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Much of our understanding of the spatial organization of and
interactions between cellular organelles and macromolecular
complexes has been the result of imaging studies utilizing either
light- or electron-based microscopic analyses. These classical
approaches, while insightful, are nonetheless limited either by
restrictions in resolution or by the sheer complexity of generat-
ing multidimensional data. Recent advances in the use and
application of X-rays to acquire micro- and nanotomographic
data sets offer an alternative methodology to visualize cellular
architecture at the nanoscale. These new approaches allow for
the subcellular analyses of unstained vitrified cells and three-
dimensional localization of specific protein targets and have
served as an essential tool in bridging light and electron correla-
tive microscopy experiments. Here, we review the theory,
instrumentation details, acquisition principles, and applications
of both soft X-ray tomography and X-ray microscopy and how
the use of these techniques offers a succinct means of analyzing
three-dimensional cellular architecture. We discuss some of the
recent work that has taken advantage of these approaches and
detail how they have become integral in correlative microscopy
workflows.

Understanding the three-dimensional spatial organization of
inter- and intracellular components is paramount in elucidat-
ing their function in both healthy and diseased states. Modern
microscopy has evolved from a disparate array of isolated tech-
niques to a cohesive toolbox of imaging approaches that rou-
tinely allow the visualization of proteins of interest, dynamic
events, and how changes in cellular morphology andmacromo-
lecular structure affect physiology. However, despite the unique
insights enabled by these approaches, limitations in each imag-
ing modality, along with the increasing desire to generate data
from a near-native state with limited perturbation, have led to
the need for and development of new approaches and correla-
tive techniques.
Light microscopy approaches are widely available and rela-

tively simple and have enabled significant insights into cellular
organization. This vast array of imaging modalities, spanning
from brightfield transmitted light microscopy to superresolu-
tion fluorescence nanoscopy, provide tremendous flexibility in
the analyses of cellular and subcellular morphology. Three-
dimensional light microscopy is routinely performed through

the use of confocal (1–3), light-sheet (4), andmultiphoton (5, 6)
approaches. These techniques are, by necessity, dependent on
either fluorescent reporter probes or the presence of intrinsic
signals, such as autofluorescence or harmonic signal generation
(7). As such, signals obtained from these imaging experiments
are limited to visualizing structures that are either “tagged” or
generate the intrinsic signals being measured, thus rendering
the remainder of the cell invisible.
EM is routinely used to explore the ultrastructural organiza-

tion of cells and tissues at nanometer or less resolution. As the
electron beam has a limited depth of penetration, volumetric
analyses have often proven to be complex, difficult, and time-
consuming. Typically, preparation of samples for transmission
EM (one of the most widely used ultrastructural imaging tech-
niques) involves a primary aldehyde fixation with a secondary
heavy metal fixation, infiltration into a resin support matrix,
and thin sections taken (50–100 nm), which can then be visual-
ized under the microscope. This methodology can be extended
to three dimensions using tilt-series tomography (8, 9) and se-
rial sectioning (10, 11), with such approaches being utilized to
study a wide array of tissues and cell types. These tomographic
techniques, however, are limited by sectioning precision and
the arduous alignment and processing steps, which can be very
time-consuming. More recently, scanning EM (SEM) has been
used to generate volumetric data. Specifically, serial block-face-
SEM (SBF-SEM) (12), array tomography (13), and the use of a
focused ion beam in conjunction with SEM (FIB-SEM) (14)
have all been used in nanotomography studies (15–18). Despite
improved acquisition speeds and automation options, SBF-
SEM and array tomography are limited by nonisotropic voxels,
having different dimensions in the x-y and z planes and thus
obfuscating volumetric analysis, whereas FIB-SEM is limited by
the small sample volumes that may be acquired (10–40 mm in
the z-plane).
In contrast, tomographic techniques that utilize X-rays,

