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Abstract
Stress Granules (SGs) are membraneless cytoplasmic RNA granules, which contain translationally stalled mRNAs, associated 
translation initiation factors and multiple RNA-binding proteins (RBPs). They are formed in response to various stresses and 
contribute to reprogramming of cellular metabolism to aid cell survival. Because of their cytoprotective nature, association 
with translation regulation and cell signaling, SGs are an essential component of the integrated stress response pathway, a 
complex adaptive program central to stress management. Recent advances in SG biology unambiguously demonstrate that 
SGs are heterogeneous in their RNA and protein content leading to the idea that various SG subtypes exist. These SG variants 
are formed in cell type- and stress-specific manners and differ in their composition, dynamics of assembly and disassembly, 
and contribution to cell viability. As aberrant SG dynamics contribute to the formation of pathological persistent SGs that are 
implicated in neurodegenerative diseases, the biology of different SG subtypes may be directly implicated in neurodegenera-
tion. Here, we will discuss mechanisms of SG formation, their subtypes, and potential contribution to health and disease.
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Introduction

Ribonucleoprotein (RNP) granules are membraneless orga-
nelles that are indispensable for cellular metabolism. They 
are distributed diffusely throughout the cell and regulate 
gene expression under normal and stress conditions. Recent 
finding also implicates RNP granules in cell-type specific 
transcriptional programing that drives RNA synthesis dic-
tated by dynamic physiological demands [1]. Components of 
RNA granules characteristically promote multivalent inter-
actions to achieve higher order aggregation into sub-cellular 
non-membrane bound compartments important for assembly 
and function of RNPs [2]. Their content and sub-cellular 
location define their function. Stress granules (SGs) assem-
ble during conditions of cellular stress in the cytoplasm to 

mediate pro-survival adaptive response. Many SG-associ-
ated RBPs are highly conserved from yeast to human [2, 
3]. SG assembly minimizes cellular energy demands and 
directs the resources to maintain ribostasis and proteostasis. 
Also, their disassembly upon removal of stress is essential to 
restore normal cellular metabolism. In addition to the stress 
response, SGs are also involved in signaling pathways and 
modulation of viral infections [4, 5].

The non-dividing property and characteristic morphology 
and physiology of neurons make them highly susceptible to 
aggregation of selected SG components that may mature 
to pathological aggregates. These pathological aggregates 
drive disease progression in amyotrophic lateral sclero-
sis (ALS), frontal temporal dementia (FTD), Alzheimer’s 
disease (AD) and other neurodegenerative diseases [6, 7]. 
Disease-associated RBPs like TDP-43, FUS, Tau, etc. are 
SG components, in which mutations alter their functional 
and structural properties [8]. It has been proposed that 
chronic accumulation and maturation of mutant proteins in 
cytoplasmic foci in neurons cause insoluble, amorphous, 
and cytotoxic SGs that promote neuronal degeneration and 
apoptosis [9, 10]. This review examines the mechanism of 
SG dynamics, subtypes of SGs, and their implication in neu-
rodegenerative diseases.
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RNA granules in different cellular 
compartments

RNA granules were first identified as dark staining polar 
‘Germ granules’ involved in differentiation and develop-
ment in small insects [11, 12]. Since then, these RNA-con-
taining non-membranous organelles have been discovered 
and described in somatic cells as RNP granules associated 
with the regulation of post-transcriptional gene expres-
sion. These ubiquitous RNPs are indispensable for RNA 
metabolism and are enriched in proteins involved in RNA 
processing, transport, translation, storage, and decay [2, 
12]. The first discovered germ granules have been exten-
sively studied in Drosophila, Caenorhabditis elegans and 
zebra fish. These germline foci contain non-coding RNAs 
(ncRNAs), mRNAs and proteins associated with germline 
development and stem cell maintenance [13]. Cajal bodies 
were the next RNA-rich foci identified after germ granules 
named after their discoverer Ramòn Cajal [14]. These are 
nuclear RNA granules enriched in small nuclear RNAs 
(snRNAs), small nucleolar RNAs (snoRNAs) and small 
Cajal-specific RNAs (scaRNAs) [15]. Cajal bodies are 
associated with RNA transcription, processing and the 
assembly of other snRNP complexes [14].

Stress granules (SGs) and processing bodies (PBs) are 
two common cytoplasmic membraneless foci associated 
with mRNA metabolism. SGs are enriched with polyade-
nylated mRNAs, while mRNAs with short poly(A) tails are 
associated with PBs. These two types are proposed to serve 
diverse functions in cell signaling and the stress response 
[16]. Their role in reprogramming gene expression and dis-
ease is discussed in the later part of this review. Neuronal 
granules (NGs) are a specific class of cytoplasmic RNA 
granules associated with spaciotemporal gene expression 
in both developing and mature neurons. The sub-cellular 
localized translation associated with NGs is the determi-
nant of development, synapse formation, neuronal plastic-
ity and memory formation [17, 18]. NG associated RBPs 
also significantly overlap with SG components [18]. Both 
nuclear and cytoplasmic RNPs modulate RNA turnover and 
protein synthesis in response to developmental and environ-
mental cues [19]. A common feature of these membraneless 
granules is that they are dynamic and constantly exchange 
molecules with the surrounding cytoplasm or nucleoplasm.

SGs and PBs in translational control

SGs and PBs are two well studied RNPs in context stress-
induced reprograming of protein synthesis. SGs are 
phase-dense RNPs generated consequent to the global 

translational inhibition during stress response. These spa-
tially condensed cytoplasmic foci are enriched in polyade-
nylated mRNAs, 40S subunits, translation initiation fac-
tors (eIF2, eIF3, eIF4A, eIF4G and eIF4E) and RBPs like 
PABP1, G3BP1/2, TIA-1/R, FMRP, FXR1 and CPEB [3, 
20]. The presence of polyadenylated mRNAs, 40S subunits 
and initiation factors hints at selective sequestration of 
majority of cellular mRNAs into SGs, and exclusion from 
SGs of other mRNAs needed for the stress response. SGs 
reversibly sequester translationally stalled housekeeping 
transcripts to maintain transcriptome homeostasis, mini-
mize energy expenditure and divert metabolic resources 
to repair stress-induced damage [5, 21]. PBs are another 
stress stimulated cytoplasmic RNPs, which unlike SGs are 
enriched with deadenylated transcripts and components of 
mRNA decay machinery [22, 23]. Previously described as 
‘XRN1 foci’, PBs contain components of the decapping 
complex (Dcp1/2, Rap55/Lsm14, DDX6/RCK1, CCR4-
Not1 complex) and also contain components of nonsense 
mediated mRNA decay (NMD) like Upf1/2, in addition to 
the 3′ exonuclease Xrn1 [22]. Certain RBPs that are found 
in both SGs and PBs are implicated as sites of mRNA 
triage employing distinct active components and mecha-
nisms [3]. Unlike SGs, PBs also exist under normal con-
ditions but their number and size increases with stress. 
Kroschwald et al. used chemical 1,6-hexanediol to differ-
entiate between liquid-like and solid-like cell aggregates. 
The work in yeast cells revealed that PBs behave more like 
liquid droplets while SGs are more solid-like amorphous 
protein aggregates [24]. However, in mammalian cells 
SGs have liquid-like characteristics different from yeast 
[24]. This could be due a to a different transcriptomic and 
proteomic landscape. Both SGs and PBs exist in dynamic 
equilibrium with active translation and are dependent on 
relative concentration of non-ribosome associated tran-
scripts in the cytoplasm [23, 25]. Inhibition of translation 
initiation under conditions of cellular stress results in the 
accumulation of pre-initiation complexes (PICs) and non-
polysome associated transcripts in the cytoplasm which 
favors SG and PB assembly. Drugs like cycloheximide and 
emetine that ‘lock’ the ribosomes on mRNAs promote SG 
and PB disassembly, while premature chain terminating 
drugs like puromycin that release ribosomes from mRNAs 
promote assembly of these granules [26, 27]. Interestingly, 
formation of these two mRNP granules is not a require-
ment for global translation inhibition under stress [23]. 
For the purpose of this review, we will focus only on SGs, 
as they are more relevant type of RNA granules linking 
adaptive stress response to neurodegenerative disorders.
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Liquid–liquid phase separations in RNP 
granule dynamics

