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TheNEIL3DNA glycosylase maintains genome integrity dur-
ing replication by excising oxidized bases from single-stranded
DNA (ssDNA) and unhooking interstrand cross-links (ICLs) at
fork structures. In addition to its N-terminal catalytic glycosy-
lase domain, NEIL3 contains two tandem C-terminal GRF-type
zinc fingers that are absent in the other NEIL paralogs. ssDNA
binding by the GRF–ZF motifs helps recruit NEIL3 to replica-
tion forks converged at an ICL, but the nature of DNA binding
and the effect of the GRF–ZF domain on catalysis of base exci-
sion and ICL unhooking is unknown. Here, we show that the
tandem GRF–ZFs of NEIL3 provide affinity and specificity for
DNA that is greater than each individual motif alone. The crys-
tal structure of the GRF domain shows that the tandem ZF
motifs adopt a flexible head-to-tail configuration well-suited for
binding to multiple ssDNA conformations. Functionally, we es-
tablish that the NEIL3 GRF domain inhibits glycosylase activity
against monoadducts and ICLs. This autoinhibitory activity
contrasts GRF–ZF domains of other DNA-processing enzymes,
which typically use ssDNA binding to enhance catalytic activity,
and suggests that the C-terminal region of NEIL3 is involved in
both DNA damage recruitment and enzymatic regulation.

The NEIL (endonuclease VIII like) family of DNA glycosy-
lases, which include NEIL1, NEIL2, and NEIL3, are important
for repair of oxidative DNA damage in vertebrates (1). They are
bifunctional enzymes that catalyze hydrolysis of the N-glyco-
sidic bond (base excision activity) and b- and d-elimination of
the resulting apurinic/apyrimidinic (AP, or abasic) site (AP
lyase activity), which leads to cleavage of the DNA backbone
(1–5). Like the prokaryotic Nei/Fpg (formamidopyrimidine
DNA glycosylase) orthologs, the NEIL glycosylases are specific
for oxidized bases, including spiroiminodihydantoin and guani-
dinohydantoin, formamidopyrimidines, 5,6-dihydrothymine
(DHT), 5,6-dihydrouracil, 5-hydroxycytosine, 5-hydroxyura-
cil, and thymine glycol, many of which are mutagenic (6–12).
NEIL3 plays a critical role in protecting cells during DNA

replication.NEIL3 is expressed in early S phase, and the protein
is found primarily in proliferating cells and co-localizes with
Replication Protein A (RPA) (13–16). NEIL3 is the only DNA
glycosylase of the Nei/Fpg superfamily to have a strong prefer-

ence for lesions in ssDNA and at branched structures expected
to be found at replication forks (4, 7, 8, 11, 17). In addition,
NEIL3 repairs damaged telomeric DNA during S phase and
excises thymine glycol, spiroiminodihydantoin, and guanidino-
hydantoin lesions from G-quadruplexes (18–20). NEIL3 is
highly expressed in various human cancer cells and in primary
malignant melanomas associated with metastasis (21, 22),
exhibits a high frequency of loss of heterozygosity in hepatocel-
lular carcinomas (23), and is frequently mutated in colorectal
and breast cancer (24, 25). Loss of NEIL3 was shown to increase
deleterious strand breaks duringDNA replication and to enhance
sensitivity to Ataxia telangiectasia and Rad3-related protein
(ATR) and poly(ADP-ribose) polymerase inhibitors (26).
Consistent with its role in DNA replication, NEIL3 partici-

pates in the repair of interstrand DNA cross-links (ICLs) (27–
29). ICLs are highly toxic lesions that covalently link opposing
DNA strands and consequently inhibit replication (30). ICL
repair is initiated by unhooking the tethered strands, either by
dual incisions on one strand by endonucleases associated with
Fanconi anemia and nucleotide excision repair, or alternatively
by cleavage of the cross-linked nucleotide by a specialized DNA
glycosylase (5, 31). NEIL3 unhooks ICLs derived from the natu-
ral product psoralen in both Xenopus cell extracts and in
human cells in a replication-dependent manner (27–29). More-
over, NEIL3 unhooks ICLs derived from highly abundant en-
dogenous AP lesions (17, 27). AP-ICLs are formed between a
ring-opened AP aldehyde on one strand and the exocyclic N6

amine of adenine on the opposite strand (32–35). NEIL3
cleaves the nonnative N-glycosidic bond from the AP site (27)
and preferably acts on AP-ICLs residing on the leading-strand
template at a forked DNA structure (17). This substrate speci-
ficity is unique to vertebrate NEIL3, because an unrelated bac-
terial ICL glycosylase does not cleave AP-ICLs but recognizes
ICLs independent of DNA structure (36–38).
NEIL3 is a distinct member of the Nei DNA glycosylases,

