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Abstract

Intervertebral disc degeneration (IDD) is the most common cause of low-back pain. Accumulating evidence
indicates that the expression profiling of noncoding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs
(circRNAs), and long noncoding RNAs (lncRNAs), are different between intervertebral disc tissues obtained from
healthy individuals and patients with IDD. However, the roles of ncRNAs in IDD are still unclear until now. In this
review, we summarize the studies concerning ncRNA interactions and regulatory functions in IDD. Apoptosis,
aberrant proliferation, extracellular matrix degradation, and inflammatory abnormality are tetrad fundamental
pathologic phenotypes in IDD. We demonstrated that ncRNAs are playing vital roles in apoptosis, proliferation, ECM
degeneration, and inflammation process of IDD. The ncRNAs participate in underlying mechanisms of IDD in
different ways. MiRNAs downregulate target genes’ expression by directly binding to the 3′-untranslated region of
mRNAs. CircRNAs and lncRNAs act as sponges or competing endogenous RNAs by competitively binding to
miRNAs and regulating the expression of mRNAs. The lncRNAs, circRNAs, miRNAs, and mRNAs widely crosstalk and
form complex regulatory networks in the degenerative processes. The current review presents novel insights into
the pathogenesis of IDD and potentially sheds light on the therapeutics in the future.
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Background
Intervertebral disc degeneration (IDD) is the most com-
mon cause of low-back pain, which affects over 70% of
people at some points of their whole lifetime [1–3].
However, due to the poor understandings of the patho-
genesis of the disorder, few treatment regimens have
been put forward, and none of the current clinical inter-
ventions for IDD has been confirmed as efficient and
radical treatment modalities [3–5]. Therefore, an in-

depth investigation of the regulatory machinery of IDD
is urgently needed in the present.
Intervertebral disc (IVD) can be divided into three

morphologically distinct regions, i.e., the sandwiched
central nucleus pulposus (NP), peripheral annulus fibro-
sus (AF), and cranial or caudal cartilaginous endplate
(CEP) (Fig. 1). During the process of IDD, the apoptosis
of IVD cells is abnormally increased with the cells aber-
rantly clustering, dysregulation of extracellular matrix
(ECM) proteins (abnormally synthesized and/or de-
graded), and excessive expression of inflammatory fac-
tors which accelerate the formation of inflammatory
microenvironment/niche and eventually violate the adja-
cent IVD cells [6–10]. These pathophysiological
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processes result in a vicious circle of progressive aggra-
vation of degeneration.
Emerging evidence reveals that genetic and environ-

mental factors are both influencing factors of IDD,
whereas genetic factors seem to be the outweighed one.
Notably, a multitude of genetic factors, implicating in
the underlying regulatory mechanisms, are dysregulated
in IDD, especially the noncoding RNAs (ncRNAs) [6, 11,
12]. NcRNAs consist of a large family of RNAs without
coding function and outcome as cellular effectors, i.e.,
proteins. So far, the identified ncRNAs in homo sapiens

include miRNAs, circRNAs, lncRNAs, and emerging
small RNAs. The expression profiling of ncRNAs of IDD
samples is significantly different from those from healthy
ones, reflected by differentially expressed levels and
types of ncRNAs unraveled by microarray and/or se-
quencing analyses. It is suggested that ncRNAs are play-
ing vital roles in apoptosis, proliferation, ECM
degeneration, and inflammation process of IDD [12–17].
Owing to that, we established the coding-noncoding
SuperSeries Datasets as GSE67567 in human IDD, in-
cluding lncRNAs, mRNAs, and circRNAs, and miRNAs

Fig. 1 Noncoding RNAs involved in multiple pathological processes of IDD development (apoptosis, ECM degradation, cell proliferation,
and inflammation)
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datasets as GSE19943, GSE63492, GSE56081, and
GSE67566, as well as studies from other investigators
(Table 1). Given the scarcity of studies summarizing the

research progress of ncRNAs in IDD, we designed and
conducted a review across the published papers [13, 17,
18, 20–25]. In the current work, the state-of-art research

Table 1 mRNA and ncRNA expression profiles of IDD deposited in gene expression omnibus

Data
accession
number

Types of RNA
profiling

Platform BioProject Samples Control set Publication
year

Contributors

GSE19943 miRNAs GPL9946
Exiqon human miRCURY
LNA™ microRNA Array
V11.0

PRJNA120173 GSM498350
GSM498351
GSM498352
GSM498353
GSM498354
GSM498355)

3 control (scoliosis) vs. 3
degenerative nucleus pulposus
(NP) cell samples, extracted from
NP tissue without cultures

2011 Wang et al.
[18]

GSE45856 miRNAs GPL11434
miRCURY LNA microRNA
Array, 6th generation -
hsa, mmu & rno

