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Endocannabinoid signaling plays a regulatory role in various
(neuro)biological functions. 2-arachidonoylglycerol (2-AG) is
the most abundant endocannabinoid, and although its canoni-
cal biosynthetic pathway involving phosphoinositide-specific
phospholipase C and diacylglycerol lipase a is known, alterna-
tive pathways remain unsettled. Here, we characterize a non-
canonical pathway implicating glycerophosphodiesterase 3
(GDE3, from GDPD2 gene). Human GDE3 expressed in
HEK293T cell membranes catalyzed the conversion of lyso-
phosphatidylinositol (LPI) into monoacylglycerol and inosi-
tol-1-phosphate. The enzyme was equally active against 1-acyl
and 2-acyl LPI. When using 2-acyl LPI, where arachidonic
acid is the predominant fatty acid, LC-MS analysis identified
2-AG as the main product of LPI hydrolysis by GDE3. Further-
more, inositol-1-phosphate release into the medium occurred
upon addition of LPI to intact cells, suggesting that GDE3 is
actually an ecto-lysophospholipase C. In cells expressing G-
protein–coupled receptor GPR55, GDE3 abolished 1-acyl
LPI–induced signaling. In contrast, upon simultaneous ex-
pression of GDE3 and cannabinoid receptor CB2, 2-acyl LPI
evoked the same signal as that induced by 2-AG. These data
strongly suggest that, in addition to degrading the GPR55 LPI
ligand, GDE3 can act as a switch between GPR55 and CB2 sig-
naling. Coincident with a major expression of both GDE3 and
CB2 in the spleen, spleens from transgenic mice lacking GDE3
displayed doubling of LPI content compared with WT mice.
Decreased production of 2-AG in whole spleen was also
observed, supporting the in vivo relevance of our findings.
These data thus open a new research avenue in the field of
endocannabinoid generation and reinforce the view of GPR55
and LPI being genuine actors of the endocannabinoid system.

The endocannabinoid system includes two G-protein–
coupled receptors (CB1 and CB2), their endogenous endocan-
nabinoid ligands (mainly N-arachidonoylethanolamine (anan-
damide) and 2-arachidonoylglycerol (2-AG)), and various

enzymes and transporters involved in the metabolism of endo-
cannabinoids (1–10). Anandamide and other N-acylethanol-
amines are synthesized through a complex network of some-
what redundant pathways and enzymes (4, 5, 11, 12). 2-AG is a
key lipid mediator in a number of physiological and pathophys-
iological situations, including control of synaptic transmission,
neurodegeneration, inflammation, and immunity (6–10). The
canonical pathway of 2-AG biosynthesis involves a phospho-
inositide-specific phospholipase Cb coupled to the a-isoform
of diacylglycerol lipase (6–8). However, other routes for 2-AG
production have been suggested but still remain hypothetical
(6–8).
Another G-protein–coupled receptor, GPR55, is alterna-

tively considered as a third cannabinoid receptor, displaying
low sequence homology with CB1 and CB2 but good affinity
for various cannabinoids (13–16). Lysophosphatidylinositol
(LPI) was identified as the endogenous agonist of GPR55 (17),
the 2-arachidonoyl molecular species displaying the highest bi-
ological activity (18). Notably, one LPI analog, lysophospha-
tidyl-b-D-glucoside, appears as a still more potent agonist of
GPR55 (19, 20). Although other targets might also be involved,
interaction of LPI with GPR55 is generally considered as the
main mechanism of LPI involvement in cancer, metabolism,
inflammation, and obesity (13–16).
Glycerophosphodiesterase 3 (GDE3) belongs to a group of

recently identified mammalian glycerophosphodiesterases (21,
22). It contains six potential transmembrane a-helices and
exposes to the cell surface an enzymatic domain able to hydro-
lyze glycerophosphoinositol (GPIns) into glycerol and inositol-
1-phosphate (Ins1P) (Fig. 1A) (23). Rather than water-soluble
glycerophosphodiesters, some of these enzymes (GDE1, GDE4,
and GDE7) can hydrolyze monoacyl or diacyl derivatives,
allowing the production of lipid mediators such as lysophos-
phatidic acid and anandamide (24–28). We postulated that LPI
instead of GPIns could be the natural substrate of GDE3 (Fig.
1B). If so, this LPI-specific phospholipase C (LPI-PLC) would
allow breakdown of the main endogenous ligand of GPR55.
With LPI bearing an arachidonoyl group at the sn-2 position,
GDE3 would also provide an alternative route for 2-AG
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production (Fig. 1B). Using recombinant human GDE3
expressed inHEK293T cells and exogenous LPI at physiological
concentrations, we bring evidence that this is actually the case.

During the preparation of this article, Tsutsumi et al. (29) pub-
lished similar data reporting the same in vitro enzymatic prop-
erties of GDE3. In the present study, we further show that coex-
pression of GDE3 with GPR55 abrogates interaction of LPI
with GPR55, whereas at the vicinity of CB2, GDE3 allows LPI
to evoke signaling events identical to those induced by 2-AG.
Finally, invalidation of mouse GDE3 gene (Gdpd2) resulted in
accumulation of LPI together with a reduction of 2-AG content
in the spleen, i.e. the organ displaying one of the highest expres-
sion levels of GDE3. This will stimulate further studies aimed at
defining the biological function of GDE3 within the endocan-
nabinoid system.

Results

GDE3 but not GDE2 is an LPI-specific PLC in vitro

To test our working hypothesis, HEK293T cells were trans-
fected with plasmids allowing the expression of human GDE3
in fusion with GFP or with red fluorescent protein (RFP) at its
C-terminal. Two other plasmids bore the R230Amutation pre-
viously shown to suppress hydrolytic activity of GDE3 against
GPIns (23). All the fusion proteins displayed an exclusive
localization in particulate fraction (Fig. 2A), as expected
from the sequence of GDE3 (21–23). Moreover, confocal
microscopy revealed the presence of WT and mutated
GDE3 at the plasma membrane, whereas GFP alone remained
cytosolic (Fig. 2,B–D).
Incubation of membranes containing WT GDE3 with [3H]

Ins-LPI (1-acyl) resulted in almost total hydrolysis of the sub-
strate with appearance of water-soluble radioactivity (Fig. 2E).
However, no LPI hydrolysis could be detected with GDE3 bear-
ing the R230Amutation.
Using anion exchange HPLC, the radioactive water-soluble

compound was identified as Ins1P (Fig. 2F). Exclusion of Ins
(Fig. 2G) and GPIns (Fig. 2H) as water-soluble products of LPI
cleavage eliminated the possibility of GDE3 being a lysophos-
pholipase D or A, respectively. The GDE3 mechanism differed
from that of bacterial PLC, which produced cyclic Ins-1,2-
phosphate (Fig. 2I). This was partially converted into Ins1P
upon acidic hydrolysis (Fig. 2J).
When nonradioactive LPI (2-acyl) was used as a substrate, 2-