including soft X-ray tomography (SXT) (19) and X-ray micros-
copy (XRM) have recently been shown to be an invaluable tool
in studying the spatial architecture of individual cells, as well as
the localization of specific proteins of interest within cells and
tissues. These approaches offer significant gains when com-
pared with EM, with hard X-rays capable of penetrating
through the entire organism and soft X-rays allowing single-
cell visualization of minimally perturbed native specimens,
without the need for contrast-enhancing agents. X-rays, with
their substantially shorter wavelengths, offer almost an order of*For correspondence: James A. J. Fitzpatrick, fitzp@wustl.edu.
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magnitude better resolution as compared with light micros-
copy, with more recent advances resolving objects down to 5
nm (20). Naturally, these resolutions are atypical of the vast
part of the work that has been done with the approach, with
muchmore objective values shown in Table 1. Nonetheless, the
use of X-rays on vitrified samples offers a nanotomographic
technique with preparation ease only matched by cryo-FIB sys-
tems (21–23), but with substantially higher acquisition speed.
Analyses of the mesoscale architecture and the ability to target
specific regions of whole tissues offer a bridge from the micro-
to the nanoscale, and X-ray–based microscopy has become a
vital step in correlative studies, linking multifluorophore mi-
croscopy with ultrastructural analyses. The cryopreservation
requirements of soft X-ray microscopy have expanded to
include cryo-light microscopy (24), whereas XRM has been
employed as a mapping tool to facilitate localization of regions
of interest in 3D nanotomography studies (25).

Soft X-ray tomography

Theory and instrumentation

On the electromagnetic spectrum, soft X-rays reside between
the extreme UV and X-ray bands, from 250 eV to several thou-
sand eV, corresponding to wavelengths of 5 nm to ;2 Å (26).
This range includes specifically well-defined L- and K-edges,
for identifying biologically relevant elements, such as carbon,
nitrogen, and oxygen. The so-called “water window” (Fig. 1C),
from the carbon K-edge at 284 eV (4.38 nm) to the oxygen K-
edge at 543 eV (2.34 nm), is of particular interest in biological
studies as it offers intrinsic contrast between water and protein
(27). Visualizing unstained cells and tissues at such energies
would thus lead to strong X-ray absorption bymacromolecules,
such as lipid membranes or intracellular organelles, with only
minimal attenuation by water molecules. Differences in the
absorption relate to a parameter termed the linear absorption
coefficient (LAC), whose constant values can be used to identify
specific intracellular structures (27). This property presents the
underlying principle of SXT, and it led to the development and
refinement of the technique over the past 30 years (28). Over
the past two decades, the use of SXT has expanded and, along
with concurrent advances in detection technologies, has
allowed for structural studies of samples, preserved in their
native states, which were previously inaccessible.

Like all microscopes, a soft X-ray microscope (SXM) is com-
prised of a source, a detector, and a means of driving the beam
to the sample (condenser) and focusing it to the detector
(objective). The X-ray source necessary for an SXM need not
be bright, but it does require a large photon flux (29). These
requirements have generally restricted SXM to facilities where
synchrotron radiation can be passed to low-emittance storage
rings, where a series of undulators or bending magnets allow
soft X-rays to be filtered and utilized for high-resolution experi-
ments (30, 31). The complexity and scale of synchrotron facili-
ties have kept SXM systems for biological samples to less than a
handful worldwide (32). At the moment, there are four such
facilities, including the Advanced Light Source at Berkeley, the
BESSY II in Berlin, the Diamond Light Source in the UK, and
ALBA in Barcelona. Smaller soft X-ray sources have been
developed over the past decade, using nitrogen or methanol
plasma (33, 34), with the aim of producing a soft X-ray source
suitable for a small laboratory. These sources, however, have
not seen wide adoption, mainly due to their lower flux and the
fact that unlike synchrotron radiation, plasma sources are not
continuous. As such, data generated by them results in lower
resolution and requires longer integration times.
SXM systems condense soft X-rays onto samples and collect