which contain a helix–two-turn–helix glycosylase domain (GD)
(1). The structure of the NEIL3–GD explains the enzyme’s pref-
erence for ssDNA, because it lacks two of the three residues im-
portant for intercalating into the dsDNA during excision of the
damaged nucleobase (9). Unlike NEIL1, NEIL2, and the other
Nei members, NEIL3 further contains a 323-residue C-terminal
extension with three zinc finger (ZF) motifs—an internal RanBP/
NPL4-type (NZF) and two glycine–arginine–phenylalanine
(GRF) ZFs (10, 12). Both the NZF and GRF–ZF domains are
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required for recruitment of NEIL3 to replication forks that have
converged at an ICL in Xenopus extracts (28). The NZF does
this through direct interaction with ubiquitylated CMG helicase
found at convergent forks, whereas the GRFs do so presumably
through their interactionwith ssDNA (28).
GRF–ZFs are ssDNA-binding elements present at the C-ter-

minus of several DNA-processing enzymes (39, 40). In several
cases these motifs have been shown to enhance enzymatic ac-
tivity (39, 41–43). For example, disrupting the GRF–ssDNA
interaction in AP endonuclease 2 (APE2) inhibits nuclease ac-
tivity in vitro (39) and is required for full functional comple-
mentation of APE2 synthetic lethality with BRCA-deficient cell
lines (44). Despite our understanding of the role of the GRF do-
main on recruitment of NEIL3 to converged forks at an ICL
(28), how the GRF domain cooperates to bind DNA and regu-
late NEIL3 DNA glycosylase activity is unknown. Here, we
report the first crystal structure of the NEIL3 GRF domain and
probe the role for GRF DNA binding on NEIL3 ICL unhooking
and base excision. We find that ssDNA binding by NEIL3’s
GRF motifs inhibits NEIL3 enzymatic activity. In addition, the
structural flexibility between tandem GRF motifs suggests that
this domain can adapt to a variety of ssDNA conformations.

Results

GRF zinc fingers bind ssDNA and fork-like structures

The individual NEIL3 GRF motifs have been shown to bind
ssDNA (28), but the DNA binding specificity of the tandem

GRF domain (GRF12), has not been investigated. We purified
GST fusions (Fig. S1) of theMusmusculus (m)NEIL3 individual
GRF1 and GRF2 and tandem GRF12 proteins and used electro-
phoretic mobility shift assays (EMSAs) to probe DNA binding
to 40-mer ssDNA, dsDNA, and fork (splayed arm) DNA struc-
tures, the latter of which contained a 20-nt dsDNA region with
20-nt ssDNA arms. Each GRF construct bound ssDNA, but not
dsDNA (Fig. 1, A–C), consistent with previous results from
Xenopus laevis (x)NEIL3 (28). We also observed that the indi-
vidual and tandem GRF motifs bound fork DNA with an affin-
ity similar to that of ssDNA. Notably, the tandem GRF12 pro-
tein displayed 5–10-fold higher affinity for ssDNA and fork
DNA (apparent Kd = 10 nM) compared with the isolated GRF1
or GRF2 constructs (Kd,app = 50–100 nM). In addition, the
GRF12 domain showed only one major protein–DNA complex
band in EMSAs (Fig. 1A), whereas the individual GRF1 and
GRF2 motifs exhibited multiple protein–DNA bands indicative
of nonspecific binding at higher protein concentrations (Fig. 1,
B and C). Despite the appearance of the plotted data shown in
Fig. 1 (B and C), there is no statistically significant difference
between the affinities of GRF1 and GRF2 for either ssDNA or
forked DNA. In control experiments, neither purified recombi-
nant GST (Fig. 1D) nor a NEIL3 GST–NZF domain fusion (Fig.
1E) bound DNA with appreciable affinity. These results indi-
cate that the NEIL3 GRF12 domain binds ssDNAwith no appa-
rent specificity for a fork structure and that the tandem GRF
motifs bind with higher affinity and specificity than either GRF
motif alone.