RNA granules assemble as distinct dense liquid phase sub-
compartments formed by liquid–liquid phase separation 
(LLPS) [28, 29]. The liquid–liquid phase separations are 
the result of both specific and promiscuous RNA:RNA, 
RNA:protein and protein–protein interactions that are mul-
tivalent, weak and transient (Fig. 1A) [28, 30]. The use of 
biotinylated isoxazole (b-isox) to selectively precipitate the 
proteins associated with the RNA granules has helped identify 
the RNA granule components. RNA plays a central role in core 
recruitment of proteins to RNPs in general. While over 1500 
RBPs have been identified, RNA promotes critical interactions 
in both cis and trans to assemble RNPs [3, 31]. Moreover, 
under physiological buffer conditions RNAs are capable of 
self-assembly in vitro [32]. This intrinsic property of RNA 
is essential for its assembly into phase-separated foci, which 
is assisted by RBPs. Neuropathology-associated RNA repeat 
expansions have been shown to promote assembly of patho-
genic granules independent of stress. The direct correlation 
between length of RNA repeat expansions and disease severity 
points to a vital role of RNA in pathogenic RNP assembly and 
disease progression [10, 33].

Proteins enriched in these RNP foci are commonly char-
acterized by the presence of a defined RNA-binding domain 
(e.g., RNA recognition motif (RRM)) and unstructured intrin-
sically disordered protein regions (IDPRs) and closely related 
low-complexity domains (LCDs) [34, 35]. The low-complexity 
domains are enriched in amino acids like alanine, glycine, 
lysine, arginine, glutamine, proline and serine which promote 
disorder [28]. The flexible LCDs and IDPRs are capable of 
aggregation and templating upon interacting with self and 
other molecules, especially RNA. Several SG components like 
G3BP1/2 and TIA-1/R have LCDs that contribute to phase 
transition to form dense cytoplasmic RNP foci [36, 37]. Inter-
estingly, many small ribosomal subunit proteins are predicted 
to contain LCDs. They may facilitate LLPS and/or recruit SG 
nucleators like G3BP, which can directly interact with the 40S 
ribosomal subunit through its RGG motif and trigger assem-
bly into larger and more stable mRNPs [16, 38, 39]. Several 
neurodegeneration-associated proteins such as TDP-43, FUS, 
TAF15, EWSR1 and others also contain prion-like domains 
(PrLDs) which are LCDs with amino acid motif similar to 
prion domain in yeast [40, 41]. These LCD-containing proteins 
also promote phase separation and pathogenic accumulation 
of protein:RNA aggregates in the nucleus and cytoplasm [41].

SG assembly and dynamics

SG assembly is triggered by bulk inhibition of transla-
tion initiation. This stress-mediated translational repres-
sion can be either phospho-eIF2α (p-eIF2α) dependent 
or independent. P-eIF2α mediated suppression of pro-
tein synthesis occurs as a result of phosphorylation of its 
amino acid serine at position 51 (Ser51) by one of the 
four stress-specific kinases (HRI, PERK, GCN2 and PKR). 
Phosphorylation at this position inhibits GTP exchange 
of the eIF2α/GTP/tRNAi

Met ternary complex and prevents 
the  tRNAi

Met delivery to the 40S ribosomal subunit [42, 
43]. One well-studied mechanism of p-eIF2α independ-
ent inhibition of translation under stress in through the 
mTOR (mammalian target of rapamycin) pathway. Under 
normal growth conditions mTOR constitutively phospho-
rylates eIF4E-binding proteins (4E-BPs) preventing their 
association with cap-associated eIF4E. Nutrient starvation 
and other metabolic stresses inactivate mTOR resulting 
in non-phosphorylated 4E-BPs binding to eIF4E and dis-
placing eIF4G/eIF4A from the mRNA cap binding eIF4F 
complex, thereby inhibiting cap-dependent translation [44, 
45]. Consequently, stress-mediated translational repres-
sion, whether p-eIF2α dependent or independent, triggers 
polysome disassembly and accumulation of non-translat-
ing mRNPs in the cytoplasm [46].

It is hypothesized that, under conditions of normal 
growth ‘nanoscopic’ cytoplasmic SG seeds consisting of 
RPBs with LCDs/IDPRs exist in equilibrium with sur-
rounding RNPs. Stress-induced repression of translation 
initiation stimulates assembly into phase-dense ‘micro-
scopic’ foci [38].The mRNAs released from polysomes 
and translation associated factors are actively targeted 
to these cytoplasmic foci. Such compartmentalization 
is aided by pre-assembled SG seeds (Fig. 1B). Contin-
ued nucleation of the mRNP foci results in the growth 
of phase-separated foci-enriched in RBPs which is pro-
moted by weak and transient intermolecular interactions. 
These intermolecular interactions are dynamic in nature, 
which is an intrinsic property of LCD/IDPR-containing 
proteins [5, 38]. Simultaneous assembly of less dynamic 
mRNP phase called ‘core’ surrounded by more dynamic 
‘shell’ results into the formation of large mature biphasic 
SGs. These SG ‘cores’ are sites of higher concentration of 
RNA and proteins surrounded by less concentrated com-
ponents in the ‘shell’. Intermolecular interactions between 
components of the ‘shell’ are weaker contributing to their 
less stable and more dynamic nature [47]. According to 
the ‘core first’ hypothesis, formation of large mature SGs 
results from fusion of mature cores, i.e. core assembly 
precedes SG maturation [48]. The ‘core first’ model of 
mRNP assembly was confirmed by proximity labelling and 
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sequencing approaches under heat shock induced stress 
in HEK293T cells where increased interactions between 
components was observed during early stages of granule 
formation. Evidently, interactions between ‘core’ proteins 
occur independent of stress [49]. Super-resolution micros-
copy approaches followed by validation with fluorescence 
recovery after photobleaching (FRAP) suggest that cores 
are dense, less liquid phase separated sub-compartments 
surrounded by a less stable ‘shell’ [47]. However, both 
‘core’ and ‘shell’ are in dynamic equilibrium with each 
other and with the surrounding cytoplasmic mRNPs [47, 
50].