AG was identified by LC-MS as the main product of hydrolysis
(Fig. 2K). GDE3 equally hydrolyzed 1-acyl and 2-acyl LPI spe-
cies (Fig. 2L). Among five different phospholipids, LPI was the
only lysophospholipid degraded by GDE3 (Table 1).
GDE2 is another glycerophosphodiesterase displaying very

common features with GDE3, i.e. six putative transmembrane
segments and an active site oriented to the cell exterior (30).
GDE2 and GDE3 were found to hydrolyze glycosyl-PI anchors,
generating very specific signaling events important for neuro-
development or cancer (30–33). However, GDE2 did not
achieve hydrolysis of either LPI or lysophosphatidylcholine
(LPC) (Fig. 2M). LPC was tested with the view that GDE2 was
also reported to degrade sn-glycero-3-phosphocholine (34),
thus suggesting that LPC might have been a natural substrate
of GDE2. Intact GDE2 activity against glycosyl-PI anchors was
previously shown to require reduction of an intracellular disul-
fide bridge (35). However, the C25S mutant of GDE2, which

Figure 1. Structure of PI, LPI, GPIns, and their cleavage products. A, the
predominant molecular species of PI is 1-stearoyl-2-arachidonoyl-PI. The cor-
responding LPI (1-stearoyl and 2-arachidonoyl) are formed upon PI hydrolysis
by phospholipase A2 (PLA2) and PLA1, respectively. Further deacylation of each
LPI by lysophospholipases (LysoPlases) leads to water-soluble sn-glycero-3-
phosphoinositol (GPIns), which is cleaved into glycerol and inositol-1-phos-
phate (Ins-1P) by GDE3. B, according to our working hypothesis, hydrolysis of
2-arachidonoyl LPI by lysoPLC generates 2-AG and Ins-1P or cyclic inositol-1,2-
phosphate (cIns-1,2P). The cyclization occurring during hydrolysis is not a con-
stant event and depends on themechanism of each enzyme.
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abrogates the inhibitory intracellular disulfide bridge of GDE2
(35), remained inactive toward the two substrates (Fig. 2M).
Finally, the consensus sequence common to classical PLC and
various GDEs (Fig. 3) indicated that a very constant glutamate
residue at position 260 was selectively replaced by glutamine in
GDE2. But again, the E260Q mutant of GDE2 did not reveal
any hydrolytic activity toward the two lysophospholipid sub-
strates (Fig. 2M). The same negative results were obtained with
the GDE2 mutant bearing the double C25S/E260Q mutation
(Fig. 2M)).

In conclusion, GDE2 enzymatic activity is restricted to glyco-
syl-PI anchors (30, 31), in contrast to GDE3, which actively
hydrolyzes LPI.
GDE3 lysoPLC activity was maximal at pH 7.4 (9.0 6 0.5

nmol3min213mg21, mean6 S.E., four determinations) and
required [Ca21] at mM range (Fig. 4). It increased up to 50 mM

LPI and decreased afterward (Fig. 4E), indicating that it was re-
stricted to monomers (critical micelle concentration of LPI is
around 30–70 mM (36)), in a range of concentrations occurring
in biological fluids (13).

Figure 2. Identification of GDE3 as a lysoPLC specific for LPI. A, HEK293T cells were transfected with GFP or RFP (Mock), GDE3-GFP, GDE3-R230A-GFP,
GDE3-RFP, or GDE3-R230A-RFP. Membranes were isolated and used for Western blotting analysis using anti-human GDPD2 mouse polyclonal antibody
(Abnova). B–D, the cells were observed by confocal microscopy as described under “Experimental procedures”. E, membranes (10 mg of protein) were incu-
bated with 50 mM of [3H]Ins-LPI (1-acyl) during 30 min in 0.1 ml of 100 mM Tris-HCl, pH 7.4, containing 2 mM CaCl2 for determination of lysoPLC activity. Data
are individual values representative of five different experiments for GFP-tagged enzyme and one single experiment for RFP-tagged protein. F–J, membranes
(10 mg of protein) prepared from HEK293T cells transfected with GDE3-GFP were incubated for 30 min with 50 mM [3H]Ins-LPI (1-acyl) in 0.1 ml of 100 mM Tris-
HCl, pH 7.4, containing 2 mM CaCl2. After lipid extraction in the presence of 0.1 M HCl, the water-soluble extracts and standard solutions were loaded onto the
HPLC column and analyzed as described. Standards loaded onto the HPLC column were pure [3H]Ins (G), GP[3H]Ins (H), cyclic [3H]Ins-1,2-phosphate (cInsP, I),
or [3H]Ins-1-phosphate (Ins1P, J). The product generated by acid hydrolysis of cInsP and eluting as an early peak was not identified. Data are from one experi-
ment representative of three experiments with very similar results. K, nonradioactive LPI (2-acyl, 50 mM) was incubated for 30 min with membranes (10 mg of
protein) from HEK293T cells transfected either with GDE3-GFP or with GFP in 0.1 ml of 100 mM Tris-HCl, pH 7.4, containing 2 mM CaCl2. Lipids were extracted
and analyzed by LC-MS (see “Experimental procedures”). Major andminor peaks at 3.7 and 3.8 min correspond to 2-AG and 1-AG, respectively, indicating that
migration of arachidonic acid from sn-2 to sn-1 position was about 17%. The profiles of two independent experiments are shown. L, membranes (10 mg of pro-
tein) were isolated from HEK293T cells expressing GDE3-GFP, GDE3-R230A-GFP, or GFP alone. Substrate was [3H]Ins-LPI (1-acyl, 50 mM) or [3H]Ins-LPI (2-acyl, 50
mM), and lysoPLC activity was determined as described after incubation for indicated times in 0.1 ml of 100 mM Tris-HCl, pH 7.4, containing 2 mM CaCl2. Data
(single determinations) are representative of two experiments with identical results. M, HEK293T cells were transfected with various vectors encoding GFP
(Mock), GDE3-GFP (GDE3), GDE2-GFP (GDE2), or the various GDE2 mutants prepared as described under “Experimental procedures”. LysoPLC activity was
determined using membrane fractions isolated from transfected cells (30 mg of protein) and incubated for 30 min with 50 mM [3H]Ins-LPI or 1 mM [3H]choline-
LPC (1-acyl) in 0.1ml of 100mM Tris-HCl, pH 7.4, containing 2mM CaCl2. Data (single values) are representative of two experiments with very similar results.
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Altogether, these data identify GDE3 as an LPI-specific PLC.
This activity is supported by the same active site involved in
GPIns hydrolysis (23). The main difference between the two
substrates is that LPI can provide monoacylglycerol instead of
glycerol. Because both 1-acyl and 2-acyl LPI species are equally
cleaved, GDE3 might thus participate in an alternative pathway
of 2-AG production.