PRJNA196506 GSM1116694
GSM1116695
GSM1116696
GSM1116697
GSM1116698
GSM1116699

3 control (traumatic normal) vs.
3 degenerative IVD tissues using
TRIspin method

2013 Zhao et al.
[19]

GSE56081 mRNAs
LncRNAs

GPL15314
Arraystar Human LncRNA
microarray V2.0 (Agilent_
033010 Probe Name
version)

PRJNA242356 GSM134764
GSM134765
GSM134766
GSM134767
GSM134768
GSM134769
GSM1347770
GSM134771
GSM134772
GSM134773

5 control (cadaveric normal) vs.
5 degenerative NP tissues using
TRIspin method

2014 Wan et al.
[13]

GSE63492 miRNAs GPL19449
ExiqonmiRCURY LNA
microRNA Array
miRBase v18.0

PRJNA268036 GSM1551024
GSM1551025
GSM1551026
GSM1551027
GSM1551028
GSM1551029
GSM1551030
GSM1551031
GSM1551032
GSM1551033

5 control (cadaveric normal) vs.
5 degenerative NP tissues using
TRIspin method

2016 Lan et al. [20]

GSE67566 circRNAs GPL19978
Agilent-069978 Arraystar
Human CircRNA
microarray V1

PRJNA280274 GSM1649704
GSM1649705
GSM1649706
GSM1649707
GSM1649708
GSM1649709
GSM1649710
GSM1649711
GSM1649712
GSM1649713

5 control (cadaveric normal) vs.
5 degenerative NP tissues using
TRIspin method

2016 Lan et al. [20]

GSE67567 Noncoding
RNA
SuperSeries

GPL15314 Arraystar
Human LncRNA
microarray V2.0 (Agilent_
033010 Probe Name
version)
GPL19449
GPL19978

PRJNA280271 In
combination

5 control (cadaveric normal) vs.
5 degenerative NP tissues

2016 Lan et al. [20]

GSE153761 lncRNAs,
mRNAs and
circRNAs

GPL22120
Agilent-078298 human
ceRNA array V1.0 4X180K

PRJNA643990 GSM4653870 3 control (traumatic normal) vs.
3 degenerative cartilage
endplate of cervical disc

2020 Yuan et al.

GSM4653871

GSM4653872

GSM4653873

GSM4653874

GSM4653875
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advance and therapeutic potentials concerning the regu-
latory roles of miRNAs/circRNAs/lncRNAs in degener-
ated discs of human or animal models were summarized
and discussed (Fig. 1).

The regulatory mechanism of miRNAs in IDD
The expression profile and molecular mechanisms of
miRNAs in IDD
Accumulating evidence indicates that the miRNA ex-
pression profile in IDD cases is significantly different
from those in the controls. In 2011, we presented the
first line of evidence on miRNA expression profiling in
IDD, using scoliosis NP tissues as control. Twenty-nine
differentially expressed miRNAs were identified, with 6
upregulated and 23 downregulated [18]. Thereafter, the
emerging molecules as miRNAs catch the attention of
global researchers, manifesting as an increasing number
of published studies. Subsequently, Zhao et al. compared
the expression profile of miRNAs between IDD and
spinal cord injury patients in 2014. Twenty-six miRNAs
were downregulated in the IDD group, while 25 upregu-
lated [19]. Further investigation revealed these dysregu-
lated miRNAs controlled several signaling pathways,
which are pivotal in the pathogenesis of IDD, such as
Wnt [19, 26, 27], phosphoinositide 3-kinase/Akt (PI3K/
Akt) [19, 28], and mitogen-activated protein kinase
(MAPK) [19, 29], etc. Consistently, Hu et al. demon-
strated that among the 253 miRNAs detected both in
IDD and scoliosis samples, three were downregulated
and six were upregulated in degenerative samples. The
downstream targets were predicted to be genes or pro-
teins associated with degeneration, such as drosophila
mothers against decapentaplegic protein family member
4 (SMAD4), which play important roles in cell-cycle-
related pathways [30].
Complementary base sequence endows miRNAs the

ability to bind the 3′untranslated region (3′UTR) of par-
ticular mRNA. The binding of miRNAs and mRNAs re-
sults in a decreased expression of the target proteins [31,
32], while most of them are hub proteins, which play a
crucial role in essential pathways associated with degen-
eration. Thus, miRNAs indirectly control the patho-
logical processes in disc degeneration. The IDD-related
miRNAs are presented in Table 2.
In summary, 49 miRNAs were reported with a rela-

tionship to IDD, among the total number of 38,589 miR-
NAs of Homo sapiens, according to miRBase Release
22.1 (http://www.mirbase.org/). Whereas studies have
been focused on intra-cellular miRNAs, cell-free miR-
NAs emerge as potential novel biomarkers for a variety
of human diseases. Recently, exRNA Atlas has been pro-
posed across human biofluids, which is also essential in
the regulation of IDD [86].

