of 

multiple diverse datasets in itself increases external validity relative to a single study (Curran 

& Hussong, 2009).

3.1. Power vs. precision

Synthesizing cohorts provides far more power than any single cohort could provide, which is 

of key importance since imaging costs constrain sample sizes. However, there is also loss of 

the precision that comes with the more in depth approach of any single study. One major 

element that speaks to feasibility of the synthetic approach is the fact that virtually all large 

neurodevelopmental studies include measures of core constructs requisite for infancy-based 

risk calculation (e.g., indicators of self-regulation, temperament, developmental functioning, 

parenting etc) (Smith et al., In Press). This typically means that virtually all salient datasets 

have common anchoring items drawn from varied scales (Curran & Hussong, 2009; Kolen & 

Brennan, 2014; Smith et al., In Press). But from this flows the inherent challenge in data 

harmonization such that heterogeneous measures are used to assess the same construct. 

While most studies will measure similar key constructs, methods will differ. One approach 

to this is z-score transformation. However, the trade-off is that this precludes generating an 

absolute risk threshold from any particular measure for an individual (because the z-score 

only provides information in regard to relative place on a continuum rather than a calibrated 

score for that instrument). IRT methods have also been used to bridge items common across 

different methods with tests of dimensionality of the latent construct and concomitant scale 

construction (Brincks et al., 2018; Curran & Hussong, 2009). Related bridging approaches 

have modeled different measures of like constructs as distinct indicators of an underlying 

latent construct (Brown et al., 2018). These approaches are parallel to recent advances in 

psychometric score linking which demonstrate the comparability of a wide array of 

measures of similar constructs (Choi, Schalet, Cook, & Cella, 2014; Kaat et al., 2019). This 

enables harmonization but loses the precision of individual measurement and their 
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standardized yield (e.g., t-scores). Of course, there is always the possibility that the use of 

the synthetic approach may fall short for mechanistic investigation because data originally 

collected for another purpose may not make nuanced significant distinctions underlying 

mental health risk (Bennett, Silverstein, & Niv, 2019). This will require empirical testing and 

may vary based on intent of the synthesized design. However, we underscore that the goal of 

risk calculation is an up or down decision about the probability of a young child developing 

impairing mental health risk not subtle mechanistic discovery.

3.2. Generalizability vs. population heterogeneity

Without question, the ability to harmonize and leverage multiple diverse cohorts with 

neuroimaging data enhances generalizability and enables risk enrichment. This is a 

particularly important future goal as neurodevelopmental imaging consortia are typically 

comprised of lower risk populations (Hanson et al., 2013; Howell et al., 2019). However, 

along with this greater representativeness comes the population heterogeneity introduced via 

combining samples with different inclusion/exclusion criteria, demographic, race/ethnicity, 

composition, sampling, regional and site characteristics (Curran & Hussong, 2009). One 

method to address this is to control for global cohort membership by including it in the 

models as a fixed effect covariate (Brincks et al., 2018; Curran & Hussong, 2009). Also of 

note is the increased prevalence of low base rate phenomena when samples are pooled 

(Curran & Hussong, 2009), which is of particularly high significance in the quest for more 

dimensionally defined psychopathologic spectra. It is also noteworthy that synthetic and 

integrative methods are inherently designed to examine the impact of sampling differences 

on risk prediction (Curran & Hussong, 2009). That is their purpose, not to establish that 

sampling differences are ignorable, but rather to adjust for this heterogeneity and have the 

opportunity to explicitly test their empirical salience (Curran & Hussong, 2009).

3.3. Expanded developmental scope vs. heterogeneity of design

Harmonizing cohorts unquestionably enables coverage of a far broader developmental span 

allowing for inference across the entire age period, overcoming the limitation of any 

individual study only following participants for a small fraction of that time (Curran & 

Hussong, 2009). However, inevitably, even studies broadly targeting the same developmental 

period will differ on follow-up range, and assessment time-points etc.

As noted above, rigorous validation checks are necessary to assess the influence of this on 

the validity of the synthetic cohort methods. To date, findings from CVD research utilizing 

these methods suggests that the loss of precision is minimal. However, this remains to be 

established in neurodevelopmental applications. As the field moves towards such big data, 

cumulative science approaches, it has also been suggested that increasing emphasis on at 

least a core of common measures in individual studies would substantially lessen obstacles 

to harmonization, facilitating synthetic endeavors (Blackwell, Wakschlag, Gershon, Cella, & 

Core, 2018; Brincks et al., 2018; Curran, 2009). This too has its disadvantages (in terms of 

loss of depth and novelty) and may be best as a first level, linkage, rather than an exclusive, 

measurement approach (Brincks et al., 2018; Curran & Hussong, 2009). We envision that 

these issues will continue to evolve and progress as computational methods gain traction. 

However, the imperative for the translational advances that may be brought about by the 
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infant mental health risk calculator pushes us to work with the current state of the science so 

that the statistical perfect is not the enemy of the public health good.