GDE3 is an ecto-PLC

When [3H]Ins-LPI was added to confluent HEK293T cells
expressing GDE3, a water-soluble radioactive compound accu-
mulated in supernatant (Fig. 5A). With cells expressing the
R230A mutant of GDE3, production of the radioactive water-
soluble compound was abolished (Fig. 5A). Together with the
fact that GDE3 is essentially localized at the plasma membrane
(Fig. 2, C and D), and in agreement with structural predictions
deduced from GDE3 sequence (21, 22), GDE3 thus appeared as
an ecto-enzyme and is likely the ecto-PLC previously charac-
terized in various cells (37–39).

The assay using intact cells was also applied to HEK293T
cells transfected with GDE2 and the various mutants described
above. Again, no activity could be detected against LPI
(Fig. 5B), despite the fact that GDE2 also exposes its catalytic
domain to the cell surface, where it hydrolyzes glycosyl-PI
anchors (30, 31).

GDE3 acts as a switch between GPR55 and CB2 signaling

The various enzymatic properties described above suggested
two possible nonexclusive functions for GDE3: inhibition of
LPI-induced signaling by degradation of GPR55 ligand and
activation of cannabinoid receptor via generation of 2-AG. We
first verified that GDE3 and GPR55, on the one hand, and
GDE3 and CB2, on the other hand, were colocalized in the
plasma membrane upon expression in HEK293T cells (Fig. 6, A
and E). In CHO cells coexpressing GDE3 and GPR55, the char-
acteristic Ca21 spikes evoked by LPI (40) were abolished by
active GDE3 but not by inactive R230A GDE3 mutant (Fig. 6,
B–D). In CHO cells coexpressing CB2 and WT GDE3, both 2-
AG and LPI induced Gi signaling, i.e. dose-dependent inhibi-
tion of adenylate cyclase (41, 42) (Fig. 6F). In contrast, cells
transfected with the R230Amutant of GDE3 responded only to
2-AG (Fig. 6G). The effects of LPI and 2-AG on adenylate
cyclase were reversed by the CB2 inverse agonist AM630

Table 1
Specificity of GDE3 lysoPLC activity for LPI
The various lysophospholipids were obtained as described under “Experimental
procedures”. They were added to membranes (20 mg of protein) isolated from
HEK293 cells transfected with empty vector (Mock) or GDE3-GFP vector (GDE3)
and incubated (final concentration 50 mM) for 60 min in 0.1 ml of 100 mM Tris-
HCl, pH 7.4, containing 2 mM CaCl2. Lipids were then extracted and analyzed for
the corresponding monoacylglycerol by LC-MS (see “Experimental procedures”).
Data are individual values

Substrates

Monoacylglycerol
formed (pmol/assay)

Mock GDE3

2-acyl-sn-glycero-3-phosphoinositol 35 1547
1-myristoyl-sn-glycero-3-phosphocholine 0 0
1-myristoyl-sn-glycero-3-phosphoethanolamine 0 0
1-myristoyl-sn-glycero-3-phosphoglycerol 0 0
1-oleoyl-sn-glycero-3-phosphoserine 1.4 3.3

Figure 3. Conserved sequences within catalytic domains of phospholi-
pases C (PLC) and various glycerophosphodiesterases. Alignment and
definition of the consensus sequence found in PLC (Con) is identical to that
provided in Fig. S6 by Rao and Sockanathan. ecGLPQ is the periplasmic glyc-
erophosphodiesterase from Escherichia coli; h, r, m, and c refer to human, rat,
mouse and chicken, respectively. Themost highly conserved residues are col-
ored in red, exceptions being highlighted in yellow.

Figure 4. Enzymatic properties of lysoPLC activity of GDE3. Membranes
were isolated from HEK293T cells transfected with GDE3-GFP or GFP and
incubated in 0.1-ml final volume in the presence of [3H]Ins-LPI (1-acyl).
LysoPLC activity was determined as described under “Experimental proce-
dures”. A, proteins (10 mg) were incubated for 30 min with 50 mM LPI in 0.1 M

Tris-HCl buffer at the indicated pH containing 2 mM CaCl2. Data are means6
S.E. of three determinations. B, proteins (10 mg) were incubated for indicated
times with 50 mM LPI in 100mM Tris-HCl buffer, pH 7.4, containing 2mM CaCl2.
Data are individual values from one experiment representative of three
experiments with very similar results. C, increasing amounts of protein incu-
bated for 30 min with 50 mM LPI in 100 mM Tris-HCl buffer, pH 7.4, containing
2 mM CaCl2. Data are individual values from one typical experiment. D, pro-
teins (10 mg) were incubated for 60 min with 50 mM LPI in 100 mM Tris-HCl
buffer, pH 7.4, containing or absent of 2 mM CaCl2. Data are expressed as %
hydrolysis and are means 6 S.E. of three determinations. E, proteins (10 mg)
were incubated with increasing concentrations of LPI in 0.1 ml of 100 mM

Tris-HCl, pH 7.4, containing 2 mM CaCl2. Data are from one experiment repre-
sentative of three experiments with very similar results. CMC, critical micelle
concentration.
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(Fig. 6H). Altogether, these data indicate that GDE3 can func-
tion as a switch betweenGPR55 and CB2.

Evidence that GDE3 LPI-PLC is functional in vivo

The next step was to investigate whether GDE3 could partic-
ipate in vivo in a biological function regulated by the availability
of 2-AG and/or LPI. Comparative mRNA expression of GDE3
(Gdpd2), CB1 (Cnr1), CB2 (Cnr2), andGpr55 in various mouse
tissues (Fig. 7A) revealed gross variations in the ratios between
the expression levels of the four genes. GDE3 expression was
the highest in smoothmuscle (derived from the small intestine)
and in the spleen. This is coherent with available data from var-
ious banks (GeneCards, Tabula muris) and with a previous
publication also showing a high expression level of GDE3 in
bone (43). Noticeably, a high level of GDE3 and CB2 was found
in the spleen, which might represent an interesting organ for
future studies aimed to explore a possible cooperation of the
two genes.
In agreement with data on mRNA, LPI-PLC activity was 40-

fold higher in the spleen compared with the brain (Fig. 7B). In
both cases, about 85% of the activity determined in WT mice
disappeared in Gdpd2-KO mice, indicating that GDE3 is the
major if not the unique LPI-PLC in both organs. Indeed, basal
activity could represent some cytosolic phosphatidylinositol
(PI)–specific PLC or some lysophospholipase A remaining