SGs are dynamic by virtue of the protein component 
capacity to rapidly transition between phases. This charac-
teristic enables a rapid, transient and reversible response to 
stress. FRAP analysis unambiguously shows that SG pro-
teins like TIA-1, G3BP1, TTP and CPEB have a residence 
time in SGs in the range of 10–30 s, while less dynamic 
proteins like PABP, FXR1 and FMRP are recovered 30 s to 
few minutes post photobleaching [16, 51]. SG dynamics, 
as a function of protein exchange rates, is dependent on the 
cellular energy status, rates of translation reinitiation, pro-
tein and RNA modification profiles, chaperon activity and 
clearance by autophagy. Removal of stress favors resumption 
of protein synthesis, decreasing the pool of untranslating 
mRNPs and promoting translation of mRNPs released from 
SGs, thereby triggering their disassembly (Fig. 1B) [5, 38]. 
Recent work suggests that SG protein recruitment and rate 
of exchange is energy reliant. Activity of ATP-dependent 
MCM and RVB helicase complexes, conserved in yeast and 
mammals, promotes SG assembly [50]. Depleting cellular 
ATP by using inhibitors of glycolysis or oxidative phos-
phorylation decreases G3BP exchange thereby affecting 
its dynamics [50]. Interestingly, hypomorphic mutations in 
mammalian SG-associated ATPases cause faster disassem-
bly of SGs than wild-type upon removal of stress, probably 
by inhibiting ATP-dependent stable interactions between 

mRNPs in the phase-dense foci [48, 50]. However, the exact 
mechanisms of ATP-mediated modulation of SG dynamics 
is still unknown.

Remodeling of mRNPs by protein chaperons also affects 
SG dynamics. Mammalian SG components Hsp70 and 
Hsp40 are protein chaperons that modulate formation and 
resolution of granules. Functional defects in these chaperons 
delay assembly and reinitiation of translation [50, 52]. In 
yeast, decreased activity of the CCT chaperonin complex 
results in increased SG formation under conditions of heat 
shock [50, 53, 54]. ATP-dependent disaggregase complexes 
are also essential for maintaining the mRNP integrity and 
identity. Yeast disaggreases Hsp110 and most importantly 
Hsp104 play an essential role in the disassembly of SGs 
upon removal of acute stress. Mammalian cells do not 
express the homolog of yeast Hsp104, which could also 
explain the differences in yeast and mammalian SG physi-
cal states [24].

Protein and RNA modifications that impact intermo-
lecular mRNP interactions affect residence of SG protein 
components. Post-translational modification of several RBPs 
near or within the LCDs/IDPRs affect their association with 
granules (reviewed in [38]). For example, G3BP methyla-
tion represses while demethylation promotes SG assembly 
in vitro and in cells [55]. O-linked N-acetylglucoseamine 
(O-GlcNac) modification of several translation-associated 
proteins promotes their recruitment to mRNPs [38, 56]. The 
rate of clearance by autophagy also governs SG dynamics. 
Mutations that reduce ubiquitination and clearance of SG-
associated proteins result in less dynamic and more persis-
tent granules that underlie neuropathology [57–59]. Post-
transcriptional mRNA modification also aids SG assembly 
and contributes to adaptive translation. For example, oxida-
tive stress induces reversible methylation at position N6 of 
adenosines  (m6A) in the 5′UTR of mRNAs. This dynamic 
 m6A modification facilitates recruitment to SGs through the 
mammalian reader protein YTHDF3 which selectively rec-
ognizes these 5′UTR modifications [60].

Proteomic and transcriptomic heterogeneity 
among SG subtypes

Proteomic heterogeneity

SGs are compositionally heterogenous and serve diverse 
function under different stresses. Both p-eIF2α-dependent 
(formed by sodium arsenite or heat shock treatment) and 
independent (formed by eIF4A inhibitors or mTOR inac-
tivation) canonical SGs are enriched in PICs, 40S, ini-
tiation factors and RBPs, but lack eIF2 and eIF5 [5, 16]. 
These canonical SGs are dynamic and rapidly resolve 
upon removal of stress to reinitiate translation, therefore, 

Fig. 1  A Individual RNPs reversibly assemble into cytoplasmic foci 
triggered by physiological and environmental stimuli. The ‘liquid–
liquid’ phase separations (LLPs) into phase-dense foci are driven by 
weak and transient intermolecular interactions that are enriched in 
RBPs containing LCDs and IDPRs. Persistent RNP-inducing stimuli 
promote interactions between assembled RNPs to form denser, less 
liquid–liquid, ‘gel-like’ phase. B Cellular stress induces cytoplas-
mic nanoscopic SG seeds, enriched in RBPs, via electrostatic inter-
actions. The consequent inhibition of protein synthesis reversibly 
recruits non-translating mRNPs and additional RNA binding proteins 
to SG foci. The growth of phase separation results in the formation 
of mature and microscopic biphasic SGs consisting of more stable, 
less dynamic ‘core’ surrounded by less stable, more dynamic ‘shell’. 
The assembled SGs are in dynamic equilibrium with the surrounding 
polysomes. Removal of stress leads to resumption of protein synthesis 
and disassembly of SGs. The mRNPs are targeted for translation, thus 
causing the SGs to reduce in size and number to form nanoscopic SG 
seeds

◂
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playing a pro-survival cytoprotective role. Inhibitors of 
eIF4A helicase (like rocaglamide A) induce p-eIF2α 
independent non-canonical granules that recruit less 
poly adenylated mRNA, but include eIF2 and eIF5 [61]. 
Chemotherapy drugs like selenite target translational ini-
tiation by inactivating mTOR that promotes formation of 
eIF4E:4EBP1 complexes. The resulting non-canonical SGs 
lack eIF3 [38, 62]. eIF3 negative non-canonical granules, 
independent of eIF2α phosphorylation, are also induced 
under energy starvation and UV exposure. These non-
canonical SGs are less dynamic, pro-apoptotic and cyto-
toxic to cells (Fig. 2A) [61, 63]. Thus, the stress-specific 
heterogeneity of SGs may serve as a template for stress-
specific response. However, the differential recruitment of 
specific mRNAs and protein co-factors to each sub-type is 
a largely unexplored aspect of stress-specific SGs.