emission through diffractive elements called zone plates (29,
35). These plates are comprised of alternating concentric rings
of transparent and opaque “zones,” with the outermost zone
width (Drn) defining the maximum resolution of a system (Fig.
1B). Zone plate resolutions range from 60 to 25 nm (36, 37),
allowing imaging depths of up to 15 mm. While offering
enhanced resolution, zone plate use in soft X-ray microscopes
does pose some constraints on imaging experiments. First,
zone plates are very inefficient, with most of the radiation being
absorbed or diffracted, allowing roughly 10% through to the
sample (38). Second, acquisition geometry requires the objec-
tive plate to reside millimeters away from the sample, which
limits the usable energies of the microscope. Finally, the use of
zone plates has historically been an inflexible solution, as
changing of optics to alter resolution or imaging depth necessi-
tates the complete venting of the imaging chamber and careful
realignment of all optical elements (29). Recent efforts have
shown the utility of multiple microzone plates, thus allowing
for amore flexible, multiresolution approach (39).

Table 1
Comparison of imaging modalities
This comparison table shows the divergent approaches of generating tomographic data, focusing on resolution, speed of image acquisition, and average cost of instru-
ments (in thousands (k) and millions (M) of US dollars).

Technique
Resolution
(limits)

Imaging
time Fixation method

Staining
methods Protein labeling

Instrument cost
range References

Confocal microscopy ;200 nm Minutes Chemical/None Fluorescence Immunofluorescence $300k–500k 1, 2
Superresolution microscopy ;20 nm Minutes Chemical/None Fluorescence Immunofluorescence $750k–1M 124, 125
TEM ,1 nm Minutes Chemical/Vitrification Heavy metals Immunogold $750k–2M 8, 9, 126
SEM ,5 nm Minutes Chemical Heavy metals Immunogold $500k–1M 127
FIB-SEM ;5 nm Hours Chemical/Vitrification Heavy metals Ni-DAB $2M–4M 14, 128, 129
Cryo-TEM ;2 Å Days Vitrification None None $5M–10M1 101
Cryo-FIB ;5 nm Hours Vitrification None None ;$1M 21–23
XRM 80 nm Hours Chemical Heavy metals Ni-DAB $1M–1.5M 71
SXT 30 nm Minutes Vitrification None None Synchrotron cost:

$200M1; beam-
line cost: $2M–3M

29, 48, 123
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In contrast to the complex X-ray sources, soft X-ray micro-
scopes have modest requirements for detection. As soft X-rays
that pass through zone plates can be directly detected, there is
no need for scintillation material. Thus, simple, back-thinned
CCD cameras are sufficiently fast for data acquisition, and the
ability to modulate on-chip gain levels and binning make such
devices amenable for SXT imaging (Fig. 1A).
Among the chief advantages of SXT is that samples do not

need to be chemically fixed or stained with exogenous contrast-
ing agents. Such fixation protocols have been known to cause
numerous artifacts, including uneven fixation, formation of
aggregates, and morphological changes, such as dehydration
(40–42). Yeast in particular, as described below, are notoriously
unreceptive to chemical fixation, which results in dramatic
morphological changes when compared with vitrified cells (43).
As such, cells can be imaged in as close to their native states as
possible. X-ray radiation readily damages cells (44), and most
biological samples have to be vitrified to maintain their integ-
rity during imaging. It has been reported that reducing sample
temperatures to the cryogenic regime permits the acquisition
of more than 1000 images without any evidence of radiation
damage (45). Vitrification is typically achieved via plunge freez-
ing into a cryogen such as liquid ethane, much like the method
used in cryo-EM (46, 47), or by a cryogenic gas stream using
N2-cooled helium (48). SXT of cryo-preserved cells thus
requires the use of a cryo-stage to maintain the samples in a vit-
rified state. Depending on the vitrification approach and the

stage design, this may require the use of vacuum chambers (29).
Sample mounting is typically achieved by the use of either ca-
nonical-style TEM grids or custom glass capillaries, which pro-
vide the ability to visualize the samples from any rotational
angle (19, 37). To facilitate reconstruction, most experiments
employ gold bead fiducials, embedded on the exterior surface
of imaging capillaries (49).