adsorbed on the membranes. We were surprised by the low ac-
tivity detected in the brain given the fact that significant LPI-
PLC activity was previously described in rat brain membranes
(44–46). Because GDE2 is more abundant than GDE3 in neural
tissues, we suspected GDE2 as the possible lysoPLC previously
described in the brain. However, the negative data reported
above together with the low activity determined in the brain
eliminate this possibility. Finally, dissection did not reveal a
striking increase of LPI-PLC activity in any region of the central
nervous system (Fig. 7C).
To check whether LPI was a physiological substrate of GDE3

in vivo, LPI molecular species were determined by HPLC-MS
in two organs (brain and spleen) from bothWT and GDE3-KO
mice. As shown in Fig. 8 (left side), all the main LPI molecular
species were doubled in the spleens of mice invalidated for the
Gdpd2 gene. In contrast, a subtle change was observed in brains
from KO mice compared with WT animals, but this did
not reach significance, in agreement with the 40-fold lower ac-
tivity of LPI-PLC in the brain. Analysis of monoacylglycerol
molecular species also revealed the lack of modification in
brains fromKOmice, the only difference observed in the spleen
being a small but significant decrease of 2-AG (Fig. 8, right side)
in mice lacking GDE3. As will be further commented in the dis-
cussion, these data bring strong evidence for in vivo lysoPLC
activity on LPI from the spleen, its role in an alternative path-
way of 2-AG production remaining compatible with our data.

Discussion

The present study unambiguously identifies LPI as a main
substrate of GDE3 acting as an ecto-PLC, in close contact with
extracellular medium providing neutral pH and mM Ca21 con-
centration required for maximal activity. Using the same assay
conditions, preferential hydrolysis of GPIns was previously
reported (23) with an apparent Km of 97 mM, whereas it was
;25 mM in the present study. A striking feature of GDE3
lysoPLC activity is its inhibition at substrate concentrations
above the critical micelle concentration. This observation is
surprising in view of historical studies showing that lipolytic
enzymes differ from classical esterases by interfacial activation
occurring just above the critical micelle concentration of sub-
strate (47–49). This peculiar behavior of GDE3 is probably
linked to its membrane localization, LPI concentrations above
critical micelle concentration being rather deleterious to mem-
brane structure (50).
It remains to be shown whether GDE3 PLC interacts with

LPI monomers directly from the extracellular space, in the
same way as it is presumed to bind water-soluble GPIns, or
whether LPI intercalates between lipids of the external mem-
brane leaflet before reaching the GDE3 catalytic site. Both pos-
sibilities remain open, because a third specific substrate of
GDE3 corresponds to glycosyl-PI anchors (32, 33), which are
embedded in the lipid phase of the outer leaflet. This point
deserves appropriate questioning because the two possibilities
exist when comparing interaction of phospholipid ligands with
their G-protein–coupled receptors: LPA1 receptor is the only
example permitting direct extracellular interaction with lyso-
phosphatidic acid, whereas S1P1, LPA6, and CB1 receptors bind

Figure 5. Determination of ecto-lysoPLC activity of GDE3, GDE2, and
various GDE2 mutants. A, monolayers of HEK293T cells expressing GDE3
were seeded in 6-well dishes (9.5 cm2) and incubated with 11.25 mM [3H]Ins-
LPI (1-acyl) added to the medium (2-ml final volume). At various times, 0.5 ml
of supernatant was drawn from each well and lipids were extracted in the
presence of 0.1 M HCl. The radioactivity (dpm) in upper water-methanol
phase was then determined. Data are individual values from one experiment
representative of three experiments with very similar results. B, HEK293T cells
were transfected with GFP (Mock), GDE3-GFP (GDE3), GDE2-GFP (GDE2), or
various mutants of GDE2 in fusion with GFP. Water-soluble radioactivity
(cpm) was determined as in (A) on 0.5-ml aliquots submitted to the precipita-
tion procedure using BSA and HClO4 (see “Experimental procedures”). Data
are single values from one typical experiment.
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their ligand after diffusion through a gap between transmem-
brane a-helices I and VII in the extracellular leaflet (51–53).
The 3D structures of GPR55 and GDE3 have not yet been
solved, thus leaving unknown how LPI interacts with both its
receptor and its degrading enzyme.
Among possible functions of GDE3, its capacity to regulate

the availability of LPI to its receptor might be of great relevance
in a number of pathophysiological conditions such as cancer,
obesity, neurodegeneration, or inflammation (13–16). This is
supported by our signaling experiments showing an inhibition
of GPR55 activation upon coexpression of GDE3 and by in vivo
accumulation of LPI in spleens from Gdpd2 KO mice. Further
studies should define how GDE3 is positioned relative to
GPR55, i.e. either in the samemembrane as in our experimental
example or in neighboring cells. This will probably change with
organs and tissues and should be defined in a number of experi-
mental systems where GPR55 was shown to exert important
(patho)physiological functions, including the brain and nervous
system, endocrine pancreas, gut, and immune system, with a

particular interest for those tissues, such as spleen, displaying
the highest expression levels.
Our study also demonstrated that GDE3 LPI-PLC is equally

active against 1-acyl and 2-acyl species of LPI, indicating that
all forms of LPI are concerned, independent of the phospholi-
pase (A1 or A2) involved in their production (16). If we focus on
the 2-acyl forms of LPI, those will be particularly rich in arachi-
donic acid (13, 16), with two functional consequences: 2-arach-
idonoyl LPI is the most active LPI at GPR55 (18), and its hydro-
lysis by PLC will generate the endocannabinoid agonist 2-AG,
thus providing an alternative pathway of 2-AG synthesis (Fig.
9A). As a first step of this pathway, the intracellular phospholi-
pase A1 DDHD1 was suggested as a good candidate able to pro-
duce 2-arachidonoyl LPI (13, 54). This will require export of
the lysophospholipid via the ABC transporter C1 (ABCC1) (55,
56). However, one cannot entirely exclude an extracellular
PLA1, for instance, one member of the pancreatic lipase family,
some of which are involved in the production of other phospho-
lipid mediators such as 2-acyl LPA and lysophosphatidylserine