The diversity of SG components can be attributed to their 
biphasic nature [50].The relative concentration of some 
components like G3BP1/2 and poly(A) mRNA is higher in 
the core than in the shell. The shell components are more 
dynamic and shuttle rapidly between SGs and the cytoplasm 
[64]. According to proteomic studies, the LCD domain con-
taining protein G3BP1/2 is 30-fold more concentrated in the 
core and is capable of recruiting several proteins and poly(A) 
mRNAs [50]. Recruitment of poly(A) mRNA to the core as 
a stable sub-compartment may be important for assembling 
larger and more stable mRNPs for an efficient response to 
environmental cues. Mass spectrometry analysis of isolated 
G3BP-associated cores from arsenite or heat shock treated 
U2OS cells by Jain et al. catalogued 317 proteins associ-
ated with the resulting mRNPs. These included novel RBPs, 
components of translational machinery and unexpected pro-
teins involved in metabolism and cell signaling [50].

Proximity labeling-based proteomic approaches like 
APEX and BioID utilize transiently expressed SG com-
ponent fused with ascorbate peroxidase (APEX) or biotin 
ligase (BioID) as bait to covalently tag proteins in the close 
proximity with biotin [65, 66]. The biotinylated proteins 
can be affinity purified and identified by mass spectrometry 
analysis. The APEX approach is rapid, labeling proteins in 
minutes rather than hours like BioID [67]. These proxim-
ity labeling approaches provide a high-resolution method to 
profile previously unknown transient interacting partners in 
dynamic and compartmentalized mRNP granules. Applica-
tion of these methods, with some limitations, have identi-
fied > 150 novel SG interactors [68, 69]. The validated hits 
are enriched for RBPs consisting of higher percentage of 
LCDs as compared to the background proteome. The studies 
greatly highlight the stress- and cell type-specific diversity 
in the SG granules that is driven by heterotypic multiva-
lent interactions. The quantitative proteomic analysis of 
the SG-APEX data revealed that a network of SG protein 
interactions already exists in unstressed cells that enables 
assembly of large SGs under condition of stress [38, 68]. 
Markmiller et al. also applied APEX proximity labelling 
method to fly ALS/FTD in vivo models [68]. This study 
showed that a major sub-set of cytotoxic and pro-apoptotic 
SGs are enriched in mutant RBPs FUS and TDP-43, both 
implicated in neuropathogenesis.

Transcriptomic heterogeneity

High-resolution transcriptomic approaches combined with 
proteomics indicate stress- and cell-specific variation in tar-
geting of RNA to SGs (Fig. 2B). Khong et al. performed 
RNA-seq analysis on SG cores purified from yeast and mam-
malian cells exposed to oxidative stress. The data suggest 
that > 95% of yeast and > 78% of mammalian RNA content 
of SGs is mRNAs, with ~ 10–12% of bulk cytosolic RNA 
(both mRNA and ncRNA) localized to SGs [70]. Inter-
estingly, for 185 genes more than 50% of their cytosolic 
mRNAs were quantitatively enriched in SGs. Padrón et al. 
employed APEX-seq analysis in HEK293T cells using 
APEX2-fused eIF4A1, a DEAD-box RNA helicase and 
a conserved SG component, and showed that targeting of 
mRNAs to SGs is stress-dependent. For example, poorly 
translating, longer transcripts were enriched in SGs in cells 
heat-shocked over longer duration. This set of mRNAs 
enriched in SGs significantly overlaps with the ones identi-
fied by Khong et al. in SGs of U2OS cells exposed to another 
p-eIF2α dependent arsenite stress [49]. Thus, length and 
association with ribosomes determine preferential localiza-
tion of mRNAs to p-eIF2α-induced canonical SGs. How-
ever, these two factors did not corelate with mRNAs targeted 
to SGs induced by p-eIF2α independent hippuristanol treat-
ment [49]. Another study suggests that transcripts containing 

Fig. 2  Stress-specific proteomic (A) and transcriptomic (B) hetero-
geneity defines SG sub-types and dynamics. Stress induced canoni-
cal stress granules can be either (a) p-eIF2α dependent triggered 
through stress-activated eIF2α kinases (GCN2, HRI, PERK or PKR) 
or (b) p-eIF2α independent (by mTOR activation or eIF4A inhibi-
tors). Global translational repression prompts reversible recruitment 
of non-translating mRNPs and other proteins to SGs. Key SG com-
ponents include poly(A) mRNAs, translation machinery components 
and RBPs (shown in red). The canonical stress granules are more 
dynamic and cytoprotective in nature. p-eIF2α independent SGs 
induced by glucose starvation, chemotherapeutic drugs, UV and other 
xenobiotic agents usually lack one or more key components of the 
canonical SGs. A common feature of non-canonical p-eIF2α inde-
pendent SGs, which are less dynamic and cytotoxic, is the absence 
of translation initiation factor eIF3 (right panel, shadowed). B The 
stress-specific transcriptomic heterogeneity among SG is a function 
of differential association of mRNAs with RBPs. p-eIF2α dependent 
heat shock and oxidative stresses promote increased targeting of long 
poorly translated mRNAs (blue and green) to SGs, while ER stress 
causes preferential association of mRNAs with AU-rich elements 
(red and yellow) to SGs. At the same time, p-eIF2α independent non-
canonical granules are depleted of mRNAs associated with eIF3 (pur-
ple)

◂
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AU-rich elements (AREs) are more likely to be target to SGs 
under endoplasmic reticulum (ER) stress [71]. These studies 
underscore stress-specific transcriptomic heterogeneity of 
mRNPs associated with SG formation.

It is important to highlight that the RBPs in considera-
tion, in general, do not have a well-defined RNA binding 
motif and bind RNA promiscuously. However, certain RBPs 
enriched in SGs exhibit preferential RNA binding that may 
further contribute to their transcriptomic heterogeneity. 
Examples of such RBPs are structurally related TIA-1 and 
TIAR proteins. These are general translational repressors 
and SG proteins [72, 73]. These proteins shuttle between the 
nucleus and cytoplasm and are involved in RNA metabolism 
on the level of transcription, alternative splicing, transla-
tional regulation and mRNA silencing [74]. Both of these 
proteins have three RNA recognition motifs (RRM 1–3) 
and a C-terminal prion-related domain (PRD) [75, 76]. The 
RNA recognition motif 2 (RRM2) is implicated in binding 
U-rich transcripts and contribute to translational repression 
by binding to mRNAs with 3′UTRs enriched in AU-rich ele-
ments (AREs) [77, 78]. These ARE containing transcripts 
are implicated in the immune response and proliferation 
[77]. Moreover, Damgaard et al. showed that TIA-1/R also 
associate with mRNAs with a 5′ terminal oligopyrimidine 
(5′TOP) motif through RNA immunoprecipitation experi-
ments. 5′TOP transcripts predominantly include mRNAs 
encoding ribosomal proteins and translation factors [79]. 
These mRNAs are characterized by relatively short unstruc-
tured 5′UTRs with 4–15 nucleotide CU-rich element [72]. 
P-eIF2 mediated translational repression under conditions 
of stress causes translocation of TIA-1 to the cytoplasm, 
where it escorts associated mRNAs and non-canonical pre-
initiation complexes to SGs [26, 80]. Interestingly, trans-
location of TIA-1 to the cytoplasm is not required for SG 
assembly, but its availability greatly impacts kinetics and 
recruitment of mRNA to SGs [81]. TIA-1/R bind to transla-
tionally stalled 5′TOP mRNPs and target them to SGs under 
conditions of amino acid starvation [79, 82]. In another 
study, Lee et al. used transcriptome wide photoactivable 
ribonucleoside enhanced crosslinking and immunoprecipi-
tation (PAR-CLIP) analysis to identify mRNAs bound to 
eIF3, a translation initiation factor that is commonly pre-
sent in canonical but absent in non-canonical cytotoxic SGs. 
The PAR-CLIP technique uses UV to covalently crosslink 
RBPs with their target RNAs that have been labelled with 
photoactivable ribonucleosides. The cross-linked RNA–pro-
tein complexes are immunoprecipitated using an anti-body 
against the protein of interest followed by transcriptomic 
approaches to investigate target mRNAs [83]. The data sug-
gest that eIF3 preferentially binds a sub-set of protoonco-
genic transcripts at their 5′UTRs, with the eIF3d subunit 
having  m7GTP cap binding activity [84]. The differential 
binding of eIF3 may further contribute to compositional 