Acquisition principles and parameters

A single SXM image is simply a projection image and has no
z-depth. Thus, an SXT data set requires the sequential acquisi-
tion of images over a range of angular increments. The size of
the specimen, along with resolution requirements and system
limitations, dictates the necessary parameters for an optimal to-
mographic reconstruction. As images in a tomographic acquisi-
tion are attained in the axis perpendicular to sample rotation,
and each reconstruction plane is independent of the rest, the
resolution of the final tomogram is equal to the resolution per-
pendicular to the planes (50). The minimum number of equally
spaced projection images required to generate a tomogram
with isotropic voxels that is collected over an angular range is
given by the Crowther criterion, n = pD/d, whereD is the sam-
ple diameter, and d is the spatial resolution (9, 50, 51). In prac-
tice, this means that for a 180° rotation, images would be
acquired at increments of 1–2°, equating to 90–180 individual
projection images (48).

Figure 1. Soft X-ray microscope design and principle. A, diagrammatic representation of a soft X-ray microscope. X-rays from a synchrotron source are
passed through a bend magnet and steered to the stage via a mirror. Fresnel zone plates are used as both the condenser and the lens. Vitrified samples are
mounted on a cryo-stage, and images are collected directly on an EMCCD. B, a Fresnel zone plate consists of radially symmetric rings, with the outermost ring
of the objective zone plate effectively determining the resolution of the system. C, K-absorption edges of carbon (284 eV) and oxygen (543 eV) form the “water
window,” at which energies water (red trace) is transparent but protein (black trace) can generate sufficient contrast for imaging.
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The manner in which the sample is mounted to the imaging
stage plays a vital role in an instrument’s ability to generate
complete tomograms. SXM systems that use flat TEM-style
grids are limited to tilts of 670° (32) by the short working dis-
tance of the objective zone plate, which presents several disad-
vantages. First, the inability to rotate the sample to 180° results
in the “missing wedge” problem, where there are insufficient
data to generate a complete tomogram (49, 51). Flat grids,
when rotated through an imaging beam, will have a variable
cross-section of vitreous ice, with thicker sections at the limits
of tilt (49). This variance results in an inability to consistently
measure and corelate the LAC to specific intracellular struc-
tures. In contrast, using the glass capillary approach allows for a
full 360° rotation, which in turn resolves the “missing wedge”
problem (48). Unlike flat grids, however, the capillarymounting
approach is generally incompatible with adherent cell types
(52).
Among the main advantages of soft X-ray tomography is the

sheer speed of data acquisition. Due to the high-intensity syn-
chrotron sources used, and the relatively thin samples typically
imaged, acquisition rates are on the order of 5–10 frames/s (19,
48). This allows an entire tomography data set to be acquired
on the order of 20 min, significantly improving throughput and
facilitating the use of high degrees of automation in some sys-
tems (32).

Applications of soft X-ray tomography

SXT has evolved into an important tool for studying subcel-
lular structures that have otherwise been inaccessible or diffi-
cult to assay. One such structure is the eukaryotic nucleus,
whose spatial organization has been recently linked to themod-
ulation of gene expression (53, 54) as well as the development
of various cancers (55–57). The resolution requirements and
central location of the nucleus have, however, made topological
analyses difficult. SXT has allowed the exploration of the rela-
tionship between the spatial organization and function of the
nucleus in a minimally perturbed manner. In one particularly
impressive study, Lomvardas and colleagues (58) illustrated
that the preferential expression of a specific olfactory receptor
gene over others was due to the protein’s proximity to the nu-
clear envelope, and such spatial organization may underlie
monogenic gene expression. A more recent study utilized the
SXT approach to explore the organization of chromatin in pri-
mary hematopoietic cells, revealing that both the amount of
euchromatin and the spatial organization of heterochromatin
govern the transition between pluripotent and progenitor cell
states (59).
The ultrastructure of yeast cells has been difficult to study,