The roles of miRNAs in IVD cell apoptosis
Accumulating evidence shows that several miRNAs
function as inducers or inhibitors in the apoptosis of
IVD cells via specific target genes or pathways [87]. For
instance, downregulated miR-155 was suggested trigger-
ing the Fas-mediated apoptosis by disinhibiting FADD
and CASP-3 in NP cells [18]. Similarly, the expression of
miR-21 [36], miR-499a-5p [40], miR-486-5p [46], miR-
125a [51], miR-145 [56], and miR-573 [57] are decreased
in IDD, which act as apoptosis inhibitors via binding to
the 3′UTRs of mRNAs of PTEN, SOX4, FOXO1,
TP53INP1, ADAM17, and Bax, respectively. In contrast
to these findings, miRNAs such as miR-27a [39], miR-
494 [41, 42], miR-30d [43], miR-222-3p [44], miR-15a
[45], miR-143 [49], miR-532 [50], miR-138-5p [55] in
NP cells, miR-106a-5p [8] in AF cells, and miR-34a [7]
and miR-221 [52] in CEP cells, display potential pro-
apoptotic effects in IDD, via inhibiting the expression of
downstream hub proteins in several pathways. Apart
from the aforementioned mechanisms, miRNAs, i.e.,
miR-153-3p, participating in the autophagy, also contrib-
utes to the disc degeneration eventually [58].
In summary, there are eight miRNAs acting as inhibi-

tors of apoptosis in IDD, whereas eleven miRNAs act as
promoters of apoptosis.

The roles of miRNAs in IVD cell proliferation
Cell number in healthy human IVDs is limited and
sparsely distributed. However, the cells were reported to
proliferate into clusters in IDD [88]. In this complex
pathophysiological process, multiple miRNAs acting as
vital indirect regulators in IVD cell proliferation can be
employed as biomarkers. For example, in NP cells, the ab-
errant overexpression of miR-21 increases the prolifera-
tion level of degenerated NP cells by downregulating
PDCD4 and PTEN. Thus, the disinhibition effect increased
the phosphorylation level of c-Jun and AKT proteins,
which could induce cell proliferation. Liu et al. found that
miR-21 knockdown reversed cell proliferation, while
Ly294002, an AKT inhibitor, reversing the effect induced
by miR-21. These results indicate that miR-21 is a poten-
tial biomarker and therapeutic target of IDD [21, 37].
Besides, overexpression of miR-10b [59], miR-96 [60],

miR-184 [61], miR-2355-5p [62], and miR-665 [65]
could also promote the proliferation of degenerated NP
cells via targeting PTEN/PDCD4, HOXD10, ARID2,
GAS1, ERFFI1, and GDF5, while upregulation of miR-
222-3p [44], miR-15a [45], and miR-125b-1-3p [64] had
an opposite effect by inhibiting the expression of
CDKN1B, MAP3K9, and TSHZ3. These downstream
genes regulate NP cell proliferation by controlling cru-
cial pathways, such as RhoC-Akt pathway [59], PTEN/
AKT pathway [21, 37], ARID2/AKT signaling [60], and
activating/deactivating molecular molecules like AKT
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Table 2 Experimentally verified miRNAs associated with IDD

MiRNA Expression Target(s) Functions Publication year References

MiR-155 ↓ FADD, caspase-3
ERK1/2, TCF7L2, MMP-16

↓NP cell apoptosis
↓ECM degradation

2011
2016–2018

[18]
[33–35]

MiR-21 ↓*
↑

PTEN
PTEN, PDCD4
PTEN

↓NP cell apoptosis
↑NP cell proliferation
↑ECM degradation

2018
2014,2016
2018

[36]
[21, 37]
[38]

MiR-27a ↑ PI3K ↑NP cell apoptosis 2013 [39]

MiR-499a-5p ↓ SOX4 ↓NP cell apoptosis
↓ECM degradation

2019
2019

[40]
[40]

MiR-494 ↑ SOX9, JunD
SOX9

↑NP cell apoptosis
↑ECM degradation

2015,2017
2017

[41, 42]
[41]

MiR-30d ↑ SOX9 ↑NP cell apoptosis
↑ECM degradation

2018
2018

[43]
[43]

MiR-222-3p ↑ CDKN1B ↑NP cell apoptosis
↓NP cell proliferation
↑ECM degradation

2019
2019
2019

[44]
[44]
[44]

MiR-15a ↑ MAP3K9 ↑NP cell apoptosis
↓NP cell proliferation

2017
2017

[45]
[45]

MiR-486-5p ↓ FOXO1 ↓NP cell apoptosis
↓ECM degradation
↓inflammation

2019
2019
2019

[46]
[46]
[46]

MiR-200c ↑ XIAP ↑NP cell apoptosis
↑ECM degradation

2018
2018

[23]
[23]