and functional differences among SGs. Intriguingly, eIF3 
targets JUN, a proto-oncogene and B-cell translocation gene 
1 (BTG1), a tumor suppressor gene, both of which have con-
trasting effects on protein synthesis [84]. However, the pro-
apoptotic nature of eIF3-lacking non-canonical SGs is still 
unclear. These characteristics may underlie the heterogenous 
nature of SGs. To add to this, the suggested compartmental 
nature of mRNPs could function as a template for differen-
tial stress-specific modulation of the transcriptome.

It is important to point out that the existing empirical 
methods to elucidate the components and dynamics of 
mRNPs have been applied to conventional cell lines used to 
study the stress response. The stress- and cell-specific heter-
ogeneity of mRNPs may extend beyond what is known with 
implications for metabolism, physiology and pathogenesis. 
The remainder of the review discusses how genetic muta-
tions and, altered SG dynamics and subtypes are implicated 
in neuropathology.

Characteristics of pathogenic RNA granules 
in neuropathies

Neurons are non-dividing highly polarized cells that dynam-
ically adapt to external physiological stimuli. Moreover, they 
are long-lived cells and can vary in length from few mil-
limeters to over a meter. This varied and unique morphol-
ogy requires spatial regulation of translation to meet local 
physiological demands. Compartmentalized protein synthe-
sis driven by localized mRNPs is essential for maintaining 
neuronal physiology, synaptic malleability and memory 
formation [85]. These specialized mRNPs are important for 
local protein supply and plasticity [85, 86]. Besides regulat-
ing protein synthesis, neuronal cytoplasmic mRNP granules 
are also used for transporting mRNAs along microtubules in 
both axons and dendrites. Interestingly, RNP foci containing 
SG related proteins have been implicated in local transla-
tional control [87, 88]. Thus, characteristic cytoarchitecture, 
lifespan and specialized metabolic demands make neurons 
more vulnerable to chronic stress-mediated dysregulation of 
mRNP dynamics and function.

Classically, so called ‘protein aggregates’ associated with 
neurogenerative disorders have been attributed to defective 
protein metabolism and misfolding. Recent work links sev-
eral RNA-binding proteins enriched in these pathogenic 
mRNPs to disease progression. The neurodegenerative 
related ‘pathogenic’ proteins have mutations in their LCDs/
IDPRs/RNA-binding motifs resulting in aggregation prone 
RBPs. This leads to aberrant phase transitions to form non-
canonical mRNPs with persistent accumulation leading to 
chronic neurological insult.

There is increasing genetic and biochemical evidence 
that implicates defective mRNP accumulation in several 
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neurodegenerative disorders. Despite a wide range of clini-
cal and pathological presentations, a common hallmark 
of age-independent neurological disorders is ‘pathogenic’ 
accumulation of RNA–protein aggregates in neurons of 
the central nervous system (CNS) [89, 90]. In some cases, 
genetic studies attribute the inappropriate accumulation of 
proteins in neurons to mutations in RBPs, most of which 
overlap with SG proteins. Often, the mutations are in the 
LCDs of these proteins [91]. LCDs, as discussed above, 
confer conformational plasticity which is essential for pro-
moting transient interactions between neighboring mole-
cules that drive the assembly and disassembly dynamics of 
mRNP granules. Some mutant SG-associated proteins have 
an increased tendency for phase separation and are capable 
of self-propagating in a prion-like mechanism both in vitro 
and in vivo independent of stress. Ataxin1 was the first RBP 
linked to neurodegeneration [92]. The CAG repeat expansion 
mutation in the coding region results in polyglutamine tract 
in the LCD of Ataxin1 that promotes its accumulation in 
cytoplasmic foci and development of spinocerebellar ataxia 
type 1 (SCA1) [93]. Mackenzie et al. identified five ALS/
FTD linked mutations in the LCD of the SG core protein 
TIA-1. These TIA-1 mutant proteins showed an increased 
tendency for phase separation and were enriched in cyto-
toxic, large, hyaline and TDP-43-positive inclusions [94]. 
Similarly, mutations within the PrLDs of other RBPs like 
hnRNPA2/B1, TAF15 and EWS also promote their locali-
zation to pathological inclusions [95, 96]. Such mutations 
cause assembly of less dynamic, chronic, more fibrillar and 
persistent SG subtypes that compromise RNA metabolism, 
protein quality control and promote apoptosis.

A general consequence of the chronic and persistent 
mRNP granules, linked to neuropathies, is sequestration 
of specific RNA-binding proteins in nuclear and cytoplas-
mic foci. The sequestration and obvious mis-localization of 
RBPs in pathogenic granules may compromise their cellular 
function with implications on RNA processing, transport 
and translation. For example, sequestration of MBNL1 and 
CUGB1 proteins in nuclear foci linked to myotonic dystro-
phy types 1 and 2 (DM1 and DM2) alters the RNA splicing 
and transcriptional profiles that correlates with cognitive 
decline and clinical phenotypes in mouse models [97, 98]. 
Overexpression of these proteins partially rescues the splic-
ing and transcriptional defects and mitigates the pathology 
[99, 100]. Similarly, the CGG repeat expansion in the 5′UTR 
of FMR-1 mRNA is the main driver of Fragile X tremor syn-
drome (FXTAS) associated with the appearance of specific 
RNA foci. The FMR-1 mRNA-induced RNA foci sequester 
CUGBP1, Purα and hnRNPA2/B1 proteins compromising 
their cellular function [101, 102].