largely due to the thick cell wall, which prevents effective chem-
ical fixation. Stripping of the cell wall leads to denaturation,
altering the subcellular ultrastructure from the native state.
High-pressure freezing and subsequent freeze substitution
processing methods are effective, but time-consuming, and are
ultimately limited by the data acquisition approaches. Further-
more, the divergent imaging approaches employed have con-
tributed significant amounts of data regarding different yeast
species yet have offered limited understanding of the three-

dimensional architecture. Saccharomyces cerevisiae, specifi-
cally, has been studied using SEM (Fig. 2A (43)), TEM (Fig. 2B
(43)), and FIB-SEM (Fig. 2C (60)). Whereas SEM is particularly
well-suited to topographical analysis of the the outer cell well, it
offers no insight into interior organelle structure. TEM, con-
versely, offers the best imaging resolution, at the expense of
understanding three-dimensional organization. FIB-SEM pro-
vides excellent resolution and the ability to generate nanoto-
mographic data, but long processing times and imaging have
hindered these efforts. SXT has proven to be instrumental in
overcoming these barriers and elucidating the internal meso-
scale organization of several yeast species, including S. cerevi-
siae and Schizosaccharomyces pombe. Larabell and colleagues
at the Advanced Light Source, who have been at the forefront
of this area and pioneered the development of SXT, have, in a
series of studies, beautifully shown the morphology, density,
and organization of nuclei, mitochondria, and lipid droplets in
yeast species at resolutions down to 60 nm, while imaging over
the span ofminutes, rather than hours (Fig. 2D) (19, 61–64).
The ability to study the three-dimensional organization of

cells at nanoscale resolution using SXT has also been leveraged
to elucidate the manner in which certain pathogenic microor-
ganisms interact with eukaryotic cells. Using this approach, the
structure of enveloped vaccinia virions and the localization of
high-density regions, such asmembrane-bound compartments,
have been extrapolated (65). More recently, studies have identi-
fied endoplasmic reticulum membrane alterations that are
associated with hepatitis C, showing colocalization between
endoplasmic reticulum protrusions and viral RNA (66), as well
as demonstrated that the initiation of herpes simplex type 1
infection evokes the generation of channels within the host nu-
cleus that facilitate viral egress (67). These and other studies
have demonstrated the ability of SXT to assay previously unde-
tected or underappreciated cellular phenomena.

X-ray microscopy

Despite the obvious advantages of SXT in terms of resolution
and the visualization and localization of complex intracellular
structures in near-native state, the technique requires high
photon flux, which limits it to synchrotron X-ray sources and
low X-ray energies, which are required to access the “water
window,” which restricts the thickness of samples to 10–20
mm. Imaging much larger samples, such as whole organs or an
intact embryo, is simply not feasible. Furthermore, whereas
LACmeasurements can be instrumental in identifying intracel-
lular structures, labeling target proteins with specific stains
allows for increased precision in identifying and localizing such
targets. XRM, which utilizes a table-top hard X-ray source
(.10 keV), along with different modes of magnification, offers
the ability to perform such experiments.