[GST-GRF1], nM
0 200 400 600 800 1000

0.0

0.5

1.0

Fr
ac

tio
n 

bo
un

d

ssDNA
dsDNA
fork

Fr
ac

tio
n 

bo
un

d

[GST-GRF2], nM
0 200 400 600 800 1000

0.0

0.5

1.0

ssDNA
dsDNA
fork

Fr
ac

tio
n 

bo
un

d

ssDNA
dsDNA
fork

[GST-GRF12], nM
0 10 20 30 40 50

0.0

0.5

1.0

A

B

C

E

D

0 50 10
0

50
0

10
00

10
00

0
0 50 10

0
50

0
10

00
10

00
0

0 50 10
0

50
0

10
00

10
00

0

ssDNA dsDNA fork

DNA

protein•DNA

well
[GST-GRF1] (nM)

0 50 10
0

50
0

10
00

10
00

0
0 50 10

0
50

0
10

00
10

00
0

0 50 10
0

50
0

10
00

10
00

0

ssDNA dsDNA fork

DNA

protein•DNA

well
[GST-GRF2] (nM)

0 50 10
0

50
0

10
00

10
00

0
0 50 10

0
50

0
10

00
10

00
0

0 50 10
0

50
0

10
00

10
00

0

ssDNA dsDNA fork

DNA

protein•DNA

well
[GST-NZF] (nM)

0 50 10
0

50
0

10
00

10
00

0
0 50 10

0
50

0
10

00
10

00
0

0 50 10
0

50
0

10
00

10
00

0

ssDNA dsDNA fork

DNA

protein•DNA

well
[GST] (nM)

ssDNA dsDNA fork
***

2.
5

5 10 25 5002.
5

5 10 25 5002.
5

5 10 25 500

DNA

protein•DNA

well
[GST-GRF12] (nM)

Figure 1. NEIL3 GRF motifs bind ssDNA. A–E, EMSAs for mNEIL3 ZF motifs binding to ssDNA, dsDNA, and splayed arm (fork). Gels in A–C are quantified in
the plots to the right. The data aremeans6 S.D. for n = 3 replicates. A, GST–GRF12. B, GST–GRF1. C, GST–GRF2.D, GST control. E, GST–NZF.
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Structural basis for ssDNA binding by the NEIL3 GRF domain

To shed light on the basis for cooperative DNA binding by
the GRF12 domains, we crystallized and determined a 2.6 Å
crystal structure of human (h)NEIL3 GRF12 domain using sin-
gle-wavelength anomalous dispersion at the zinc edge (Fig. 2A
and Fig. S2). The final model, which contains twoGRF12 proto-
mers per asymmetric unit, was refined to a crystallographic re-
sidual of 22.7% (Rwork) and 26.6% (Rfree) with reasonable statis-
tics (Table 1). The structure resembles a butterfly, in which two
side-by-side GRF motifs are joined by a three-residue flexible
linker and oriented in a head-to-tail fashion, with the zinc-
binding loops on opposite corners of the molecule (Fig. 2A).
Each GRF forms a crescent-shaped structure composed of a
three-stranded b-sheet with a CHCC-type zinc finger on one
end and a 7–10-residue loop on the other. The concave surfaces
of both GRF1 and GRF2 contain a preponderance of basic resi-
dues (Fig. 2B), several of which have been shown to bind DNA
in xNEIL3 and xAPE2 (28, 39). In NEIL3 GRF12, the concave
surfaces face outward and form a continuous surface that likely
binds DNA (Fig. 2B). The relative orientation between the
GRF1 and GRF2 motifs is different in the two protomers in the
asymmetric unit, indicating a large degree of flexibility between
them that could accommodate different DNA conformations
(Fig. 2C).
The structures of GRF1 and GRF2 are virtually identical,

with an RMSD of 0.89 Å for all atoms (Fig. 2D). In addition,
bothNEIL3-GRFs are similar to that of xAPE2, with RMSD val-
ues of 0.86 Å (GRF1) and 0.60 Å (GRF2) for all atoms (Fig. 2E).
The positions of GRF1/GRF2 residues Arg517/Lys563, Lys521/