4. Discussion

We propose that the use of a risk prediction framework that draws on multiple data sources 

and innovations in epidemiologic and computational data science is the next scientific 

frontier for generating infant mental health risk algorithms to predict which young children 

are at high likelihood of developing psychopathology by kindergarten age. This is necessary 

to understand the key precursors to guide prevention of mental disorders at the earliest 

possible developmental point. Such methods applied to early childhood neurodevelopmental 

data would greatly catalyze mental health prevention during early neuroplastic 

developmental periods. These methods which have only begun to be applied in adult 

psychiatric research and have not yet been employed in the first years of life, hold much 

promise for addressing the critical gap between neurodevelopmental discovery and clinical 

application. This translational research innovation may now be within reach based on 

advances in all necessary component scientific domains. Like any method, the synthetic 

cohort risk prediction computational approach brings challenges, but its potential benefits 

are also substantial (Bennett et al., 2019).

The challenges to clinical identification and prevention in early life are typically framed in 

terms of the risk of over- or under-identification (Luby, 2012). The potential for false 

positives and corollary stigmatization have impeded actualization of neurodevelopmental 

prevention. However, such early identification that has the potential for altering the lifespan 

trajectories of mental disorders (Wakschlag et al., 2019). Skepticism about the 

informativeness of developmentally-framed evaluations for clinical decision-making has also 

unnecessarily deterred clinical application. With increased recognition of pediatric mental 

disorders there have been escalation rates of psychopharmacologic intervention despite the 

absence of clear risk calculation parameters for the early childhood period (Pennap et al., 

2018; Zito et al., 2007). Within this context, there is now consensus that the evidence base is 

“good enough” for clinical, real-world application of risk algorithms for early childhood 

identification of mental disorders (Luby, 2012; Shonkoff, 2016; Wakschlag et al., In Press).

Fundamentally, such application requires the generation of a developmentally-based risk 

calculator approach as employed in physical disease (see Fig. 1). As described, this approach 

requires large pooled data sets for the necessary power and precision to account for 

developmental heterogeneity. The robust science base for CVD risk prediction relies on 

pooling dozens of cohorts and thousands of individuals (Allen et al., 2017). The novel 

synthetic cohort method employed more recently has distinct advantages for providing the 

level of developmental data key to differentiating extensive normative variation and 

individual differences in the first years of life from reliable clinical risk markers. We propose 

that generation of synthetic cohorts utilizing samples that contain behavioral measures and 

neuroimaging in early childhood is now a highly feasible and more cost-effective way to 

apply big data methods to the earliest detection of risk in mental health beginning from 

birth. We propose future studies that utilize samples that begin in infancy and ascertain 
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neural as well as behavioral measures at multiple time points across early development that 

are enriched for clinical risk to best inform this area.

There has been increased interest and resource allocation to large multi-site neuroimaging 

consortia (Blackwell et al., 2018; Howell et al., 2019; Jernigan et al., 2016). These studies 

will provide an invaluable resource for mapping early brain and behavioral development. 

However, these designs are expensive and labor intensive and as currently conceived do not 

utilize clinical diagnostic measures, deep phenotyping or measures of impairment, and lack 

a roadmap to inform clinical care. The need for neuroimaging studies enriched for clinical 

risk that start in infancy and have comprehensive behavioral characterization and measures 

of environmental risk are necessary to bridge this gap. While screening measures may prove 

sufficient to detect global risk, more information is needed to more precisely inform early 

clinical risk. To begin to apply targeted prevention strategies it is necessary to determine 

which screening measures should be applied at what timepoints during early development. 

To accomplish this, it is necessary to map early behaviors and neural markers frequently 

across time and investigate their association with clinical outcomes. By obtaining this kind 

of detailed fine-grained developmental data in early childhood samples, computational 

approaches can be applied to begin to derive algorithms to calculate risk for specific classes 

of psychopathology and/or disorders. Such an approach which is now highly feasible given 

advances in measurement of early childhood developmental psychopathology, making it 

now possible for computational science to revolutionize early intervention in mental 

disorders.

Currently, advances in the treatment of most mental disorders have stalled and established 

treatments for the vast majority of disorders are only moderately effective. Based on this, 

there is an urgent need for novel approaches to treatment. While there has been a new 

emphasis on treatments that are mechanistic, progress in this domain has been slow and 

incremental (Ferrante et al., 2018). There is increasing evidence that early interventions 

provide a time limited window of opportunity to achieve larger effects based on periods of 

high neuroplasticity and response to environmental experience. Early interventions in 

Autistic Spectrum Disorders and in Disruptive behavior provide cogent examples of the 

potential power of early intervention. The use of synthetic cohorts and computational 

approaches in samples that start in infancy and include deep phenotyping and neuroimaging 

provide an opportunity to advance this domain via the development of a pragmatic and 

generalizable risk calculator for preschool psychopathology. We propose that this is the 

critical next step to advancing neurodevelopmentally-oriented prevention and treatment of 

mental disorders with highest impact for reducing lifelong burden of mental illness by 

altering trajectories at their roots.
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Fig. 1. 
Clinical risk calculators: Validated CVD pooled cohort equation (PCE) & hypothetical 

RiskCalc-MHYC for survey measures.
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