Figure 6. GDE3 acts as a switch between GPR55 and CB2 signaling. A, HEK293T cells were transfected with GPR55-GFP and GDE3-RFP and examined by
confocal microscopy as described under “Experimental procedures”. B, CHO-GPR55 cells transfected with GFP as a control were loadedwith Fura-2-AM, stimu-
lated by 5 mM LPI (1-acyl), and examined for fluorescence ratio 340 nm/380 nm, reflecting cytoplasmic free calcium concentration ([Ca21]i). Arrow indicates
addition of 1 mM ionomycin. C, same as in (B) with CHO-GPR55 cells transfected with GDE3-GFP. D, same as in (B) with CHO-GPR55 cells transfected with GDE3-
R230A-GFP. (B), (C), and (D) show two single cell traces. E, HEK293T cells were transfected with CB2-GFP and GDE3-RFP and examined by confocal microscopy
as in (A). F, CHO-CB2 cells transfected with GDE3-GFP were incubated for 20 min with 7 mM forskolin plus 200 mM IBMX and various concentrations of 2-AG or
LPI (2-acyl). Cellular cAMP content was determined as described under “Experimental procedures”. Data (means6 S.E., three determinations) are expressed as
% of cAMP content determined in the presence of forskolin plus IBMX only. G, Same as in (F) with CHO-CB2 cells transfected with GDE3-R230-GFP. H, Same as
in (F), except that CHO-CB2 cells were preincubated or not for 15minwith 10 mM AM630 before addition of forskolin plus IBMX, followed by 5 mM LPI (2-acyl) or
5 mM 2-AG. Data are means6 S.D. of three determinations. p, probability of significance according to unpaired t independent test.

Figure 7. Expression of GDE3, CB1, CB2, and Gpr55 in variousmouse tissues and lysoPLC activity in the brain and spleen. A, contents of mRNA encod-
ing CB1 (Cnr1), CB2 (Cnr2), GDE3 (Gdpd2), and Gpr55were determined inmouse tissues by quantitative real time PCR (see “Experimental procedures”). Data are
expressed as normalized ratios relative to b-tubulin and are means6 S.E. of three determinations. B, brain and spleen membranes were prepared fromWT or
GDE3 KOmice as described under “Experimental procedures”. LysoPLC activity was determined in 30-min incubations using 10 mg (spleen) or 20 mg (brain) of
protein and 50 mM [3H]Ins-LPI (1-acyl) as substrate in 0.1 M Tris-HCl buffer, pH 7.4, containing 2 mM CaCl2. Data are means 6 S.D. (n = 5 for brain, n = 3 for
spleen). C, after sacrifice, central nervous tissues were dissected to isolate cerebellum (Cer), cortex (Cor), hippocampus (Hip), mesencephalon (Mes), olfactory
bulb (OB), spinal cord (SC), and striatum (Stri). LysoPLC activity was determined in crudemembranes as in (B). Data (means6 S.D. (error bars)) are from four WT
mice, except for hippocampus and striatum (n = 3), and from one KOmouse as a control.
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(57). In this context, it is worth mentioning that pancreatic
lipase related protein 2 (PLRP2), which was discovered as a
guinea pig pancreatic phospholipase A1 but is also expressed in
the hypothalamus and several immune cells (58, 59), was found
to be very active against phosphatidylinositol (60).
As also depicted in Fig. 9A, 2-AG is currently produced by

a canonical pathway involving the sequential action of PLCb
on phosphatidylinositol (4, 5)-bisphosphate and diacylglycerol

(DAG) lipase a on the resulting diacylglycerol (6–8). This path-
way has been well established as supporting retrograde inhibi-
tion of synaptic transmission by CB1, as shown by specific
knockout of DAG lipase a gene (61, 62) or by using specific
inhibitors (63). Based on the low activity of GDE3 lysoPLC in
the brain and the lack of 2-AG increase inGdpd2 KOmice, the
alternative pathway suggested by the present study is not pre-
dicted to play any role in the central nervous system, at least at

Figure 8. Quantification ofmolecular species of LPI andmonoacylglycerol in brain and spleen fromWT and GDE3 KOmice. Each organ was frozen im-
mediately after harvesting. Frozen tissues were weighed and homogenized in 2 ml of water, followed by acidification with 0.24 ml of 2 M HCl and lipid extrac-
tion in 8 ml of dichloromethane (CH2Cl2) and 4 ml of methanol. Lipids from the organic phase were submitted to solid-phase extraction using silica and eluted
with a hexane-isopropanol mixture for 2-AG and methanol for LPI. Lipids were then quantified by LC-MS as described under “Experimental procedures”. Data
are expressed as nmol/gwet weight tissue and are means6 S.D. (error bars) of 17WT and 18 KOmice. 16:0, palmitoyl-; 18:0, stearoyl-; 18:1, oleoyl-; 20:4, arachi-
donoyl-; p, probability of significance according to unpaired t independent test (see “Experimental procedures”).
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the level of synaptic transmission. In contrast, the low but sig-
nificant decrease of 2-AG occurring in spleens from mice lack-
ing GDE3 suggests that the alternative pathway might be func-
tional in this organ or in the immune system in general.
However, data based on the specific accumulation of a media-
tor or its lack of variation in KOmice are to be considered with
caution for two main reasons: 2-AG is rapidly degraded by at
least three enzymes (64) and might escape accurate determina-
tion, and whole-organ analysis deals with different pools and
might thus be unable to detect significant variation of a minor,
very localized production of 2-AG. As discussed by van
Esbroeck et al. (65), this could be the case of Abhd6 DAG lipase
activity. As another example, conditional deletion of colony
stimulating factor 1 (Csf1) selectively in spleen red pulp fibro-
blasts dramatically altered red pulp macrophage content with-
out any change in the level of circulating Csf1 (66). The same
reason might also explain the small but nonsignificant increase
of brain LPI observed in KO mice. Fine dissection of the brain
is a very delicate procedure because of rapid metabolic changes
occurring postmortem, as shown for instance for 2-AG (67),
and was thus not further emphasized.
From our preliminary observations, GDE3 KO mice do not

display any obvious phenotype. Hence, definitive answers con-
cerning the possible role of GDE3 in various tissues might
come from the observation in KO mice of subtle functional
changes known to involve endocannabinoids and/or the
GPR55 axis. This should be the object of future studies.
Another crucial development of our present finding will be to
identify which specific cells express GDE3 in the various con-
cerned tissues. Because of the lack of a specific antibody, this
has not been feasible in the present study. However, one can
speculate that GDE3 might deserve some very specific func-
tions within the immune system when comparing, for instance,
the high expression level observed in the spleen compared with
the very low signal detected in the lymph node (Fig. 7A). From
available literature data (68), Gdpd2 is preferentially expressed
in astrocytes compared with neurons, opening the view that
GDE3 could be an interesting player in neuroinflammation
(69). Finally, the high level of GDE3 in smooth muscle depicted
in Fig. 7A will deserve further investigation in the future,

because the cDNA extract used in that experiment (provided
by Takara Bio USA) was actually obtained from small intestine
mucosa and might just reflect the high expression level of
Gdpd2 in enterocytes (70).
The interpretation of our signaling studies suggesting GDE3

