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ABSTRACT: Carbonic anhydrases from Vibrio cholerae (VchCAs) play a significant role in bacterial pathophysiological processes.
Therefore, their inhibition leads to a reduction of gene expression virulence and bacterial growth impairment. Herein, we report the
first ligand-based pharmacophore model as a computational tool to study selective inhibitors of the β-class of VchCA. By a virtual
screening on a collection of sulfonamides, we retrieved 9 compounds that were synthesized and evaluated for their inhibitory effects
against VchCAβ as well as α- and γ-classes of VchCAs and selectivity over human ubiquitous isoforms hCA I and II. Notably, all
tested compounds were active inhibitors of VchCAs. The N-(4-sulfamoylbenzyl)-[1,1′-biphenyl]-4-carboxamide (20e) stood out as
the most exciting inhibitor toward the β-class (Ki = 95.6 nM), also showing a low affinity against the tested human isoforms. By
applying docking procedures, we described the binding mode of the inhibitor 20e within the catalytic cavity of the modeled open
conformation of VchCAβ.
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The Gram-negative bacterium Vibrio cholerae (Vch) is the
causative agent of cholera, a severe diarrheal disease that

is endemic in various Southeast Asian and African countries as
well as regions of South America.1,2 This pathology can lead to
severe dehydration, metabolic acidosis, and death in the
absence of therapeutic intervention. It is well-known that Vch
colonizes gastro-intestinal lumen and causes pathological
effects by producing virulence factors related to transcriptional
regulator ToxT.3−5 Consequently, an emerging challenge is to
fight cholera by using antivirulence drug candidates in place of
antibiotics.6 It has been established that the ToxT activation is
regulated by ion bicarbonate (HCO3

−) as intestinal pH buffer
secreted by epithelial cells.7 The bicarbonate production is
mediated by carbonic anhydrases (CAs, EC 4.2.1.1) that are
metalloenzymes catalyzing the reversible hydration of CO2.
CAs are a superfamily of enzymes belonging to several classes
(α-, β-, γ-, δ-, ζ-, ε-, θ-, and ι-classes) that are diffused in
vertebrates, protozoa, algae, and bacteria.8,9 Specifically, the
Vch genome encodes α-, β-, and γ-classes named VchCAα,
VchCAβ, and VchCAγ, which share a low structural homology

with each other.9 The α- and β-CAs are Zn(II) metal-
loenzymes, whereas γ-CA classes employ Fe(II) in the catalytic
site, even if they are also active with Zn(II) or Co(II) metal
ions. In detail, the metal ion is coordinated by three His
residues in the α- and γ-classes and one His and two Cys
residues in the β-class.10

The ability to inhibit VchCA isozymes has been demon-
strated by a large series of compounds bearing a zinc binder
group (ZBG). Among them, acetazolamide (AAZ) and
ethoxzolamide (EZA) (Figure 1) proved to significantly inhibit
VchCA isozymes.9,11 Furthermore, EZA decreases the
bicarbonate-mediated virulence gene expression and reduces
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the growth of pathogen; this latter evidence paved the way for
the development of VchCA inhibitors as potential therapeutics
for treatment of cholera.9,12,13

The design of selective inhibitors targeting the medium/
small cavity of VchCA isozymes is a very intriguing challenge.
Actually, the best active inhibitors displayed good affinity in
the low nanomolar range.11,12,14−21 However, they generally
display low selectivity over human off-target α-class CA
isoforms (hCA I and hCA II), thus reducing their potential
therapeutic interest in humans. The CA inhibitors possess the
ZBG linked to a lipophilic cap-group through a suitable
“spacer”. Apart from that crucial ZBG moiety, structural
studies have suggested that the cap-group can establish
relevant contacts with the rim of the CA cavity thus controlling
CA isozyme selectivity.
Seeking selective inhibitors targeting the medium/small