MiR-328-5p ↑ ERBB2 ↑NP cell apoptosis 2018 [47]

MiR-34a ↑ GDF5
Bcl-2

↑ECM degradation
↑CEP cell apoptosis

2016
2015

[48]
[7]

MiR-143 ↑ Bcl-2 ↑NP cell apoptosis 2017 [49]

MiR-532 ↑ Bcl-9 ↑NP cell apoptosis 2018 [50]

MiR-125a ↓ TP53INP1 ↓NP cell apoptosis 2016 [51]

MiR-221 ↑ ERα
FOXO3, TRPS1
BMP-Smad pathway

↑CEP cell apoptosis
↑ECM degradation
↑inflammation
↓chondrogenesis
↓AF cell osteogenic differentiation

2018
2018
2018
2018
2016

[52]
[52]
[52]
[53]
[54]

MiR-138-5p ↑ SIRT1 ↑NP cell apoptosis 2016 [55]

MiR-145 ↓ ADAM17 ↓NP cell apoptosis
↓ECM degradation

2019
2019

[56]
[56]

MiR-573 ↓ Bax ↓NP cell apoptosis 2019 [57]

MiR-153-3p ↓ ATG5 ↓NP cell autophagy 2019 [58]

MiR-106a-5p ↑ ATG7 ↑AF cell apoptosis
↓AF cell proliferation

2019
2019

[8]
[8]

MiR-10b ↑ HOXD10 ↑NP cell proliferation 2013 [59]

MiR-96 ↑ ARID2 ↑NP cell proliferation 2017 [60]

MiR-184 ↑ GAS1 ↑NP cell proliferation 2017 [61]

MiR-2355-5p ↑ ERFFI1 ↑NP cell proliferation
↑inflammation

2019
2019

[62]
[62]

MiR-365 ↓ HDAC4 ↑CEP cell proliferation 2019 [63]

MiR-125b-1-3p ↑ TSHZ3 ↓NP cell proliferation 2018 [64]

MiR-665 ↑ GDF5 ↑NP cell proliferation
↑ECM degradation

2018
2018

[65]
[65]

MiR-7 ↑ GDF5 ↑ECM degradation 2016 [66]

MiR-132 ↑ GDF5 ↑ECM degradation 2017 [67]

MiR-15b ↑ SMAD3 ↑ECM degradation 2017 [68]
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[21, 37, 61]. Among them, miR-222-3p promotes the
proliferation of IVD cells and accelerates the apoptosis
and ECM degradation via the same pathway [44]. In ac-
cordance with this, miR-15a [45], miR-106a-5p [8] and
miR-17-3p [72] have a similar effect, which limits their
application as therapeutic targets.
In addition to NP cells, miR-106a-5p [8] in AF cells and

miR-365 [63] in CEP cells are also associated with cell
proliferation, by inhibiting the proliferation level via ATG7
and increasing proliferation via HDAC4, respectively.
Collectively, there were 12 miRNAs involved in IVD

cell proliferation, with eight miRNAs promoting prolifer-
ation and four miRNAs inhibiting proliferation.

The roles of miRNAs in ECM degradation and
inflammation
Generally, IVD cells play an essential role in secreting
ECM components like collagens and proteoglycans to
maintain IVD’s structural stability and resist mechanical
loads [89, 90]. However, in IDD, the unbalance between
synthesis and degradation of ECM makes the IVD unre-
newable and degenerative, especially in NP tissues [91].
MiRNAs modulate the degradation of ECM by regulat-
ing the expression of essential enzymes such as matrix

metalloproteinases (MMPs) or cytokines such as
interleukins.
It is reported that inhibition of miR-665 [65], miR-7

[66], miR-132 [67], and miR-34a [48] effectively attenuate
ECM degradation in degenerative NP tissues by directly
upregulating the expression of growth differentiation
factor-5 (GDF5), which can inhibit the expression of ECM
catabolic factors, such as MMP and ADAMTS4, and up-
regulating the production of anabolic proteins, such as
type II collagen and aggrecan.
A series of miRNA, i.e., miR-202-3p [71], miR-17-3p

[72], miR-93 [73], miR-133a [74], miR-27b [75], miR-127-
5p [76], miR-193a-3p [77], and miR-155 [33] are signifi-
cantly downregulated in degenerative NP tissues, with
their expression levels reversely correlated with the grade
of IDD, which induce type II collagen synthesis via directly
suppressing the expression levels of MMP1, MMP2,
MMP3, MMP9, MMP13, MMP14, and MMP16, respect-
ively, whereas overexpression of miRNAs mentioned
above can stop and reverse the degradative process, indi-
cating that they are potential biomarkers and therapeutic
targets of IDD.
In addition, two different protective mechanisms of

miR-155 have been clarified in ECM degradation. Ye
et al. have shown that the knockdown of miR-155 results