Another consequence of altered dynamics of persistent 
neuronal SGs is the impairment of autophagy. Autophagy 
pathways are shown to assist in clearance of SGs, which 

contributes to their pro-survival nature [41, 103]. Recent 
evidence suggests that ubiquitinated proteins in SGs are tar-
geted for autophagy in an ATP-dependent manner, which 
contributes to their removal and reinitiation of cellular trans-
lation [104, 105]. Several mutations in autophagy adaptor 
proteins (TBK1, OPTN1 and SQSTM1), that deliver ubiqui-
tinated proteins to autophagosomes for clearance, are linked 
to neuropathologies including ALS and Huntington’s dis-
ease (HD) [106–108]. These proteins exhibit an increased 
abundance in pathogenic aggregates in patient neurons, an 
indicator of impaired autophagy [58, 108]. Age-associated 
gradual decline in autophagy may result in a decrease in the 
clearance of SG granules after the removal of stress. How-
ever, age-independent disease-prone increased accumulation 
of large fibrillated cytoplasmic aggregates overwhelms the 
autophagy machinery and promotes degenerative pathology 
[109, 110]. This might be due to the less dynamic nature of 
the pathogenic aggregates that affects their effective target-
ing. For example, the ALS-linked pathogenic FUS-(R521C) 
mutant, but not wild-type protein, preferentially localizes 
to SGs in mouse cortical neurons when exposed to oxida-
tive stress. Interestingly, FUS-positive SGs also accumulate 
in autophagy-deficient neurons in the absence of any stress 
[111]. Accumulation of mutant-FUS positive persistent SGs 
results in reduced autophagic flux and impaired clearance of 
autophagosomes [111, 112].

Role of RBPs

Biology of RBPs plays an essential role in achieving spe-
cific physiological tasks in long neurons through localized 
mRNPs. Gradual time-dependent dysregulation of cyto-
plasmic translocation, autophagy and altered local sup-
ply of RBPs contributes to aggregation of defective, large 
and chronic inclusions responsible for age-associated slow 
cognitive decline. The disease-associated mutations in 
RBPs significantly accelerates this progression towards 
more fibrillar amyloid-like protein rich cytoplasmic foci in 
patients (Table 1).

Several neurodegenerative phenotypes are thought to pro-
ceed through the SG pathway. The aggregation of mutated 
proteins promotes both stress-dependent and -independent 
SG assembly and triggers their transition to chronic patho-
logical inclusions. In several cases, mutations in a single 
RBP is sufficient to significantly change in its subcellular 
localization, promoting assembly of pathogenic SG-like 
aggregates, which perturb many aspects of RNA and pro-
tein metabolism. For instance, wild-type variants of the 
ALS-linked proteins TDP-43 and FUS have pre-dominantly 
nuclear function and harbor a nuclear localization signal 
(NLS) [113, 114]. Several mutations in their NLS result 
in their mis-localization and increased local concentration 
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in the cytoplasm. These proteins have PrLDs that promote 
multimerization and buildup of amyloid-like granules [115, 
116]. Specifically, a pathogenic mutation in the C-terminal 
β-domain of TDP-43 (A315T) results in its cytoplasmic 
mis-localization and increased detection in cytoplasmic 
pathological inclusions [117]. Similarly, ALS/FTD-linked 
mutations, in the LCD domain of TIA-1, P362L, A381T and 
E384K, cause increased mis-localization to the cytoplasm 
and recruitment to SGs (Table 1) [94]. In multiple sclerosis 
(MS), single-nucleotide variants (SNVs) within the NLS, 
also called the transportin-1 (TPNO-1) binding domain, of 
RBP hnRNPA1 result in its cytoplasmic mis-localization and 
increased targeting to SGs. This promotes cellular apoptosis 
that contributes to the pathogenesis of MS [118].

Dysregulation of nucleocytoplasmic transport also con-
tributes to altered mRNP dynamics and promotes cytoplas-
mic aggregation in several neurodegenerative diseases. Some 
nucleocytoplasmic factors localize to SGs under conditions 
of stress or via interactions with mutant proteins. This results 
in cytoplasmic mis-localization of several nuclear RBPs like 
TDP-43, FUS, TAF15, EWSR1, hnRNPA1 and hnRNPA2. 
Thus, increasing the cytoplasmic concentration of proteins 
that have higher tendency to promote LLPS contribute 
to transition of SGs to pathogenic aggregates [119, 120]. 

Defective nucleocytoplasmic transport and SG assembly 
are hallmark of C9orf72-mediated ALS/FTD pathogenesis. 
Increased expression of ALS/FTD associated toxic dipep-
tide repeats (DPRs), like poly-GA and poly-GR, cause cyto-
plasmic mis-localization and aggregation of several nuclear 
transport receptors (NTRs) and TDP-43 in drosophila mod-
els [121]. Intriguingly, this also results in increased DPR 
translation [121]. Overexpression of nuclear import factors 
or knockdown of nuclear export factors have been shown 
to restore nuclear RBP localization and alleviate neuronal 
toxicity mediated by disease-linked FUS [120, 122].

Toxic multimerization of disease associated RBPs alter 
the local transcriptome and proteome pertaining to axonal 
and synaptic pathology. Increased targeting of FMRP to 
toxic cytoplasmic mRNP granules results in transport gran-
ule dysfunction, compromised local translation and defec-
tive dendritic branching [123, 124]. Frontotemporal lobar 
degeneration (FTLD) associated TDP-43 aggregates in 
dendrites are enriched in transcripts involved in synaptic 
function [125, 126]. This targeting of synaptic mRNAs per-
turbs their activity-dependent localization and expression 
in FTLD patient neurons [127]. Mis-localization of several 
axonal transcripts in TDP-43, FUS and C9-ALS/FTD asso-
ciated cytoplasmic aggregates results in their decreased 

Table 1  Mutations and SG phenotypes for RBPs associated with neurological disorders

Protein Mutations Domain SG phenotype References

TDP-43 A90V NLS Cytoplasmic mis-localization to SGs [193, 194]
D169G RRM1 Decrease Ubiquitination in cytoplasmic and 

nuclear inclusions
[195, 196]

K263E RRM2
A315T, G335D, M337V, Q343R N345K and 

R361S
Glycine rich LCD Promote phase separation; more fibrillar 

granules
[197–199]

FUS G156E PrLD Increased self-templating capacity, defective 
RNA binding

[200]

R244C Glycine rich LCD Defective RNA binding [200]
R495X RGG Increased targeting to SGs [201]
H517Q, R521G/C, R522G and P525L NLS Cytoplasmic mis-localization and increased 

accumulation in perinuclear SGs
[201–203]

HNRNPA1 D262V/N, D314V and N267S PrLD Increased self-templating capacity [95, 204, 205]
F273L, M276L and F281L NLS (or TPNO-1 

binding) 
domain

Cytoplasmic mis-localization and increased 
targeting to SGs

[118]

HNRNPA2/B1 D290V PrLD Increased amyloidogenic cytoplasmic inclu-
sions

[95]

EWSR1 P522L and G511A RGG Increased cytoplasmic localization, 
Increased self-aggregation

[206, 207]

TAF15 M368T, G391E, R408C and G473E RGG Cytoplasmic mis-colalization, increased 
targeting to SGs

[207, 208]

TIA-1/R P362L, A381T and E384K LCD Increased targeting to SGs [94]
C9orf72 (G4C2) hexanucleotide expansions in intron 

1
N/A G2C2-RNA repeats and arginine-rich 

dipeptide repeats promote phase separa-
tion and maturation of SGs to amyloid-like 
inclusions

[59, 164]
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expression and compromised local function [123]. For 
example, increased accumulation of MAP1B and Nef-L in 
C9-ALS/FTD aggregates causes instability of microtubules 
at axon terminals and synaptic defects [128, 129].