could act as a switch between GPR55 and CB1 is schematized
in Fig. 9B. Although definitive proof that this regulation occurs
in vivo is still lacking, this main conclusion is proposed as a
working hypothesis. Two specific remarks can be made: 1) a
similar switch is also suggested for 2-arachidonoyl LPA
through the action of ecto-lipid phosphate phosphatases, which
display a membrane topological organization reminiscent of
GDE3 (13, 71–73), and 2) the observed switch reinforces the
link between the endocannabinoid system and GPR55, which
was shown to form heteromers with both CB1 and CB2
(74, 75).
Finally, three additional points are worth mentioning. First,

in their recent study also describing GDE3 as an ecto-LPI-PLC,
Tsutsumi et al. (29) provided evidence that the same switch
between GPR55 and cannabinoid signaling could be involved in
the maturation of osteoblasts. They also suggested that GDE3
might provide 2-oleoylglycerol from the corresponding LPI to
stimulate the fat sensor receptor GPR119. We did not find any
accumulation of 2-oleoylglycerol in the two organs from GDE3
KOmice explored for monoacylglycerol content. However, the
gut and pancreas seem more appropriate for future studies
dealing with that question. The second point concerns lyso-
phosphatidyl-b-D-glucoside, which displays a high degree of
structural similarity with LPI (Fig. S1) and was shown tomodu-
late astrocyte-dependent guidance of spinal cord sensory axons
via GPR55 (19, 20). Unfortunately, this compound was not
available for our present study, but it will be interesting to eluci-
date whether this rather close analog of LPI is also a substrate
of GDE3. Last, as mentioned before, GDE2 and GDE3 are also
known to hydrolyze glycosyl-PI anchors in various systems,
with functional consequences related to the release of cell sur-
face proteins such as RECK, glypican, urokinase receptor, or
CNTFRa (30–33). If the interpretation of the data is straight-
forward for GDE2, which did not reveal any activity against
lysophospholipids, the situation is more complex for GDE3. In

Figure 9. Role of GDE3 in 2-AG synthesis and as a switch between GPR55 and the cannabinoid receptor. A, the three major phosphoinositides, phos-
phatidylinositol (PI), PI 4-phosphate (PIP), and PI-bisphosphate are in permanent interconversion through four steps of phosphorylation-dephosphorylation.
The canonical pathway of 2-AG synthesis involves PIP2 cleavage by PLCb, followed by removal of stearic acid from the sn-1 position of diacylglycerol (DAG) by
DAG lipase a (DAGLa). The alternative pathway requires PI hydrolysis by a phospholipase A1 (PLA1), either DDHD1 for an intracellular reaction or an extracellu-
lar lipase. GDE3 then produces 2-AG from the 2-arachidonoyl LPI species. B, as shown by data from Fig. 6, GDE3 is able to convert GPR55 signaling evoked by
LPI into CB2 activation by 2-AG. The three proteins are not represented in the same membrane because the depicted exchanges might involve membranes
from the same or from neighboring cells. Although not shown in this study, CB1 could also be emphasized in the switching event.
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particular, the two latter studies dealing with GDE3 observed a
decreased proliferation promoted by GDE3 in two different cell
models (32, 33). It will be interesting to revisit the contribution
of LPI-PLC activity to these events, keeping in mind the role of
the LPI-GPR55 axis in the control of cell proliferation (13–16,
55, 76).
In conclusion, although an alternative pathway of 2-AG syn-

thesis was suggested in a number of reviews, current evidence
in this paper that GDE3 acts as an ecto-PLC specific of LPI
both in vitro and in vivo should stimulate a number of studies
aimed at identifying functional relevance of this novel pathway.
Molecular tools and transgenic mice models will certainly
reveal interesting consequences of this signaling switch occur-
ring within the endocannabinoid system.

Experimental procedures

Plasmids

ORF DNA sequences encoding human GDE3 (NM_017711.3,
hGDPD2), murine GDE2 (NM_201352, mGDPD5), and human
CB2 (NM_001841, hCNR2) were obtained from Thermo Fisher
Scientific ABgene; human GPR55 (NM_005683.2) was from Ori-
Gene Technologies.
GDE3 ORF was used either in pCMV-SPORT6 expression

vector or subcloned into pEGFP-N1 or pmRFP1-N1 vector
(Clontech Laboratories). Corresponding plasmids will be
referred to as GDE3, GDE3-GFP, and GDE3-RFP, respectively.
An R230Amutant of GDE3 was prepared using the QuikChan-
geTM site-directedmutagenesis kit (Stratagene) and subcloned
into pEGFP-N1 or pmRFP1-N1 vector as described above.
These will be referred to as GDE3-R230A, GDE3-R230A-GFP,
andGDE3-R230A-RFP, respectively.
Similarly, GPR55 in pCMV6-XL5 vector, GDE2 in pCMV-

SPORT6 vector, and CB2 in pPCR-Script Amp SK1 vector
were subcloned into pEGFP-N1 vector and used as GPR55-
GFP, GDE2-GFP, and CB2-GFP, respectively.
Primers used for subcloning and for mutagenesis are listed in

Table S1.
Two GDE2 mutants (C25S and Q260E) in pEGFP-N1 vector

were prepared by GeneCust (Ellange, Luxembourg).

Cell culture

HEK293T cells were maintained in complete DMEM, 10%
(v/v) FCS, and 1% (w/v) penicillin-streptomycin. The cells were
transfected with lipofectamine (Invitrogen, Thermo Fisher Sci-
entific) according tomanufacturer’s instructions.
Chinese hamster ovary (CHO) cells stably transfected with

CB2 ORF (CHO-CB2) or GPR55 ORF (CHO-GPR55) were
kindly provided by Dr. Christine Labit-Lebouteiller (Sanofi-
Aventis, Toulouse, France). CHO-CB2 cell line was cultured in
MEMwithout ribo-deoxyribonucleoside supplemented by 10%
(v/v) dialyzed FCS and 1% (w/v) penicillin-streptomycin. CHO-
GPR55 cells were maintained in F12 medium complemented
with 10% (v/v) FCS, blasticidin S (30 mg/ml), and hygromycin B
(500mg/ml).

Animals

Male mice with Gdpd2 disruption on X-chromosome
(Gdpd2-/0, referred to as GDE3 KO) and female Gdpd21/2

mice (Lexicon, TF0250) were purchased from Taconic. They
were backcrossed onto C57BL/6J (Charles River, France) for 10
generations. They were housed in our animal facility and males
of 8–12 weeks of age were used for all experiments, which were
performed in accordance with national and European regula-
tions and institutional guidelines. Mouse experimental proto-
cols were approved by the local ethics committee (approval
CEEA-122 2014-62).