Table 2 Experimentally verified miRNAs associated with IDD (Continued)

MiRNA Expression Target(s) Functions Publication year References

MiR-20a ↑ ANKH ↑CEP chondrocyte calcification 2016 [69]

MiR-377 ↑ ADAMTS5 ↑ECM degradation 2013 [70]

MiR-202-3p ↓ MMP1 ↓ECM degradation 2019 [71]

MiR-17-3p ↓ MMP2 ↓ECM degradation
↓NP cell apoptosis
↑NP cell proliferation

2018
2018
2018

[72]
[72]
[72]

MiR-93 ↓ MMP3 ↓ECM degradation 2015 [73]

MiR-133a ↓ MMP9 ↓ECM degradation 2016 [74]

MiR-27b ↓ MMP13 ↓ECM degradation 2016 [75]

MiR-127-5p ↓ MMP13 ↓ECM degradation 2017 [76]

MiR-193a-3p ↓ MMP14 ↓ECM degradation 2016 [77]

MiR-98 ↓ IL-6 ↓ECM degradation 2016 [78]

MiR-100 ↑ FGFR3 ↑ECM degradation 2015 [79]

MiR-146a Not clear** TRAF6 ↑ECM degradation
↓inflammation

2015
2015,2017

[22]
[22, 80]

MiR-210 ↑ ATG7 ↑ECM degradation 2017 [81]

MiR-194 ↑ CHSY1/2/3 ↑ECM degradation 2017 [82]

MiR-515 ↑ CHSY1/2/3 ↑ECM degradation 2017 [82]

MiR-3150a-3p ↑ ACAN ↑ECM degradation 2018 [83]

MiR-640 ↑ LRP1,β-catenin, EP300 ↑inflammation 2019 [84]

MiR-140-5p ↓ TLR4 ↓inflammation 2018 [85]

The expression, targets, and functions of miRNAs related to IDD were displayed in Table 2. “↓” represents downregulation, while “↑” represents upregulation
*Decrease in apoptotic NP cells.**It is reported that miR-146a is significantly downregulated in the PBMCs of IDD patients, but its expression in NP cells is
unclear [80]
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in decreased expressions of collagen II and glycosamino-
glycan by increasing the expression of ERK1/2 [34]. Sun
et al. have reported that an essential transcription factor,
TCF7L2, which acts as an activator in the process of
chondrocyte matrix degradation through p65/NF-κB sig-
naling, was repressed by miR-155 [35].
Wang et al. discovered that miR-21 is upregulated in

IDD tissues and positively correlated with the degradation
grade, which indicates miR-21 cannot only inhibit NP cell
apoptosis and promote proliferation as mentioned above,
but also promote ECM degradation through repressing
the PTEN/AKT/mTOR signaling pathway [38]. SRY-
related high-mobility group box (SOX)-4 and SOX9 are re-
spectively targeting molecules of miR-499a-5p [40], miR-
494 [41], and miR30d [43], by repressing the apoptosis of
NP cells and ECM degradation.
As well, a number of miRNAs can affect the process of

ECM degradation, including miR-222-3p [44], miR-486-
5p [46], miR-221 [52, 53], miR-145 [56], and miR-98
[78] in NP tissues, miR-221 [54] in AF tissues, and miR-
20a [69] in CEP tissues. The expression, targets, and
functions of these miRNAs are listed in Table 2.
Apart from apoptosis, proliferation, and ECM degrad-

ation, inflammation responses and inflammatory cytokines
are also regarded as crucial factors in the pathogenesis of
IDD [92]. miRNAs associated with the production of in-
flammation cytokines, such as miR-486-5p [46], miR-221
[52], miR-2355-5p [62], miR-146a [22, 80], miR-640 [84],
and miR-140-5p [85] are also listed in Table 2 and can
also be used as therapeutic targets of IDD. In general,
there are six reported miRNAs pertaining to inflammation
during IDD in various subparts of the IVDs via a multi-
tude of targeting genes, affecting a variety of inflammatory
cytokines. Three deregulated miRNAs (miR-140-5p tar-
geting TLR4 [85], miR-486-5p targeting FOXO1 [46] and
miR-146a targeting TRAF6 [22, 80]; all studying in NP
cells) are associated with decreased levels of inflammation,
whereas three miRNAs (miR-221 targeting ERα in CEP
cells [52], miR-640 targeting LRP1, β-catenin and EP300
in NP and AF cells [84], and miR-2355-5p targeting ERFF
I1 in NP cells [62]) are linked with increased levels of in-
flammation during IDD.

The regulatory mechanism of circRNAs in IDD
The profile and mechanism of circRNAs in IDD
CircRNAs are a group of single-stranded RNAs with
loop structures, which act as competing endogenous
RNAs (ceRNAs) and restore the functions of specific
genes by sponging miRNAs [17, 93]. A specific miRNA
could be sponged by various distinct circRNAs, forming
a circRNA-miRNA-mRNA interaction network [20, 47,
72]. Thus, circRNAs seems like a critical regulator in
gene expression.