Instrumentation

Micro-CT sources are relatively compact, comprised of an
electron gun (cathode) focused on a metal target (anode) typi-
cally made of tungsten or copper, housed in an evacuated
chamber. The X-ray intensity is related, in a linear fashion, to
the current output to the cathode, whereas the potential
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difference between the cathode and anode dictates the energy
of the emitted X-rays (68). This architecture permits the inde-
pendent adjustment of both parameters, thus providing an
extremely flexible imaging source. The geometrically divergent
beam passes through the sample, which is typically mounted on
a stage that has a large three-axis translational range and can
rotate6180°, and is then detected (69).
Standard micro-CT instruments (Fig. 3A) suffer from a fun-

damental limitation, in that due to the divergence of the beam,
the magnification geometry is solely dependent on the ratio of
the source-to-sample and sample-to-detector distances. This is
significant, as high-resolution can only be achieved when the
sample is located as close to the source as possible. This has the
consequence of limiting the range of sample motion and
restricts the size of a sample that can be easily imaged. Detec-
tion is performed either via a flat panel detector (which is typi-
cal in micro-CT) or via a set of high-numerical aperture objec-
tives that incorporate a scintillation layer in their front
elements to convert impinging radiation into visible photons,
which are subsequently detected via an electron-multiplied
CCD (EMCCD) camera (Fig. 3B) (70). This offers a secondary,
optical magnification factor, allowing for what is termed “reso-
lution at a distance,” or RaaD. This allows for substantially

greater flexibility in the geometrical setup of an experiment,
while still maintaining high resolution over a much larger range
of sample sizes (71).

Contrast agents

In contrast with SXT, which utilizes the “water window” to
image intrinsic contrast differences between subcellular com-
partments, attenuating the hard X-rays in XRM requires ele-
ments of higher atomic number. Thus, visualizing nonmineral-
ized soft tissues and cells necessitates the use of exogenous
contrast-enhancing staining agents. Such agents are usually
comprised of heavy metal–based solutions, such as osmium te-
troxide (72, 73), phosphotungstic acid (Fig. 3D) (72–74), phos-
phomolybdic acid (74), and various iodine-based solutions,
including ethanol- (I2E), methanol- (I2M), or water-based (I2KI,
Lugol’s) (75). The latter has become particularly prominent due
to its ease of use, low toxicity, cost efficacy, and reversibility
and its systemic, yet differential, staining of most tissues.
Lugol’s iodine (Fig. 3C) has thus been used to study a variety of
samples, including murine embryos (76) and internal organs
(77), neural tissues (78–80), andmuscle (81–84).
Whereas soluble, nonspecific stains offer ease of use and an

ability to visualize all tissues within a given sample, directing

Figure 2. Comparison of imaging techniques used for analyzing S. cerevisiae. A, SEM image showing cell wall topography; B, TEM image demonstrating
the high contrast and resolution attainable with TEM (both panels adapted from Fig. 1 of Osumi et al. (43)). C, FIB-SEM image shows the ability of this nanoto-
mographic approach to generate high-resolution volumetric data. Top, raw, single-plane image; bottom, segmented reconstruction (adapted from Figs. 1 and
2 of Wei et al. (60)). D, SXM image (left) and segmented reconstruction of S. cerevisiae cell, showing the ability of SXT to resolve intracellular structures in mini-
mally perturbed samples (adapted from Figs. 1 and 2 of Larabell and Le Gros (63). Scale bars, 1mm.
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labels to specific targets remains a fundamental goal in XRM
tomography studies. A number of contrast agents, for example,
have been utilized in an intravasal manner to study lymphatics
and microvasculature. Among these are barium sulfate (85, 86)
and lead oxide, the latter of which has been described as the
“gold standard” of fine vasculature visualization (87), although
some work has shown that these agents might not fill smaller
vessels, thus leading to an underestimation of the total vascula-
ture (88). More recent studies have employed different tracing

agents, such as gold nanoparticles (Fig. 3E) (89), bismuth for-
mulations (90, 91), and tantalum oxide (92), the results of which
have shown great promise as tools for XRM vasculature
analyses.
More specific targeting of proteins of interest has also been

demonstrated with XRM, offering a way to directly quantify
aggregation. One such approach uses immune precipitation
to deposit metal ions in close proximity to the target of inter-
est. Specifically, this method uses a horseradish peroxidase–