Lys567, and Phe530/Phe576 correspond to the DNA binding resi-
dues in xAPE2 (Arg473, Lys477, and Phe486) (39) (Fig. 2, D–F).
We validated the importance of these residues for DNA bind-
ing by mutating each of the corresponding residues in
mNEIL3–GRF proteins to glutamate and quantifying DNA af-
finity in solution by fluorescence anisotropy. Individual gluta-
mate substitutions were made in GST–GRF1 or GST–GRF2
fusion proteins. WT GST–GRF1 and GST–GRF2 bound to 40-
mer ssDNA with Kd values of 0.3 6 0.04 and 0.4 6 0.06 mM,
respectively, and the GST tag alone showed no binding (Fig.
2G). Glutamate substitution of either mNEIL3 Arg518 or Lys522,
which correspond to hNEIL3 Arg517 and Lys521, or mNEIL3
Lys568, which corresponds to hNEIL3 Lys567, completely abro-
gated DNA binding in the individual GST–GRF1 and GST–
GRF2 proteins (Fig. 2G). The lack of binding by the GRF1
K522E mutant is consistent with that shown previously by the
corresponding mutant (K500E) in an xNEIL3 MBP-GRF1 con-
struct (28). We next tested binding of a K522E/K568E double
mutant in GRF12 that had the GST tag removed (Fig. 2H). WT
GRF12 bound the 40-mer ssDNA with a Kd value of 0.26 0.01,
whereas the double mutant showed at least 100-fold reduced
DNA binding affinity. Thus, the continuous concave surface of
the GRF12 domain is likely themain DNA-binding site.
A Dali search for structural homologs identified the GRF-

like zinc ribbon (ZR) motifs in Escherichia coli topoisomerase I
(TopI) in addition to that of APE2 (45, 46). NEIL3, APE2, and
TopI all contain similar GRF–ZF or GRF-like ZRmotifs at their
extreme C terminus (Fig. 3A). TopI contains five ZR motifs,
four of which bind ssDNA in linear fashion (45) (Fig. 3B). Like
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NEIL3–GRF12, the TopI–ZR1–5 motifs are highly similar to
one another, are joined by flexible linkers, and present a contig-
uous DNA-binding surface. This similarity suggests that NEIL3
will bind to ssDNA across the two GRF motifs in a similar way.
TheNEIL3–GRFs aremost similar to TopI–ZR1 (RMSD= 1.86
Å for backbone atoms), although all five TopI–ZRs have the
same general GRF-like architecture (Fig. 3C). TopI–ZR1 inter-
acts with ssDNA by an arginine that corresponds to Arg517/
Lys563 in hNEIL3, as well as several aromatic residues from the
b strands, including Phe616, which corresponds to Phe530/
Phe576 in hNEIL3 (Fig. 3D). TopI–ZR3, –ZR4, and –ZR5 show
similar interactions, whereby the arginine side chains contact
the deoxyribose-phosphate backbone and a phenylalanine or
tyrosine at the center of the concave cleft stacks against the
nucleobases (Fig. 3, C and D). Despite the wide variety of rela-
tive orientations between consecutive ZRs, the ssDNA binds
TopI in a linear fashion with two or three nucleotides per ZR.
To gain insight into the footprint of ssDNA across NEIL3–
GRF12, we used fluorescence anisotropy to monitor binding to
ssDNA of various lengths from 10 to 40 nucleotides (Fig. 3E).
We observe a correlation in binding affinity and DNA length
and a clear distinction in binding affinities between 20 and 30
nucleotides. The calculated Kd values (in mM) are 1.86 0.3 (10-
mer), 1.3 6 0.2 (20-mer), 0.4 6 0.1 (30-mer), and 0.2 6 0.01
(40-mer). A stoichiometric binding experiment with 40-mer
ssDNA revealed saturation of binding at a GRF12:DNA ratio of
8:1, which corresponds to five nucleotides per GRF12, consist-
ent with the two or three nucleotides bound to each TopI ZR
motif (Fig. 3F).

The GRF domain inhibits NEIL3 glycosylase activity

TheGRF–ZF of APE2 andGRF-like ZR domains of TopI and
human topoisomerase III have been shown to enhance catalytic
activity (39, 41–43).We therefore investigated whether the tan-
demGRFmotifs have an impact onNEIL3 DNA glycosylase ac-
tivity. We first tested the effect of the GRF DNA binding muta-
tions on ICL unhooking activity by full-length mNEIL3 under
single-turnover conditions. We compared WT protein against
a K522E/K568E double mutant (GRFmut) and a GRF12 deletion
mutant (DGRF) (Fig. 4A). We previously found that the
mNEIL3–GD is able to unhook AP-ICLs at forks only when the
AP site is on the strand corresponding to the leading-strand
template (17). Here, we found that the full-length protein has
the same specificity. We saw no unhooking of the lagging-
strand AP-ICL substrate (Fig. 4B) but observed both unhooking
and AP lyase activity when NEIL3 was incubated with the lead-
ing-strand AP-ICL substrate (Fig. 4C). Interestingly, both the
GRFmut and DGRF mutants showed significantly faster ICL
unhooking kinetics relative to the WT protein (Fig. 4D), sug-
gesting an autoinhibition of ICL unhooking activity by the GRF
domain.
Because the mNEIL3–GD has base excision activity on its