Several mutations in RBPs and/or post-translational mod-
ifications also confer gain of function. Mutations in some 
domains increase the propensity of intermolecular associa-
tions to form more dense aggregates. For example, acety-
lated and hyper-phosphorylated forms of TDP-43 have been 
detected in insoluble pathological inclusions [130, 131]. 
This defective acetylation of lysines and hyper-phosphoryl-
ation at serine residues within the RRM may increase their 
nucleic acid binding capacity and aggregate ‘seeds’ to stim-
ulates intermolecular interactions among SG components. 
Phosphorylated mutant A315T(p), outside of the RRM, has 
increased aggregation capacity and accelerated fibril forma-
tion as compared to wild-type in vitro [132]. The TDP-43 
interactome includes several SG-associated eukaryotic ini-
tiation factors (eIF4G, eIF3B and eIF4A1) [133]. Interaction 
with these initiation factors and bona fide SG components 
may assist in the association of cytosolic mutant protein 
with translational machinery (e.g., ribosomes) to assemble 
in cytotoxic aggregates. Similarly, an altered phosphoryla-
tion profile of Tau protein is directly implicated in Alzhei-
mer’s disease (AD) and other tauopathies [7, 134]. Tau is a 
microtubule-associated protein that plays an essential role in 
microtubule assembly and axoplasmic transport in neurons. 
Phosphorylation of amino acid residues within the micro-
tubule interaction domain is essential for tau function and 
microtubule polymerization [135–137]. Location of tau and 
its phosphorylation levels determines its function. Tau is 
localized to axons under normal physiological conditions 
[135, 138]. Glutamatergenic stimulation of neural ionotropic 
receptors, AMPA and NMDA, stimulates localized transla-
tion and hyperphosphorylation of tau in the somatodendritic 
compartment. This results in tau mis-localization away from 
axon and its accumulation in neurofibrillary tangles (NFTs), 
one of the hallmarks of AD pathology [139]. AD therapies 
that relieve aberrant activation of these glutamate receptors 
have shown to attenuate tau phosphorylation and improve 
synaptic function [140]. Persistent SGs also stimulate tau 
phosphorylation and aggregation representing a potential 
stress-driven mechanism of maturation to pathogenic SGs 
[141].

Chronic stress and high glucocorticoid (GC) levels can 
cause hyper-phosphorylation of tau outside this domain 
leading to its mis-localization to the soma and dendrites 
rather than axons [142]. Hyper-phosphorylation promotes 
stress-independent interactions with cytoplasmic SG pro-
teins TIA-1 and TTP that in turn modulate the formation 
of SGs and NFTs [7, 142]. Vanderweyde et al. showed 
that pseudo-phosphorylated tau mutant was targeted more 

efficiently and resulted in larger SGs than phospho-null tau 
mutant [141]. Recent work also suggests that mis-localized 
hyper-phosphorylated tau interacts with cytoplasmic trans-
lational apparatus and many SG associated RBPs. Mass 
spectroscopy approaches applied to human neuroblastoma 
and AD mouse models revealed that tau preferentially 
interacts with 60S subunit proteins, several initiation fac-
tors, heteronuclear RNPs and several other SG proteins 
besides TIA-1 and TTP [143, 144]. Tau association with 
ribosomes and inhibition of global protein synthesis was 
co-relative to decreased synaptic function and memory 
loss in AD patients [145]. The tau interactome, therefore, 
indicates a much wider role of tau in stress-mediated trans-
lational control. It is hypothesized that a combination of 
disease-linked RBP mutations and hyperphosphorylation 
of tau due to chronic stress causes translational repression 
and formation of persistent SGs.

Tau pathophysiology is greatly enhanced by its inter-
actions with TIA-1, which promotes SG formation and 
repression of translation [141]. Decreased expression of 
TIA-1 prevents tau misfolding and pathogenic tau accumu-
lation in cytoplasmic inclusions in cell culture and mouse 
models [137, 144]. This highlights an important role of 
RBPs and a potential role of SGs in tau-mediated neu-
rodegeneration. Reducing levels of endogenous TIA-1 in 
specific tau mice model reduced pathogenic SG assembly, 
decreased mis-localization of TIA-1 and improved cog-
nitive function and lifespan. Interestingly, knockdown of 
TIA-1 did not decrease the number of NFTs [137].

Angiogenin (ANG) is an RBP and its biological roles 
include angiogenesis, cell proliferation and neuroprotec-
tion [146, 147]. It is a stress responsive ribonuclease of 
the RNase A superfamily that cleaves tRNAs under con-
ditions of stress to generate stress-induced tRNA halves 
called tRNA-derived stress-induced RNAs (tiRNAs) [146, 
148]. The neuroprotective function of ANG is attributed 
to its RNase activity, while tiRNAs have been implicated 
in promoting cell survival and inhibiting apoptosis under 
conditions of stress [149]. Recent work identified two bio-
active tiRNAs involved in pro-survival stress response. 
The 5′ terminal oligo guanidine (5′TOG) motif containing 
5′tiRNAAla and 5′tiRNACys are capable of forming G-quad-
ruplexes (G4s) that are non-canonical structures composed 
of G-quartets [148, 150]. These G4 containing tiRNAs 
repress translation by displacing the eIF4F complex from 
5′ mRNA cap structure and promote SG assembly in a 
p-eIF2α independent manner [151]. Certain ANG induced 
tiRNAs bind directly to cytochrome C (Cyt C) under con-
ditions of stress to inhibit apoptosis [152, 153]. Several 
ALS/PD associated ANG mutations result in RNase loss 
of functions resulting in decreased production of tiRNAs 
compromising its cytoprotective role [146, 154].



4838 V. M. Advani, P. Ivanov 

1 3

RNA‑dominant proteinopathies

RNA, a dominant component of SGs, is itself involved 
in myriad neuronal dysfunction. Several ‘RNA binding 
proteinopathies’ have been identified as repeat expansions 
that drive phase separations in myotonic dystrophies and 
other degenerative pathologies. These nucleotide repeats 
confer cytotoxicity by inappropriate redistribution and 
sequestration of selected RBPs [155, 156]. Spinocerebel-
lar ataxia type 10 (SCA10) associated pentanucleotide 
AUUCU repeat expansions in 3′UTR of E46L mRNA 
drives their toxic cytosolic accumulation [157, 158]. These 
cytoplasmic inclusions preferentially recruit hnRNP K, in 
addition to other RBPs. The hnRNP K loss-of-function 
leads to mitochondrial dysfunction and activation of 
apoptosis in the SCA10 mouse model. Over-expression 
of hnRNP K rescues SCA10 neuronal cells from cell death 
due to SCA10 pentanucleotide expansion mutation [158]. 
Another example of RNA repeat mutation conferring cel-
lular degeneration is that of CAG expansion in certain 
of degenerative pathologies [159]. These tri-nucleotide 
repeats within the coding region results in increased 
expression of poly-glutamine rich (polyQ) Ataxin 3 [160]. 
The polyQ rich proteins are aggregation prone, accumulat-
ing into cytotoxic nuclear inclusions (NI) linked to SCA3 
[160, 161]. The CAG repeat mRNA is capable of forming 
hairpin structures and recruiting RBPs in a length-depend-
ent manner into cytoplasmic foci, related to HD pathology 
[159, 162]. However, the CAG tri-nucleotide cytoplasmic 
interactome and the mechanism of pathogenesis are still 
unclear.