Figure 3. Micro-CT and X-raymicroscope design and use of contrast agents. A, diagrammatic representation of a micro-CT system, comprised of an X-ray
source and a flat panel detector coupled to an EMCCD camera. Samples are mounted to a rotating stage between the source and the detector. Magnification
is solely dependent on geometric ratio of source to sample and sample to detector. B, an X-ray microscope is similar in design to a micro-CT but introduces a
high-numerical aperture objective that utilizes a scintillator to detect X-rays and emit photons that are detected by the EMCCD. The objective adds a second
magnification factor to an XRM system. C–F, examples of volume-rendered XRM tomograms of biological samples stained using different contrast agents
(each tomogram is digitally cut to illustrate stain penetration). C, Tetranychus evansi, stained using 10% Lugol’s iodine. D, Lumbricus terrestris, stained with
0.3% phosphotungstic acid. E, murine pulmonary vasculature filled with AuroVistTM contrast agent. F, metal-enhanced DAB staining of murine Wolffian ducts
(white box and inset).
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conjugated secondary antibody that binds to a primary anti-
body and locally produces singlet oxygen. A silver metal-dep-
osition enzyme metallography kit then interacts with the sin-
glet oxygen, thus reducing silver ions from the solution and
causing its deposition near the site of the primary antibody.
Metscher and Müller (93) used this approach to visualize and
study acetylated tubulin in a chick nervous system as well as
localization of type-II collagen in developing limbs. A similar
approach has used a nickel-enhanced 3,3-diaminobenzidine
(Ni-DAB) deposition (94) in conjunction with OsO4 to
explore changes in avian excretory system morphology in
RET tyrosine kinase mutants (Fig. 3F) (95). A set of novel ge-
netically encoded targeting approaches, including enhanced
ascorbate peroxidase (APEX) (96) and mini singlet oxygen
generator (MiniSOG) (97), were originally designed for use in
EM, but they have also been utilized to study the organization
and distribution of specific cell types and localize specific
structures using XRM in correlative studies (25, 98).
Regardless of the staining modality employed, a key feature

in data sets obtained using XRM is that they offer not only the
spatial localization of structures and specific proteins, but also
the density of aggregated contrast agent. These densities pres-
ent a distinct advantage over other imaging modalities, as they
directly correlate to the expressed protein they target (93). The
use of protein-specific staining, in conjunction with silver dep-
osition, can thus be utilized to quantify a target gene product
within a given tomographic volume.

Correlative approaches

Using divergent imaging approaches to study a given sam-
ple is a tremendously powerful technique, allowing for analy-
ses of a region of interest over different spatial and temporal
scales, thus maximizing efficiency in resources and precious
sample utilization and extending the precision and breadth of
complementary techniques. Thus, correlative light and EM
(CLEM) approaches have become indispensable in associating
ultrastructural organization with protein localization and
temporally finite events (e.g. gene expression) (99). The recent
popularization of cryogenic EM (cryo-EM) (100, 101) has also
led to the development of correlative workflows with cryo-flu-
orescence microscopy (cryo-CLEM) (102, 103). Both SXT and
XRM have been shown to extend and enhance these correla-
tive approaches, offering a bridge between light and EM, thus
linking physiological processes, such as motility, metabolic
transport, and ion exchange, to cellular ultrastructure.
As SXT necessitates the vitrification of cells to prevent radia-

tion damage, correlative light workflows require the develop-
ment and use of light systems capable of imaging fluorescence
while maintaining cryogenic temperatures. Such cryo-fluores-
cence imaging has gained much interest, not only due to the
emergence of tomographic cryo-EM studies, but also for the
fact that cryogenic temperatures offer significant improve-
ments in fluorophore stability (104), fluorescence yield (105),
and resolution (106). Whereas cryo-CLEM with SXT has only
been in use over the past decade, and developments in the
workflow and technology are ongoing (49, 52, 107), the result-
ing data thus far have demonstrated the incredible potential for