cavity of VchCA, we focused our interest on β-CA classes
which exert catalytic activity as a crucial event for bacterial
survival. It has been established that β-CAs are structurally
unique from human CAs, so that it has been proposed that the
selective β-CA inhibitors might be promising innovative
antibacterial agents.22,23 To better understand the binding
mode of VchCA inhibitors, we have previously investigated the
pose of prototype AAZ bound to the hypothetical cavity
located in the interface of a dimeric VchCAβ, that displays a
tetrameric composition as a dimer of dimers. In detail, we have
modeled the open active site on the basis of the cocrystal
structure of AAZ in complex with β-CA from the green algae
Coccomyxa (PDB Code: 3UCJ).24 This in silico study
suggested that the deprotonated sulfonamide moiety is
anchored to zinc ion, which is coordinated by residues
Cys42, His98, and Cys101 (chain A, blue in Figure 2); a
hydrogen bonding interaction was found between the oxygen
atom of Gly102 (chain A) and the exocyclic nitrogen atom of

the acetamide moiety; finally, the nitrogen atom of the
thiadiazole ring establishes H-bond contact with the hydroxyl
group of Tyr83 (chain B, wheat in Figure 2), for which a π/π
stacking with the thiadiazole nucleus might reinforce the
binding within the catalytic site.
Continuing our efforts aimed to the identification of

selective CA inhibitors,14,25−36 in this work we report a
computationally driven design of small molecules which
possess the minimal structural requirements to occupy the
tight cleft of the β-CA cavity and establish favorable contacts
with crucial residues of VchCA isozymes, thus anchoring the
catalytic site as well as hydrophobic/hydrophilic walls of the
CA cavity.
Our study began with a ligand-based strategy to obtain a

three-dimensional pharmacophore model, that was validated to
establish its robustness as a valuable tool to identify a
compound having affinity to the β-class of VchCA. Then, a
structure-based virtual screening of 3D-databases allowed us to
select hypothetical drug-like sulfonamides able to establish
interaction with enzymatic cavity. Finally, nine compounds
were synthesized and screened to establish the reliability of our
computational study and reach new information about the
SAR for selective and potent VchCAβ inhibitors over hCA I
and hCA II. Then, the hypothetical binding pose was
suggested by docking studies. The following sections describe
the step-by-step procedure to achieve our goal.
We initially constructed our pharmacophore model for CA

inhibitors targeting VchCAβ isozymes. To assemble the data
set, we selected from the literature14,21 19 known inhibitors
(compounds 1−19, Figure 3) that possess the RSO2NHR
chemical moiety as well-established ZBG; to guarantee the best
reliability of the pharmacophore hypotheses, we selected a
homogeneous series of inhibitors that have been assayed by
employing the stopped-flow carbon dioxide hydrase assay;
compounds 1−19 displayed Ki values ranging from 68 to 6000
nM as active compounds. Then, the data set compounds were
distributed in two subsets of compounds: the training set
(Figure 3, compounds 1−9) and test set (Figure 3, compounds
10−19). By employing the above-mentioned two data sets of
sulfonamides, a collection of ten pharmacophore models was
generated by LigandScout;37 then, the pharmacophore
hypothesis with the best score value (72.7165) was considered
from the 10 generated models. To validate this pharmacophore
model, we established its discrimination power by considering
the enrichment factor and the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve (for details
see Figure 6 in the Supporting Information); the model
displays a preference for active compounds with an AUC value
of 0.97 and EF of 11.5.
As shown in Figure 4A the best pharmacophore model

consists of one aromatic ring feature (blue), one hydrophobic
feature (yellow), three hydrogen bond acceptors (red), two
hydrogen bond donors (green), one negative ionizable (red
star), and 31 exclusion volumes (gray).
The alignment of the 3D coordinates of the active inhibitor

AAZ (Ki value of 451 nM) onto the pharmacophore (see
Figure 4B) highlighted that the deprotonated form of
sulfonamide moiety (RSO2NH

−) is defined by two oxygen
atoms as hydrogen bond acceptors as well as one nitrogen
atom corresponding to a hydrogen bond donor or a negative
ionizable group; in addition, the heteroaromatic ring describes
a hydrophobic/aromatic ring feature. Furthermore, the other
hydrogen bond donor feature corresponds to the nitrogen

Figure 1. Chemical structures of well-known VchCA inhibitors:
acetazolamide (AAZ) and ethoxzolamide (EZA).