We presented the first line of evidence of circRNAs
expression profiling in human IDD In 2016. We found
636 differentially expressed circRNAs in human lumbar
IVDs, with 354 upregulated and 282 downregulated [20].
Zou and colleagues indicated that many genes regulated
by circRNAs are playing crucial roles in the pathogenesis
of IDD, via over 15 signaling pathways, such as Wnt and
integrin signaling pathways. Pairs of host genes and cir-
cRNA can be divided into four categories according to
their profile: circRNA and its host genes downregulated,
circRNA and its host genes upregulated, circRNA down-
regulated and its host genes upregulated, and circRNA
upregulated and its host genes downregulated [93].
Several experiments were conducted to investigate the

differences between the profile of circRNAs in degenera-
tive IVDs and that in normal IVDs. Wang et al. have pro-
vided another line of evidence that 72 circRNAs were
upregulated by more than two-fold in degenerative NP tis-
sues [94]. Following this, another team identified there
were 7294 circRNAs aberrantly expressed (3724 upregu-
lated, 3570 downregulated, fold change > 2) in degenera-
tive NP cells [17]. Recently, Li et al. reviewed the results
from related publications from 2016 to 2019 and con-
firmed that the profile in IDD patients is different from
that in the control group, with the number of upregulated
circRNAs ranging from 51 to 3724, and the number of
downregulated circRNAs ranging from 21 to 3570 [15].
As the dynamic development of miRBase reflecting

novel findings in miRNAs, multiple circRNA databases
have been proposed with changing numbers and up-
dated findings as well. So far, there are hundreds of hu-
man circRNAs reported (148 in chondrocytes and 104 in
osteocytes) [95].

The roles of circRNAs in IDD
Specific circRNA can indirectly regulate apoptosis, pro-
liferation, and ECM degradation by modulating the level
of functional miRNA, contributing to the disc degener-
ation. Specifically, CircVMA21 [23], Circ-GRB10 [47],
and CircRNA_104670 [72] are involved in apoptosis
regulation. CircRNA_104670 [72] and CircSEMA4B [96]
are related to NP cell proliferation. CircVMA21 [23],
Circ-4099 [94], CircSEMA4B [96], and CircRNA_104670
[72] are associated with ECM degradation.
As shown in Table 3, miR-200c accelerates the apop-

tosis of NP cell and ECM degradation via inhibiting
XIAP, whereas CircVMA21 alleviates the negative effect
of sponging miR-200c. However, in degenerative IVD
tissues, the expression of CircVMA21 is repressed,
resulting in aberrant higher level of miR-200c and IDD
[23]. Circ-GRB10 is downregulated in degenerative NP
tissues. Transient overexpression of GRB10 could at-
tenuate the apoptosis of NP cells by sequestering miR-
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328-5p and leading to the activation of genes associated
with proliferation via the ErbB pathway [47].
Besides, overexpression of circSEMA4B could inhibit

NP cells from proliferation and ECM degradation in-
duced by IL-1β via indirectly rescuing SFRP1 or GSK-3β
in Wnt signaling from miR-431 [96]. Song et al. found
that upregulated CircRNA_104670 accelerates apoptosis
and inhibits cell proliferation and collagen II synthesis in
NP cells via circRNA_104670/miR-17-3p/MMP2 net-
work [72]. In contrast, upregulated Circ-4099 acts as a
protective factor by disinhibiting the expression of colla-
gen II and aggrecan and downregulating the synthesis of
the pro-inflammatory factors such as IL-1β, TNF-α, and
PGE2 by sponging miR-616-5p. The expression data, tar-
geted miRNAs, and functions of circRNA in IDD are
listed in Table 3.

The regulatory mechanism of lncRNAs in IDD
The profile and mechanism of lncRNAs in IDD
LncRNAs are a group of ncRNAs with more than 200 nu-
cleotides. LncRNAs take the role of ceRNAs (as circRNAs)
or small interfering RNA (siRNAs) and participate in the
lncRNA/circRNA/miRNA/mRNA network as transcrip-
tional regulators [97]. They regulate gene expression or
control the signaling pathways by competitively sponging
and inactivating specific miRNAs [12, 13]. Some lncRNAs
even regulate the activity or stability of proteins by directly
interacting with them [98, 99]. Investigations indicate that
lncRNAs exert their regulatory function in various ways
(i.e., reducing the methylation level of the promoter region
may accelerate the expression of specific lncRNAs in IVD
cells [100]). Therefore, the aberrant expression of
lncRNAs will cause the degeneration of IVD cells and re-
sult in the development of IDD.
Ample evidence indicates that the profile of lncRNAs