own (8, 17), we tested the mechanism by which the GRF–ZF
inhibits catalytic activity by adding the purified GRF12 domain
in trans to mNEIL3–GD enzymatic reactions containing
ssDNA and fork substrates harboring a single DHT residue
(Fig. 5A). Compared with reactions that contained no GRF12
protein, the presence of an equimolar amount of GRF12 caused
a severe reduction in DHT excision kinetics (Fig. 5B). To test
whether this reduction of enzymatic activity was caused by
competition of GD and GRF binding to the DNA substrate, we
performed the same reaction with the GRF12 K522E/K568E
double mutant (GRF12mut). The addition of GRF12mut did not
inhibit the reaction (Fig. 5B), indicating that the presumed
DNA-binding surface of GRF12 inhibits base excision by the
glycosylase domain.
The same preference that exists for AP-ICLs on the leading

template strand of forks also exists for DHTmonoadducts (17).
Unlike with ICL forks, however, mNEIL3–GD retains a low
level of activity for monoadducts on the lagging-strand tem-
plate (17). We therefore tested whether GRF DNA binding
would affect this specificity by altering the relative activities for
forks containing a monoadduct on the leading versus the lag-
ging strand (Fig. 5C). Similar to the result with ssDNA, the
addition of GRF12, but not GRF12mut, caused the same inhibi-
tion of glycosylase activity against both DHT fork substrates,
indicating that the GRF domain has no effect on the preference
for leading-strand damage at forks (Fig. 5C).

Discussion

GRF–ZFs are ssDNA-binding elements present at the C-ter-
minus of several DNA repair enzymes (39, 45). We show here
that the GRF domain of NEIL3 is similar in structure and
ssDNA-binding properties to the GRF-like motifs of metazoan
APE2 and bacterial TopI. However, unlike APE2 and TopI, in
which GRF ssDNA binding enhances activity of the catalytic
domains (39, 41–43), we find that the NEIL3 GRF–ssDNA

Table 1
Data collection and refinement statistics. The data were generated
from a single crystal

Zn-SAD Native

Data collection
Space group I4 I4
Cell dimensions
a, b, c (Å) 93.608, 93.608, 63.718 93.494, 93.494, 63.646
a, b, g (°) 90.00, 90.00, 90.00 90.00, 90.00, 90.00

Wavelength 1.27059 1.0000
Resolution (Å)a 2.80 (2.85–2.80) 2.60 (2.64–2.60)
Rsym

a 0.056 (0.727) 0.038 (0.656)
Rmeas

a 0.060 (0.799) 0.043 (0.742)
Rpim

a 0.022 (0.326) 0.020 (0.344)
CC1/2 0.810 0.840
I/sIa 30.8 (2.2) 31.4 (2.0)
Completeness (%)a 99.9 (99.7) 99.8 (100.0)
Redundancya 7.4 (5.9) 4.5 (4.6)

Refinement
Resolution (Å)a 34.95–2.60 (2.70–2.60)
No. reflectionsa 7550 (469)
Rwork/Rfree

a 0.227/0.266 (0.271/0.306)
No. atoms
Protein 1332
Solvent 0

B-factors
Protein 51.9
Solvent

RMSDs
Bond lengths (Å) 0.003
Bond angles (°) 0.675

Ramachandran plot (%)
Favored 89.9
Allowed 10.1
Outliers 0

aNumbers in parentheses refer to data in the highest-resolution shell.
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uponmutation are highlighted yellow, and DNA interacting residues in the TopI structure are green. Asterisksmark the highest conservation amongDNA-bind-
ing positions. E, DNA binding of mNEIL3 GRF12 to ssDNA of varying lengths. Total [DNA] used was 25 nM. The data are means6 S.D. (n = 3). F, stoichiometry of
binding of GRF12 to 40-mer ssDNA. Total [DNA] = 5.05 mM (� Kd). The inflection point in the titration curve fits to [GRF12] = 40 mM, which equals an 8:1 GRF12:
DNAmolar ratio.
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interaction inhibits both base excision and ICL unhooking ac-
tivity in vitro. Based on the nanomolar ssDNA binding affinity
of the tandem GRFs and the requirement for ssDNA in NEIL3
substrates (8, 17, 27), we hypothesize that the GRF and glycosy-
lase domains compete for the ssDNA substrate. Indeed, when
we introduced point mutations that ablate GRF–ssDNA bind-
ing, we rescued glycosylase activity. An alternative possibility is
that the GRF12 domain interacts in cis with the NEIL3–GD to
modulate its activity. Indeed, protein structures that mimic
ssDNA binding to APE2 have been observed in the X-ray struc-
ture of the APE2 helix–GRF domain region, suggesting that
GRF–ssDNA binding could be regulated by GRF protein–pro-
tein interactions (39, 41–43). We propose that the GRF domain
endows NEIL3 with a specificity for ICL-stalled replication
forks and a variety of other complex environments through its
interactions with DNA and othermacromolecules.
The C-terminal ZF domains of NEIL3 aid in the recruitment