Figure 2. Binding site analysis of the modeled dimeric VchCAβ open
cavity bound to acetazolamide (AAZ).
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atom of the amide portion. Notably, the above-described
features resulted in good agreement with previously reported
contacts found for AAZ docked into our “modeled” open
conformation of VchCAβ catalytic cavity (cf. Figure 2).
Encouraged by this strong matching between the pharma-

cophore model displayed in Figure 4A and docking results for

AAZ, we employed this plausible model to carry out a virtual
screening (VS) in order to identify new of VchCAβ inhibitors.
The second step of our computational study involved the
construction of a plausible database of VchCAβ inhibitors
through the collection of para-benzenesulfonamide derivatives
retrieved from the SciFinder chemical database (https://
scifinder.cas.org). We employed specific filters to select both
drug-likeness and commercially available compounds; there-
fore, we collected 8,208 molecules that were screened by our
best pharmacophore model, thus obtaining 661 compounds.
Among them we selected 118 molecules having fit-score values
greater than 72.86. By visual inspection we focused our interest
on 40 compounds, that were docked into our modeled β-CA
cavity by Gold software.38 Therefore, docking analysis afforded
9 sulfonamides that were selected on the basis of a very simple
synthetic procedure to obtain them.
As depicted in Figure 5 the selected compounds 20a−i are

characterized by the canonical ZBG linked to the lipophilic

cap-group by an amide spacer as a crucial motif to bind the
VchCAβ catalytic cavity through the requested H-bond donor
group; additionally, the cap group might furnish a selective
interaction with VchCAs over other CA classes.
By coupling the 4-aminomethylbenzenesulfonamide (21)

with commercially available carboxylic acids or aroyl chlorides,
we obtained in good yields the small series of desired N-(4-
sulfamoylbenzyl)amide derivatives 20a−i (Scheme 1). The
chemical characterization of compounds 20a−i was supported
by elemental analyses and 1H and 13C NMR spectroscopic
measurements.

Figure 3. Chemical structures of compounds 1−19.

Figure 4. (A) Best pharmacophore model: one aromatic ring feature
(blue) overlapped with the hydrophobic feature (yellow), three
hydrogen bond acceptors (red), two hydrogen bond donors (green),
one negative ionizable (red star), and 31 exclusion volumes (gray).
(B) AAZ mapped into the pharmacophore model.

Figure 5. Schematic representation of structural moieties shared by
sulfonamides 20a−i

Scheme 1. Synthetic Route for Desired N-(4-
Sulfamoylbenzyl)amide Derivatives 20a−ia

aReagents and conditions: (i) (A) RCOCl, DIPEA, DCM/DMF (2:1,
v/v), MW, 25 °C, 10 min; (B) RCO2H, HBTU, DIPEA, DCM/DMF
(2:1, v/v), MW, 25 °C, 25 min.
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The N-(4-sulfamoylbenzyl)amide derivatives 20a−i were
assayed for their inhibitory activity against VchCAα, -β, and -γ
by means of a stopped-flow carbon dioxide hydrase assay. The
obtained results are summarized in Table 1 and compared with
Ki values of AAZ as reference compound. For comparative
purposes the inhibitory profiles against the ubiquitous hCA I
and hCA II are reported in Table 1.