in degenerative IVDs is totally different from those in
normal IVDs. In 2014, we reported the first expression
profiling of lncRNAs in human IDD by using the same
human lumbar IVD samples as circRNAs. One hundred
sixteen lncRNAs (with 67 upregulated and 49

downregulated) and 260 mRNAs were differentially
expressed in degenerative samples with an absolute fold
change greater than ten [13]. Among the deregulated
lncRNAs in IDD, HOTAIR (NR_003716) is the top
downregulated lncRNAs (fold change, 148.53; P < 0.001)
[13]. Later, Zhao et al. reported that 1530 of 1854 differ-
ential expressed lncRNAs might have 6386 potential tar-
get genes, whereas Han et al. reported 632 lncRNAs are
differentially expressed in IDD tissues among 40,716 de-
tected lncRNAs [101, 102]. Li and colleagues reviewed
the articles related to expression profiles of lncRNAs
and summarized the number of differentially expressed
lncRNAs. The number of upregulated lncRNAs is ran-
ging from 67 to 2234, while the downregulated ones ran-
ging from 49 to 938 [97]. These results indicate that
lncRNAs could modulate the destiny of NP cells in IDD
and be transformed into screening biomarkers or thera-
peutic targets.

The roles of lncRNAs in IDD
The roles of lncRNAs in IDD can be divided into four
main categories according to their functions (apoptosis,
cell proliferation, ECM degradation, inflammation) as
well. A specific lncRNA can have two or more functions
simultaneously.
Chen et al. found that overexpression of TUG1 in de-

generative NP samples accelerates cell apoptosis, via up-
regulating the levels of Bax&caspase-3 (the latter are
pro-apoptotic factors) in Wnt1/β-catenin pathway and
downregulating the levels of Bcl-2, an anti-apoptotic fac-
tor. In addition, the increased level of TUG1 also deteri-
orates the degradation of ECM by breaking the
expression balance in the ECM-degrading and anti-
ECM-degrading genes [24]. Both GAS5 and lncPolE are
overexpressed in degenerative IVD samples, displaying
similar roles in apoptosis. While GAS5 increases the
apoptosis by binding to miR-155, lncPolE negatively reg-
ulates PolE [100, 103].
Emerging evidence suggests that autophagy is an es-

sential process in IDD and has a close relationship with

Table 3 Experimentally verified circRNAs associated with IDD

CircRNA Expression Target miRNA Functions Publication year References

CircVMA21 ↓ miR-200c ↓NP cell apoptosis
↓ECM degradation

2018
2018

[23]
[23]

Circ-GRB10 ↓ miR-328-5p ↓NP cell apoptosis 2018 [47]

CircSEMA4B ↓ miR-431 ↓NP cell proliferation
↓ECM degradation

2018
2018

[96]
[96]

CircRNA_104670 ↑ miR-17-3p ↑NP cell apoptosis
↓NP cell proliferation
↑ECM degradation

2018
2018
2018

[72]
[72]
[72]

Circ-4099 ↑ miR-616-5p ↓ECM degradation
↓Inflammation

2018
2018

[94]
[94]

The expression, targets, and functions of circRNAs related to IDD were displayed in Table 3. “↓” represents downregulation, while “↑” represents upregulation
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apoptosis. Zhang and colleagues reported that overex-
pression of HOTAIR accelerates NP cell apoptosis via
stimulating cell autophagy [104]. On the contrary, Shao
et al. indicated that downregulated HOTAIR expression
inhibits cell apoptosis via the Notch signaling pathway
by sponging miR-34a-5p. In other words, the overex-
pression of HOTAIR reduces NP cell apoptosis [105].
On account of the incompatible viewpoints, further in-
vestigations are needed to clarify the real effects of
HOTAIR in apoptosis. In addition to HOTAIR,
LINC00641 accelerates cell autophagy by sponging miR-
153-3p, which can inactivate autophagy-related gene 5
(ATG5) [58].
Aberrant cell proliferation is another core pathogen-

esis in IDD. SNHG1 promotes NP cell proliferation via
sponging miR-326, and downregulated miR-326 disin-
hibits NP cell proliferation by inactivating PCNA and
cyclin D1 expression. Similarly, RP11-296A18.3/miR-
138/HIF1A, RMRP/miR-206/PCNA, H19/miR-22/LEF1/
Wnt/β-catenin signaling, and HCG18/miR-146a-5p/
TRAF6/NF-κB axis can also increase or decrease the
level of proliferation, respectively [10, 25, 106–108]. Tar-
geting extracellular signal-regulated kinase (Erk) and
miR-146a-5p/TRAF6/NF-κB axis, respectively, lncRNA
FAF1 and HCG18 modulate the ratio of synthesis-phase
cells among all the cells in NP tissue [109].
H19, Linc00958, and SLC20A1 have been reported to