of NEIL3 to replication forks that have converged at an ICL
(28). The NZF domain interacts with ubiquitinylated CMG
helicase, and the GRF domain enhances the interaction, likely
by interacting with ssDNA on the lagging-strand template (28).
In those studies, disrupting the GRF–ssDNA interaction via
mutagenesis resulted in loss of ICL unhooking by NEIL3 in
Xenopus egg extracts, but not in vitro, consistent with the
GRF–DNA interaction being important for the recruitment of
NEIL3 to converged forks. Because we now find that disruption
of the GRF–ssDNA interaction increases glycosylase activity
on a simple ICL fork substrate in vitro, it is likely that at con-
verged forks in the cell, the GRF domain is bound to ssDNA
away from the lesion so it does not interfere with glycosylase
domain access. The other interactions between NEIL3 and the
replisome, such as NZF and ubiquitylated CMG, would direct
the manner in which NEIL3 is positioned. The autoinhibition
of NEIL3 activity in vitro also suggests that the GRF domain
may regulate catalytic activity prior to recruitment to con-
verged forks, as a means of avoiding spurious strand cleavage
on ssDNA present during replication.
We find that two tandem GRF motifs provide enhanced and

more specific binding to ssDNA than each individual GRF
motif alone. In addition, the different relative configurations of
GRF1–GRF2 motifs observed between the two crystallographi-
cally unique molecules in the structure suggest an overall flexi-
bility of the tandem GRF12 domain that may promote binding

to ssDNA in different contexts or broaden the conformations
that can be sampled upon binding. For example, the C-termi-
nus of NEIL3 plays a role in recruitment of the protein to telo-
meric damage (20), which is a different DNA environment
from converged replisomes. This flexibility may also provide
opportunities for the GRF to interact with protein partners.
Interestingly, GRF2 contains putative ubiquitylation sites that
may aid in such protein–protein interactions. NEIL3 interac-
tions with PCNA, FEN1, TRF1, and CMG have been reported
(20, 28). There are likely others, especially given that NEIL3 has
been associated with roles outside of replication, including cell
signaling, immunity, pulmonary function, myocardial infarc-
tion, and ischemic stroke (1, 47–60).

Experimental procedures

Protein purification

The mNEIL3 gene in pET30a was provided by S. Doublié
(University of Vermont) (12). The C-terminal His6 tag was
replaced with a FLAG tag by a Q5 site-directedmutagenesis kit.
Protein was expressed in E. coli BL21 RIL cells in LB medium
supplemented with 100 mM ZnSO4 by induction with 250 mM

IPTG overnight at 16 °C. The cells were lysed in 20 mM Tris-
HCl, pH 8.0, 300 mM NaCl, 15% glycerol, 0.1% NP-40, 1 mM

phenylmethylsulfonyl fluoride, 1 mM leupeptin, and 5 mM

b-mercaptoethanol (bME). Lysate was centrifuged at 20,0003
g for 30 min, and supernatant was collected. Anti-FLAG beads
were incubated with the supernatant for 2–4 h at 4 °C. The
beads were isolated by centrifugation and washed three times
with 20 mM Tris-HCl, pH 8.0, 600 mM NaCl, 15% glycerol, 0.05
mM TCEP, and 0.1% NP-40. Protein was eluted with 134 mM

FLAG peptide in 20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 15%
glycerol, 0.05 mMTCEP, and 0.1%NP-40 for 15min at 4 °C.
Nucleotides encoding mNEIL3–GD (residues 1–282) and