All computationally inspired compounds 20a−i affected the
carbon dioxide hydrase activity of VchCA classes showing Ki
values ranging from 6.2 to 6442 nM. The screening toward
VchCA α evidenced that the R substituent did not significantly
affect the inhibitory potency of tested compounds 20a−i.
Notably, the 1-(biphenyl-4-yl)-substituted compound 20e was
the most active VchCA β inhibitor (Ki value of 95.6 nM).
Compounds 20b, 20f, 20g, and 20i were about 5-fold less
active VchCA β inhibitors when compared with analogue 20e
(Ki value of 95.6 nM). The presence of m-tolyl or 2,5-
chlorophenyl as hydrophobic group was critical for VchCA β
affinity and dramatically reduced the activity toward VchCA β
of compounds 20a and 20c, respectively. On the contrary,
compounds 20d and 20h were more active when compared
with 20a and 20c, whereas they were weakly active with
respect to the most interesting inhibitor 20e. All these data
evidenced how changes in the size and/or shape of the
hydrophobic fragment can impact the inhibitory profile toward
VchCA β. The inhibitory trend toward VchCA γ revealed that
compounds 20a, 20d, and 20i were active at low nanomolar
concentration; the remaining compounds of the series resulted
weak inhibitors. Taken together these data confirmed that
VchCA α is more able to accommodate the various R-
substituents compared to the other tested isozymes VchCA-β
and VchCA-γ. Overall, the most relevant result was the
identification of compound 20e as a potent and selective
VchCA-β inhibitor that displayed very low affinity toward
human CA isoforms hCA I and hCA II (Ki values of 2113.0
and 919.7 nM, respectively).
A further step of our study was to analyze the hypothetical

orientations into the VchCAβ cavity for synthesized com-
pounds by docking analysis, that were performed by means of
Gold Software.38 In detail, we used the crystal structure of the
dimeric (chains A and B) VchCAβ retrieved from the Protein
Data Bank (PDB Code: 5CXK),10 that has been “modeled” in
open conformation on the basis of β-CA from the green algae

Coccomyxa24 (PDB Code: 3UCJ) as previously reported and
shown in Figure 2 for AAZ.14 The docking results confirmed
that N-(4-sulfamoylbenzyl)amide derivatives 20a−i adopted
the canonical orientation of sulfonamide-based CAIs for which
for the deprotonated form of the sulfonamide moiety is
anchored to the zinc ion coordinated by residues Cys42,
His98, and Cys101 (chain A, colored in blue). As expected, the
aromatic ring of the benzenesulfonamide portion is stabilized
through a π−π interaction with Tyr83 (chain B, colored in
wheat). In addition, the -NH- group of the amide spacer
establishes H-bond interaction with the oxygen atom of the
Gly102 backbone. Our studies suggested that the cap-group
might be involved in a network of interactions with a cluster of
residues Thr105, Ala106, Ala139, and Ile108 lining the
hydrophobic subpocket along the rim of chain A. The network
of above-mentioned interactions is displayed in Figure 6 for
the most active inhibitor N-(4-sulfamoylbenzyl)biphenyl-4-
carboxamide (20e, Ki value of 96.5 nM).

In conclusion a ligand based virtual screening strategy led to
the identification of compound 20e as active VchCA-β
inhibitor (Ki value of 95.6 nM) that combined high affinity
with a surprising selectivity over the human off-target isoform.
The screening and docking efforts established that this
compound might be a promising lead compound for further
biological studies, HTS screening, and structural optimization
aimed to the identification of novel anti-infective agents
characterized by a peculiar mechanism of action, in order to
overcome the global threat of antibiotic resistance.
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Table 1. Inhibitory Effects against VchCAα, VchCA-β,
VchCA-γ, hCA I, and hCA II of Compounds 20a−i and
Reference Compound Acetazolamide (AAZ)

Ki (nM)

VchCAα VchCβ VchCAγ hCA I hCA II

20a 45.0 6442.0 56.1 60.7 3.3
20b 9.1 626.7 250.8 65.9 5.1
20c 8.8 3596.0 722.4 77.8 31.6
20d 18.1 179.2 98.4 95.0 63.0
20e 11.6 95.6 174.6 2113.0 919.7
20f 12.1 586.1 657.4 98.3 54.4
20g 6.2 553.9 593.0 269.3 26.3
20h 10.0 200.4 775.0 44.2 83.8
20i 7.7 538.5 79.6 571.5 69.5
AAZ 6.8 451.0 470.0 250.0 12.1

aErrors in the range of ±10% of the reported value, from 3 different
assays.

Figure 6. Plausible binding mode of 20e into our “modeled” open
conformation of VchCAβ. Dark gray dashed lines represent hydrogen
bond interaction. Zinc ion is depicted as a yellow sphere. The
interactions were examined by using LigandScout software.37 The
images were created by means of PyMOL software (https://pymol.
org).
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