upregulate ECM degradation via sponging miRNAs [107,
109, 110]. It is noteworthy that H19 plays a role as a
competitor to LEF1 for binding miR-22, regulating Wnt/
β-catenin pathway [107]. Linc00958 and NEAT1 exert
their function by increasing the expression of MMPs via
upregulating SMAD and inhibiting the synthesis of
aggrecan and collagen-II in the ERK/MAPK pathway, re-
spectively [109, 111]. Wei et al. demonstrated that
decreased FAM83H-AS1 in IDD results in ECM degen-
eration, by targeting Notch1 and Hes1 [112]. While
Linc-ADAMTS5, interacting with splicing factor pro-
line/glutamine-rich (SFPQ), which induces the down ex-
pression of ADAMTS5, alleviates the ECM deterioration
process [113].
Inflammatory cytokines and inflammatory cytokine-

related lncRNAs are also involved in IDD. Several mem-
bers of the interleukin family, such as IL-1 and IL-6,
were widely noted as pro-inflammatory factors, giving
rise to the degeneration of ECM and apoptosis of IVD
cells. In vitro studies showed that overexpression of
MALAT1 attenuates IL-1 and IL-6 induced inflamma-
tion by sponging miR-503, displaying a protective effect
on IVD cell [114]. Besides, ZFAS1 is linked with inflam-
matory cytokine levels in IDD. Since the positive correl-
ation between the intensity of inflammatory and severity
of degeneration, ZFAS1 is regarded as a sensitive pre-
dictor of IDD [115].

LncRNAs related to the modulation and prediction of
IDD are listed in Table 4.

Conclusion
In recent years, a large number of investigations have
depicted a bright future for ncRNAs, which play
roles as delicate regulators in the pathogenesis of
IDD. The lncRNA/circRNA/miRNA/mRNA networks
and the widespread crosstalks between the RNAs
provide us another way to recognize and understand
the pathogenesis of IDD [19]. A number of aber-
rantly expressed RNAs have been regarded as early
diagnostic biomarkers or useful therapeutic targets.
Moreover, novel materials and technologies, such as
injectable hydrogel or nanoparticle which is loadable
for small RNAs [117], genetic technologies and stem
cell-based therapies [118, 119], are developing rap-
idly, making it possible to interfere the RNA expres-
sion inside IVD cells.
The rapid development of high throughput biotechno-

logical tools greatly facilitates the studies for ncRNAs in
IDD. The most common biotechnological approaches
are microarray analysis for specific ncRNAs and/or se-
quencing technologies. Following successful RNA isola-
tion and quality control, ncRNA expression in IDD can
be detected via developed microarray chips with known
covered ncRNA numbers and types according to corre-
sponding ncRNA database versions. Alternatively,
ncRNA expression in IDD can be studied using next-
generation sequencing platforms following reverse tran-
scription to cDNA. Thereafter, sequencing data can be
mapped to human genomic version (the updated version
as GRCh38) and annotated into various subtypes of
ncRNAs, with the pros of uncovering novel ncRNAs and
cons as introducing errors/mutations during reverse
transcription. A combined exploration of both biotech-
nologies might overcome the cons and improve the
studies of ncRNAs in IDD. Novel sequencing tech-
nologies are needed for direct sequencing of RNAs
and omitting the reverse transcription step. In
addition, there are triple common tools/techniques
for ncRNA studies following screening. First, RT-PCR
tool aims for the detection of expression levels of
ncRNAs. Second, bioinformatics and online software
tools apply for ncRNA function, target, and inter-
action predictions. Third, in vitro modulation (upreg-
ulation and repression) designates for target and
function validations.
However, we are still facing with lots of challenges.

Lack of knowledge about the overall view of the ncRNA
networks makes it challenging to identify the key nodes
to interfere with. The roles of tRNAs and emerging
small RNAs, i.e., small nucleolar RNAs (snoRNAs) and
PIWI-interacting RNAs (piRNAs), which may be equally
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important in IDD, remain unclear and deserve thorough
studies. Stem cells, such as mesenchymal stem cells
(MSCs), have already been used in IVD degeneration
therapies for assisting tissue regeneration and exo-
some secretion, which contains miRNAs to improve
microenvironment. However, the inflammatory milieu
of IVDs is tough for MSCs to survive in degenerative
IVD tissues [120, 121]. Thus, improvement in tissue
engineering techniques is urgently needed in seed cell
implanting [122]. Future studies should keep focusing
on the molecular mechanisms of crosstalk among
ncRNAs, especially novel snoRNAs, piRNAs, and
tRNAs, and seek feasible ways in seed cell implant-
ation, nanoparticles containing RNA molecules or
engineered tissues to interfere the hub nodes in the
regulatory network. With the issues solved, research
advances in the regulatory machinery of ncRNAs will
provide the medical community with a brighter future
for IDD therapies.
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