containing a C-terminal His6 tag was expressed from pET30a
in E. coli BL21(DE3) Star cells by autoinduction as previously
described (12). The cells were lysed in buffer A (20 mM Tris-
HCl, pH 8.0, 300 mM NaCl, 10% glycerol, 5 mM bME) contain-
ing 20 mM imidazole, 1 mM leupeptin, and 1 mM pepstatin A.
Lysate was incubated with Ni-NTA (Thermo Scientific) beads
for 30 min at 4 °C. Protein was eluted using a 20–500 mM imid-
azole gradient in Buffer A. Fractions were pooled, diluted to 75
mM NaCl in buffer B (40 mM HEPES-NaOH, pH 7.0, 10%
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glycerol, and 5 mM bME), and dialyzed at 4 °C overnight. Pro-
tein was loaded onto a heparin–Sepharose (GEHealthcare) col-
umn, washed, and eluted with an NaCl gradient (0–1 M) in
Buffer B. The fractions were pooled, diluted to 500 mM NaCl in
buffer B, and loaded onto a HiLoad 26/600 Superdex 200 size-
exclusion column (GE Healthcare). The protein was eluted in
20 mMHEPES-NaOH, pH 7.0, 100mMNaCl, 1 mM TCEP, con-
centrated, and frozen.
Nucleotides encoding mNEIL3 GRF1 (residues 506–549),

GRF2 (residues 550–595), tandem GRF12 (residues 506–595),
andNZF (residues 319–353) proteins were cloned into pBG101
(Vanderbilt Center for Structural Biology), which produces an
N-terminal His6–GST fusion protein that can be cleaved by rhi-
novirus 3C protease. Proteins were expressed in E. coli BL21
RIL cells in LB medium containing 10 mM ZnSO4 by induction
with 250 mM IPTG overnight at 16 °C. The cells were lysed in
buffer containing 50 mM Tris-HCl (pH 8.0 for GRF1, pH 7.0 for
GRF2, or pH 7.5 for GRF12 and NZF), 500 mM NaCl, 15% glyc-
erol, 0.5 mM TCEP, 0.02% NP-40, 1 mM leupeptin, and 1 mM

pepstatin A. Lysate was incubated with Ni-NTA (Thermo Sci-
entific) beads for 30 min at 4 °C. The beads were washed with
20 mM imidazole, and protein was eluted with 500 mM imidaz-
ole in buffer C (50 mM Tris-HCl, 500 mM NaCl, 15% glycerol,
0.5 mM TCEP) supplemented with 0.02% NP-40. Imidazole was
diluted to less than 200 mM, and protein was incubated over-
night at 4 °C with GSH–Sepharose resin (Thermo Scientific) in
buffer C with 0.02% NP-40. GSH beads were washed with
buffer C and 0.02% NP-40, and protein was eluted with 10 mM

reduced GSH in buffer C with 0.01% NP-40. The protein frac-
tions were pooled and concentrated. At this stage the purified
His6–GST fusions were either stored for use in EMSAs or
dialyzed into buffer C and cleaved by 3C protease. The
His6–GST tag was removed with Ni-NTA in buffer C con-
taining 15–20 mM imidazole. GRF protein was concentrated
and stored in buffer C. GRF1-R518E, GRF1-K522E, GRF2-
K568E, and GRF12-K522E-K568E (GRFmut) point mutants
were generated using a QuikChange (Agilent) mutagenesis
kit and purified the same as theWT proteins.
Human NEIL3 GRF12 for crystallization (residues 501–605)

was cloned into pMCSG9 by ligation-independent cloning to
produce a His6–MBP–TEV–GRF construct. For expression,
plasmid was transformed into BL21AI cells and grown in ter-
rific broth to an A600 of 0.8. The cells were induced with 20% L-
arabinose, 50 mM ZnSO4, and 100 mM IPTG and grown over-
night at 16 °C. For purification, the cells were resuspended in 50
mM Tris, pH 8.0, 500 mM NaCl, 1 mM TCEP, 0.1 g of lysozyme,
and protease inhibitor tablet (Roche). The cells were lysed and
centrifuged. Lysate was added to amylose resin, flow-through
was collected, and resin was washed with the above buffer fol-
lowed by 50 mM Tris, pH 8.0, 1 M NaCl, and 1 mM TCEP. Salt
was dropped to 150 mM NaCl, and protein was eluted with 50
mM Tris, pH 8.0, 150 mM NaCl, 1 mM TCEP, and 10 mM malt-
ose. Elutions were collected, incubated with TEV protease, and
subjected to heparin–Sepharose chromatography with a 0.05–
1.0 MNaCl gradient in 20mMTris, pH 8, and 1mMTCEP. Frac-
tions were pooled and run over a HiLoad 16/600 Superdex 75
(GE Healthcare) size-exclusion column in 10 mM Tris pH 8,

100 mM NaCl, and 1 mM TCEP, and protein was concentrated
to 10mg/ml.