this approach. Applications have included identification of
inactive X-chromosomes in female transformed thymic lym-
phoma cells (108), localization of vacuoles in yeast strains
(109), and analysis of autophagosome formation in the endo-
plasmic reticulum of a mammalian cell (110). Correlation of
the fluorescence and X-ray volumetric data are, however, de-
pendent on the use of fiducial markers, which are typically fluo-
rescent polystyrene beads that are capable of being visualized
by bothmodalities.
Whereas correlative light and EM techniques have been

developed and improved upon for over 4 decades (111), XRM
offers a means to bridge the two modalities with increased
speed, precision, and reproducibility. Fiducial-based image
registration (112, 113) has been successfully used in CLEM
studies, but due to the three-dimensional nature of the samples
in question, this approach requires correlating six fiducials for
localization, thus imposing limitations on the density of the
markers. Most EM preparations involve secondary fixation
with heavy metal solutions, such as osmium, lead, and uranium
(114, 115), thus rendering the samples opaque. As X-rays are
readily attenuated by these compounds, EM staining is espe-
cially advantageous in XRM, and the resultant tomogram can
be used as a three-dimensional map to locate regions of interest
for subsequent EM (116). This approach has been demon-
strated with FIB-SEM nanotomography of materials (117), in
bridging brightfield light microscopy to TEM in the assaying
of adipose tissue (118), and through the use of genetically
encoded tags in murine brain sections, which were subse-
quently imaged via serial block-face EM (25). More recent
work has utilized XRM-dependent correlative approaches to
an increasingly wide range of targets, from exploring ultra-
structural properties of parasitic worms in the small bowel
(119) to correlating histological and TEM imaging of Araneae
papal organs (120) to linking intravital microscopy studies of
mouse cerebral vasculature to FIB-SEM nanotomographic
analysis (121). An added advantage of the high resolution,
mesoscale imaging, and speed of XRM acquisition is the abil-
ity to employ the technique as a region of interest localization
tool. As an example, in exploring osseous metastatic disease
in whole bones via TEM, we employed XRMwithin our work-
flow to facilitate the location of metastases within long bones
(Fig. 4). This allowed for targeted sectioning of the site of me-
tastasis, which would be impractical to accomplish without
the aid of the XRM data. It is apparent that since its recent
incorporation into correlative studies, XRM has become an
indispensable tool.

Conclusions

The application of X-rays to study various biological samples
is not a new technique. Indeed, some of the earliest X-ray imag-
ing was performed over a century ago, and zone plate–based
systems were being developed as early as the 1960s (122). The
past 20 years, however, have seen a rapid expansion in the
application, utilization, and integration of X-ray–basedmicros-
copy into workflows aimed to assay three-dimensional biologi-
cal structures. Use of soft X-rays has been proven capable of
studying minimally perturbed cells, with resolutions nearing
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that of EM, and it holds the exciting prospect of being able to
thoroughly explore the cellular mesoscale architecture (123).
The development and application of metallic stains for XRM
and the ability to direct such staining to specific targets offer
the promise of exploring themeans by which the spatial organi-
zation of any protein of interest affects the spatiotemporal
dynamic properties of cells. The physical properties of both
SXT and XRM hold unique quantification opportunities, with
linear absorption coefficients offering the ability to identify
subcellular compartments (123) and stain densities in XRM
presenting a unique means of measuring protein aggregation.
Application of X-ray microscopy techniques in EM correlative
studies have demonstrated the increased efficacy the approach
offers and the resultant increases in sample throughput.
Ongoing developments in targeted contrast agents, workflow
integration, and system flexibility and expansion make SXT
and XRM exciting tools for future studies of cellular organiza-
tion and function.
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