Crude membrane preparation

Cells were scrapped at 4 °C in lysis buffer containing 100 mM

Tris-HCl (pH 7.4), 5 mM EDTA, 0.5 mM PMSF, 50 mg/ml leu-
peptin, and 10 mg/ml aprotinin and disrupted by sonication at
4 °C. The supernatant was centrifuged at 100,000 3 g for 1 h.
The pellet was suspended by short sonication in lysis buffer.
Mice were sacrificed by cervical dislocation and tissues were

homogenized at 4 °C in lysis buffer using Ultraturax. Homoge-
nates were centrifuged at 1,500 3 g for 20 min, the supernatant
was then centrifuged at 100,000 3 g for 1 h, and the pellet was
suspended in lysis buffer as described above for cell membranes.
Protein concentrationwas evaluated according to Bradford (77).

Western blotting

Membrane samples obtained from transfected HEK293T
cells (10 mg of protein) were separated by SDS-PAGE (10%, w/
v), transferred to nitrocellulose, and incubated overnight at 4 °C
in a 1:1,000 dilution of affinity-purified anti-human GDPD2
mouse polyclonal antibody (Abnova). Rabbit anti-mouse IgG
coupled to horseradish peroxidase (Sigma-Aldrich) was used as
a secondary antibody at 1:10,000 dilution.

Synthesis of [3H]Ins-LPI

[Inositol-2-3H]-PI ([3H]Ins-PI) was purchased from Perki-
nElmer France and mixed with soybean PI (Avanti Polar Lip-
ids). [3H]Ins-PI (0.25 GBq3mmol21) was incubated with Cro-
talus adamanteus phospholipase A2 and 1-acyl-[3H]LPI was
obtained as previously published (37). To prepare 2-acyl-[3H]
LPI, bovine liver PI (1.25 mmol) was mixed with [3H]Ins-PI and
incubated for 20 min at 37 °C with lipase from Rhizopus arrhi-
zus (Sigma-Aldrich, 10 mg) in 100 mM borate buffer (pH 6.5)
containing 5 mM CaCl2 and 0.2% (w/v) sodium deoxycholate.
After lipid extraction according to Bligh and Dyer (78), the
upper water/methanol phase was loaded onto a C18 Sep-
PakTM cartridge and 2-acyl-[3H]Ins-LPI was eluted with pure
methanol. Cold 2-acyl LPI used in experiments dealing with
cAMP determination in CHO-CB2 cells was prepared by the
same method with omission of [3H]Ins-PI. Purity of the two
LPI was assessed by TLC on silica gel (Merck) using chloro-
form/methanol/water (65/25/4, v/v/v) as a solvent after colora-
tion with Zinzadze reagent (79) and their concentration was
measured by total phosphorus determination using a modifica-
tion (80) of the procedure of Fiske and Subbarow (81).
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Synthesis of [3H]LPC

Phosphatidylcholine, L-a-Dipalmitoyl, and [Choline-
Methyl-3H] ([3H]phosphatidylcholine, 0.25 GBq3mmol21)
from PerkinElmer France were converted into [3H]LPC by
Crotalus adamanteus phospholipase A2 as described above
for [3H]LPI.

LysoPLC activity

For routine in vitro determination of LPI-PLC activity, [3H]
LPI was incubated at 37 °C with membrane protein in 0.1 ml of
100 mM Tris-HCl (pH 7.4) containing 2 mM CaCl2. Incubation
time, membrane protein, and substrate concentrations are indi-
cated in the figure legends. The reaction was stopped by succes-
sive addition of 0.2 ml of BSA (Sigma-Aldrich, 2%, w/v) and 0.3
ml of 10% (v/v) HClO4. The mixture was incubated for 15 min at
4 °C and centrifuged for 5 min at 10,0003 g at 4 °C. Supernatant
radioactivity was determined by scintillation counting.
Alternatively, [3H]LPC (1 mM final concentration) was used

as substrate, and the reaction proceeded in the same way as
with [3H]LPI.
Ecto-LPI-PLC activity and [3H]LPI uptake were assayed

upon addition of [3H]LPI to confluent cell cultures as described
by Volwerk et al. (37).

HPLC analysis of water-soluble compounds generated by GDE3

At the end of the incubation, the lipids were extracted (78) in
the presence of 0.1 M HCl, the upper water-methanol layer was
dried under nitrogen and dissolved in water, and the extracts
were then loaded onto an HPLC anion exchange column (Parti-
sphere SAX, Whatman) essentially as described (82). Briefly, the
elutionwas performed at a flow rate of 1ml/min using the follow-
ing gradient: 0% 0.1 M (NH4)2HPO4 for 5 min, 0–10% 0.1 M

(NH4)2HPO4 for 10 min, 10–30% 0.1 M (NH4)2HPO4 for 40 min,
30–100% 0.1 M (NH4)2HPO4 for 50 min, and 50–55% 0.1 M

(NH4)2HPO4 for 55 min. The radioactivity was quantified using a
continuous flow in-line scintillation detector (Packard 500TR).
The following standards were prepared to compare with the

chromatographic behavior of the water-soluble product of [3H]
LPI: pure [3H]Ins (PerkinElmer France), GP[3H]Ins obtained by
methylamine hydrolysis (83) of [3H]Ins-LPI, cyclic [3H]Ins-1,2-
phosphate (cInsP) produced by incubation of [3H]Ins-PI with
Bacillus cereus PLC (84), or [3H]Ins-1-phosphate (Ins1P) gen-
erated upon incubation of [3H]cInsP with 1M HCl for 3 min at
80 °C (84). In that case, an unknown degradation product was
also rapidly eluted from the column (see Fig. 2J).

Mass spectrometric quantification of 2-AG generated in vitro

Nonlabeled 2-acyl LPI (50 mM) was incubated with mem-
branes from HEK293T cells transfected with GFP or GDE3-
GFP (20mg) for 60min at 37 °C. At the end of the reaction, 1mg
of 1-heptadecanoyl-sn-glycerol (Avanti Polar) was added and
lipids were extracted (78) using CH2Cl2 instead of CHCl3. The
lower organic phase was used for LC-MS/MS analysis.
The same procedure was applied with four other lysophos-

pholipids purchased from Avanti Polar: 1-myristoyl-sn-glyc-
ero-3-phosphocholine, 1-myristoyl-sn-glycero-3-phosphoetha-

nolamine, 1-myristoyl-sn-glycero-3-phosphoglycerol, and 1-
oleoyl-sn-glycero-3-phosphoserine.
LC-MS/MS analysis of 2-AG and 1-AG was performed as

previously described (85). Briefly, 2-AG and 1-AG were sepa-
rated on a ZorBAX SB-C18 column (2.1 mm, 50 mm; 1.8 mM)
using Agilent 1290 Infinity HPLC system coupled to an ESI-tri-
ple quadruple G6460 mass spectrometer (Agilent Technolo-
gies). Data were acquired in Single Reaction Monitoring mode
with optimized conditions (ion optics and collision energy).
Peak detection, integration, and quantitative analysis were
done using Mass Hunter Quantitative analysis software (Agi-
lent Technologies) based on calibration lines built with com-
mercially available standards (Cayman Chemical).