X-ray crystallography

Crystals of hNEIL3 GRF12 were obtained by sitting-drop
vapor diffusion at 20 °C by mixing the protein solution with
0.1 M Tris, pH 8.5, and 25% PEG 6000. The crystals were cryo-
protected in 20% ethylene glycol. X-ray diffraction data from a
single crystal were collected at 105 K on Beamline 22-ID of the
Advanced Photon Source and processed with HKL2000 (61).
Phasing and refinement was carried out using the PHENIX
suite of programs (62). The structure was determined by SAD
phasing from 2.8 Å anomalous data collected at the zinc edge
(1.27059 Å) using AutoSol and Phaser. An initial model was
built using side chain–truncated APE2 GRF residues 461–508
from PDB 5U6Z as a guide and the Zn-SAD electron density,
followed by manual building of the remainder of the model in
Coot (63). The model was refined against 2.6 Å native data col-
lected at 1.0000 Å wavelength. The final model was validated
with MolProbity (64) and contained no residues in disallowed
regions of the Ramachandran plot. Refinement and validation
statistics are shown in Table 1. Structures were analyzed and
figures made using PyMOL (Schrödinger). All software was
curated by SBGrid (65).

Electrophoretic mobility shift assays

Oligonucleotides used in EMSAs are shown in Table S1. His-
GST fusions of mNEIL3 GRF and NZF constructs (0–10 mM)
were incubated with 10 nM 6-carboxyfluorescein (FAM)–la-
beled DNA for 30 min at 21 °C in 20 mM HEPES, pH 6.6, 100
mM NaCl, 5 mM MgCl2, 3% (v/v) glycerol, 0.2% (v/v) NP-40,
and 0.5 mM TCEP. The samples were separated by electropho-
resis on a 5% polyacrylamide/0.53 TBE gel at 200 V for 1 h.
The gels were imaged using a Typhoon Trio variable mode
imager (GE Healthcare) at 532-nm excitation and 526-nm
emission wavelengths. Band intensities were quantified
using Gel Analyzer and plotted using GraphPad Prism 8.

Fluorescence anisotropy

DNA binding ofWT andmutant GRF constructs weremoni-
tored by fluorescence anisotropy. For Kd determination, pro-
teins at varying concentration were incubated with 25 nM
FAM-labeled ssDNA (Table S1) in 20 mM HEPES, pH 7.0, 100
mM NaCl, 5 mM MgCl2, 3% glycerol, and 0.5 mM TCEP at 4 °C
in the dark for 30 min. To determine stoichiometry of binding,
50 nM FAM-labeled and 5 mM unlabeled 40-mer ssDNA was
used so that the total DNA concentration was over 20-fold
excess of theKd. Fluorescence anisotropy data at excitation and
emission wavelengths of 485 and 528 nm were collected at
room temperature in 96-well plates using a BioTek Synergy H1
plate reader. The data were fit to a two-state binding model
using GraphPad Prism 8.

Glycosylase activity assays

DNA substrates containing an AP-ICL or DHT were pre-
pared as previously described (17). Both AP-ICL unhooking
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and DHT excision assays were performed under single-turn-
over conditions, whichwas verified by confirming that the reac-
tion rates remained constant at higher enzyme:DNA ratios.
AP-ICL unhooking reactions were performed at 25 °C and con-
tained 250 nM full-length mNEIL3 or deletion mutants and 25
nM FAM-labeled DNA in glycosylase buffer (20 mM HEPES-
NaOH, pH 7.0, 100 mM NaCl, 5% glycerol, 1 mM DTT, and 10
mg/ml BSA). The reactions were stopped by the addition of 10
mM EDTA, 80% (v/v) formamide at 70 °C for 5 min and run on
precast 10% TBE/urea gels (Invitrogen) at 180 V in 0.53 TBE
buffer. Base excision activity of mNEIL3–GD in the presence of
purified GRF12 proteins was carried out by mixing 10 mM

mNEIL3–GD with 10 mM or either GRF12 or GRF12mut, fol-
lowed by incubation at 25 °C with 50 nM FAM-labeled DHT-
containing DNA in glycosylase buffer. Reactions were stopped
by the addition of 0.1 N NaOH and 10 mM EDTA, 80% (v/v)
formamide and heated at 70 °C for 5 min. Band intensities were
quantified using gel analyzer and plotted with one-phase asso-
ciation exponential fit using GraphPad Prism 8.

Data availability

Atomic coordinates and structure factors for the hNEIL3-
GRF12 crystal structure have been deposited in the Protein
Data Bank under accession code 7JL5. All other data are con-
tained within the article.
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