The most common genetic cause of ALS/FTD is GGG 
GCC  (G4C2) hexanucleotide repeat expansion in the intron 
1 of C9orf72 gene [163]. The repeat length threshold 
of ≥ 24 repeats is considered pathology-prone [164]. These 
hexanucleotide repeats are bidirectionally transcribed as 
sense (rG4C2) and anti-sense (rC4G2) transcripts [165]. 
Both sense and anti-sense transcripts stimulate non-canon-
ical RAN translation of toxic DPRs; poly-GA, poly-GR 
and poly-GP from sense transcripts and poly-PA and 
poly-PR from anti-sense transcripts [166–168]. The G4C2 
RAN translation involves canonical scanning and initia-
tion at near-cognate CUG codon where the poly-DPRs 
are synthesized by sequence-dependent frameshifting 
[169]. The (rG4C2) repeat sequence is capable of forming 
higher order hairpin and G-quadruplex structures capable 
of interacting with several RBPs including SG proteins 
[170]. Both (rG4C2) and DPRs are detected in nuclear and 
cytoplasmic pathogenic inclusions in patient neurons and 
glia. Fay et al. showed that (rG4C2) repeats can promote 
assembly of RNA granules in repeat length- and structure-
dependent manner both in vitro and in vivo independent of 

stress [164]. Moreover, (rG4C2) cytoplasmic foci partially 
resemble SGs as they recruit small ribosomal subunits, 
translational initiation factors and several core SG proteins 
[5, 164]. The arginine rich DPRs, poly-GR and poly-PR 
confer toxicity independent of (rG4C2) repeats in patient 
cells [171]. Nuclear and cytosolic accumulation of these 
toxic DPRs represses global translation, inhibits nucleocy-
toplasmic transport, disrupts rRNA processing and local-
izes to TDP-43 enriched stress granules. Mass spectromet-
ric approaches to characterize DPR associated proteins 
identify significant overlap between poly-GR and poly-PR 
interactomes that include several SG associated RBPs [59, 
172, 173]. However, the transcriptomic profiles of (rG4C2) 
and DPR rich inclusions are unexplored. Some evidence 
suggests that the arginine-rich dipeptides localize to the 
fibrillar cores of mRNP granules and support formation 
of insoluble aggregates [174]. The above studies support 
either RNA- or DPR-mediated toxicity in ALS/FTD patho-
genesis. However, a common observation of this RNA and/
or protein-mediated toxic gain of function is the disruption 
of mRNP dynamics to promote assembly of less dynamic, 
persistent and pathogenic protein aggregates.

Conclusions: therapeutic approaches 
towards SG‑mediated neuropathies

Pathomechanistic studies of RBP mutations and modifica-
tion linked to specific neurodegenerative and neuromus-
cular disorders provide potential therapeutic opportunities 
for pharmacological intervention (Fig. 3). The dominant 
approach is to target the RBP pathways that mediate patho-
genic oligomerization, misfolding and aggregation. Overex-
pression of wild-type non-pathogenic RBP or knockdown 
of pathogenic RBPs with small molecule inhibitors or anti-
sense oligos (ASOs) can modulate their recruitment into spe-
cific subcellular compartments, which is known to amelio-
rate toxicity [141, 175]. These approaches have been shown 
to partially rescue the disease phenotype by reducing the 
number and size of cytotoxic foci in several disease models. 
For example, ASO therapy to reduce Ataxin2 levels in TDP-
43/ALS fly and mice models decreased amount and number 
of TDP-43 pathogenic aggregates. This ASO treatment sig-
nificantly slowed disease progression and increased lifespan 
of the TDP-43 ALS mouse model [175]. ASO therapy also 
seems promising in targeting the (G4C2) hexanucleotide 
repeats in C9orf72 ALS/FTD pathology. Targeting these 
RNA repeats is expected to reduce the size and number of 
pathogenic RNA foci and the levels of toxic DPRs. Another 
broad therapeutic approach is the use of small-molecule 
inhibitors to target components of SG assembly and disas-
sembly. Drugs that inhibit the action of eIF2α kinases reduce 
pathology primarily due to decrease in phosphorylation 
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levels of eIF2α [176, 177]. However, pleiotropic effects out-
side translation inhibition may not have favorable outcomes 
in humans. Pharmacological induction of certain chaperons 
and disaggregases that prevent protein misfolding and aggre-
gation have been shown to reduce degeneration rates in vul-
nerable neurons [178]. Overexpression of disaggregases like 
Hsp110, Hsp40 and Hsp70 may help overcome proteostasis 
and counter its toxic effects [179]

Autophagy, as discussed earlier, may play a direct role in 
solubilization of SGs and their subtypes. Its activation has 
been shown to confer neuroprotection in certain ALS, HD 
and AD disease models by enhancing clearance of patho-
genic cytoplasmic aggregates and attenuation of cellular 
apoptosis [180–183]. Autophagy inducers can be mTOR-
dependent or mTOR-independent. Hyperactivation of mTOR 
in AD neurons results in decreased autophagy and increased 
production of amyloid-β-peptide fragments and aggregation 
into plaques. This also results in hyperphosphorylation of 
tau and deposition in cytoplasmic NFTs [184, 185]. Phar-
macological inhibition of mTOR in two mouse models of 
AD resulted in activation of autophagy and decreased accu-
mulation of Aβ plaques and phosphorylated tau in neurons 
[186]. Rapamycin is one of the mTOR dependent, non-ATP 
competitive inducers that mediates neuroprotection via inhi-
bition of mTORC1 and mTORC2 complexes simultaneously 
[182, 187]. Although the mechanism of mTOR-independent 
autophagy activators like Trehalose in neuroprotection is 

unclear [188], Trehalose dosage in mouse models of ALS, 
AD and PD decreased autophagic flux and mitigated perva-
sive symptoms [189–192].

In conclusion, several studies confirm that differential 
proteomic and transcriptomic content drives the transition 
of stress granules from physiological subtypes to patho-
genic aggregates. While the role of mutant proteins has been 
greatly explored, investigations of differential RNA content 
of disease specific cytotoxic aggregates are still pending. 
Knowledge of distinct transcriptomic and proteomic profiles 
associated with specific neuropathy will present additional 
therapeutic opportunities.

Funding Funding was provided by National Institutes of Health (R01 
GM126150).
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