Quantification of 2-AG and LPI levels in the spleen and brain

Tissues (spleen and brain) were homogenized in water (2 ml)
and lipids were extracted, following acidification, in the pres-
ence of internal standards, by adding 8 ml of dichloromethane
(CH2Cl2) and 4 ml of methanol (MeOH). Following vigorous
mixing and sonication, the samples were centrifuged and the
organic layer was recovered and dried under a stream of N2.
The resulting lipid extracts were purified by solid-phase extrac-
tion using silica and eluted with a hexane-isopropanol mixture
for 2-AG and methanol for LPI. The resulting lipid fractions
were analyzed by HPLC-MS using an LTQ-Orbitrap mass
spectrometer (Thermo Fisher Scientific) coupled to an Accela
HPLC system (Thermo Fisher Scientific). Analyte separation
was achieved using a C-18 Phenomenex pre-column and a
Kinetex LC-18 column (5 mM, 4.6 3 150 mm) (Phenomenex).
Themass spectrometer was calibrated formass accuracy before
each series of injections. For data acquisition and processing,
the Xcalibur® software (Thermo Fisher Scientific) was used.
The signals of the lipids were normalized using the signal
obtained for the corresponding internal standard (2-AG-d5
and 17:1 LPI).
For 2-AG, as previously described (86), mobile phases A and

B consisted of methanol-H2O-acetic acid 75:24.9:0.1 (v/v/v)
and methanol-acetic acid 99.9:0.1 (v/v), respectively. The gradi-
ent (0.5 ml/min) was designed as follows: transition from 100%
A to 100% B linearly over 15 min, followed by 45 min at 100% B
and subsequent re-equilibration at 100% A. An atmospheric
pressure chemical ionization source was used, with the vaporiz-
ing temperature set at 300 °C; the corona discharge current was
set at 5 mA. The capillary temperature and voltage were set at
250 °C and 20 V, respectively.
For LPI, as previously described (87), mobile phases A and B

consisted of methanol-H2O-ammonium hydroxide 50:49.9:0.1
(v/v/v) and methanol-ammonium hydroxide 99.9:0.1 (v/v),
respectively. The gradient (0.4 ml/min) was designed as follows:
starting at 100% A and reaching linearly 100% B in 30 min, this
was followed by 15min at 100% B before re-equilibrating at 100%
A. LPI species were analyzed in the negative mode. The ESI spray
voltage was set at 5.0 kV, the capillary temperature was set at
270°C, and the sheath gas flowwas set at 40 arbitrary units.
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RT-qPCR

RNA and cDNA panels were from Takara Bio USA. Reverse
transcription was performed with 1 mg of total RNA using M-
MLV (Promega) and 25 mM Hexamers (Fermentas) in a 20-ml
final reaction volume, according to the manufacturer’s proto-
col. Quantitative PCR was performed using LightCycler 480
DNA SYBR Green I Master reaction mix (Roche LifeScience)
with primers provided fromGenecopoeia, USA.
Reactions were done on 96-well plates. The amplification

program involved initial denaturation at 95 °C for 5 min, fol-
lowed by 40 cycles at 95 °C for 10 s and at 60 °C for 40 s, using
the LightCycler® 480 System. The reference gene tubulin was
used for normalization and the method of 22DDCt was applied
for comparison.

cAMP determination

CHO-CB2 cells were seeded in 48-well plates at 50,000 cells/
well. The day after, they were transfected with GFP plasmid
(mock conditions), GDE3-GFP, or GDE3-R230A-GFP using
lipofectamine LTX (Invitrogen) and incubated for 48 h at 37 °C
at 5% CO2 in humidified air. The cells were stimulated by for-
skolin (7 mM)/3-isobutyl-1-methylxanthine (IBMX, 200mM) for
20 min at 37 °C in the absence or presence of 2-AG, 2-acyl LPI,
and/or AM630 at concentrations indicated in figure legends.
The incubations were stopped by addition of 0.2 ml of 0.1 M

HCl and cAMP was determined using direct cAMP ELISA kit
(Enzo Life Sciences).

Calcium flux

CHO-GPR55 (60,000 cells) were seeded in 35-mm glass base
dishes (Iwaki America) in complete medium. The day after,
they were transfected with GFP, GDE3-GFP, or GDE3-R230A-
GFP using lipofectamine LTX (Invitrogen) according to the
manufacturer’s instructions. After 48 h of incubation, cells in
Hanks’ balanced salt solution were loaded with 10 mM Fura-2
acetoxymethyl ester (Molecular Probes) for 45 min at 37 °C.
The cells were stimulated by LPI diluted in Hanks’ balanced
salt solution (5 mM final concentration), followed by ionomycin
(1 mM final concentration). Fluorescence was measured on a
Zeiss Axiovert 200M inverted microscope equipped with a
CCD camera (CoolSNAP HQ, Photometrics, Tucson, AZ), an
arc xenon lamp, and a computer-controlled monochromator
(CAIRN Optoscan, Kent, UK) at 37 °C, 5% CO2. The cells were
consecutively excited at 340 and 380 nm at 10-s intervals by
means of themonochromator, and emission at 510 nmwas col-
lected with the CCD camera. The camera output was analyzed
using the custom calcium-imaging software MetaFluor (Uni-
versal Imaging, West Chester, PA), allowing to calculate the
340:380 ratio for each individual cell at every time point.

Confocal experiments

Cells plated on glass cover slips were transfected as described
above and fixed for 10 min at room temperature with 3% para-
formaldehyde. The samples were mounted and examined using
a Carl Zeiss LSM 710 confocal microscope (Carl Zeiss, Jena,
Germany) with a 633 Plan-Apochromat objective (Numerical

Aperture 1.4, oil). An argon laser at 488 nm was used to detect
Alexa 488 fluorochrome. To detect red fluorescence, a diode
laser at 641 nmwas used.

Statistical analysis

Values are given as means 6 S.E. or S.D. The statistical sig-
nificance of differences was estimated by unpaired t indepen-
dent test after verifying a Gaussian distribution of data according
to D’Agostino-Pearson omnibus normality test and a nonsignifi-
cant difference of variances between samples. When normality
could not be demonstrated, Mann Whitney nonparametric test
was used. All tests were available fromGraphPad Prism software.
Differences were considered as significant at p, 0.05.
Sequence analysis of PLC and GDE in Fig. 3 was achieved

according to Rao and Sockanathan (88).

Data availability

All data are contained within the article and in the sup-
porting information.
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