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Research

While it has been established that course-based undergraduate research experiences (CUREs) lead to student 
benefits, it is less clear what aspects of CUREs lead to such gains. In this study, we aimed to understand the 
effect of students analyzing their own data, compared with students analyzing data that had been collected 
by professional scientists. We compared the experiences of students in a CURE investigating whether the 
extinction risk status of terrestrial mammals and birds is associated with their ecological traits. Students 
in the CURE were randomly assigned to analyze either data that they had collected or data previously col-
lected by professional scientists. All other aspects of the student experience were designed to be identical. 
We found that students who analyzed their own data showed significantly greater gains in scientific identity 
and emotional ownership than students who analyzed data collected by professional scientists. 
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INTRODUCTION

National calls to engage students in undergraduate 
research have resulted in a proliferation of course-based 
undergraduate research experiences, or CUREs (1–3). 
CUREs are learning experiences in which students conduct 
real research in the context of a formal course; this research 
needs to be both novel and broadly relevant, or important 
to others outside of the course, to be considered a CURE 
(4, 5). CUREs have emerged as a popular model to broaden 
the opportunities for students to participate in research (6) 
and are associated with an array of benefits for students that 
are similar to what they can achieve in independent research 
experiences in faculty labs (3, 7).

However, there is still much that we do not know about 
what components of CUREs lead to specific outcomes. 
Although there have been calls to use backward design 

when creating CUREs by first considering student learning 
outcomes and planning course activities that will lead to such 
outcomes (8), there have been few attempts at designing 
or assessing courses so that one can identify what specific 
elements of CUREs are important for a specific outcome 
(9). Key design elements of CUREs have been proposed to 
be scientific practices, collaboration, iteration, discovery, 
and broad relevance (4, 5). The few CURE studies that have 
assessed what elements of CUREs lead to specific outcomes 
have focused on the impact of these key design elements, 
with the most attention being paid to collaboration, itera-
tion, discovery, and broad relevance (10–13). Researchers 
have likely focused on these specific key design elements 
because they can be measured by the Laboratory Course 
Assessment survey (14). However, given the myriad of deci-
sions that CURE instructors make about how to implement 
a CURE (15), there is a need for additional research to help 
delineate how elements of CURE design can impact student 
outcomes. 

While it is generally assumed that the scientific prac-
tices that students conduct in a CURE replicate the types 
of scientific practices that professional scientists use, there 
is much variation in terms of which scientific practices are 
implemented in a CURE. Some CUREs are designed so that 
students collect data and then analyze the data they collect 
(13, 16), while others focus on students analyzing a large 
dataset that was collected by someone else (17–19). Some 
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CUREs include creating posters or disseminating the work 
through written artifacts (20). Additionally, in some CUREs, 
students work through most stages of a research project, 
meaning that they engage in an array of scientific practices 
including question development, data collection and analysis, 
and dissemination of findings (12, 21, 22). With the range of 
possible scientific practices that students can complete in a 
CURE, and the variations in how they can complete them, 
CURE developers have few insights into which scientific 
practices lead to which outcomes. 

In this study, we set out to identify the impact of scien-
tific practices on student outcomes. Specifically, we focused 
on the impact of students analyzing their own data versus 
their analyzing data that were collected by someone else, 
because it is an open question as to whether it is important 
for students to analyze their own data (10, 23). We assessed 
outcomes that we hypothesized may be influenced by 
students analyzing their own data, including scientific self-
efficacy, scientific identity, and scientific community values, 
all of which have been shown to positively predict students’ 
interest in pursuing a science-related research career (24). 
We also predicted that analyzing one’s own data may posi-
tively affect students’ cognitive ownership or the degree to 
which students feel as though they have intellectual respon-
sibility over their work, and emotional ownership, or the 
strength of students’ emotions toward their work (11, 25, 
26). Finally, we examined whether analyzing one’s own data 
affected students’ interest in pursuing a career in science.

Study focus and context

This study was conducted in an upper-level evolu-
tion course that was taught in the fall semesters of 2018 
and 2019 at a primarily undergraduate institution that is a 
rural, regional campus of a larger university system. This 
course, required for biology majors, was designed to both 
cover the fundamental principles of evolutionary biology 
and provide a research experience for all students in the 
biology major. A portion of this course was designed to be 
a CURE, where the students in the course engaged in con-
ducting novel, broadly relevant scientific research (4). The 
CURE was performed over 12 weeks with 75 minutes of 
class time devoted to the CURE each week. The 2018 and 
2019 iterations of the course were identical in that students 
engaged in the same research project, and both iterations 
were taught by the same instructor and teaching assistant. 
The instructor (M.L.K.) was an assistant professor, and the 
teaching assistant (M.J.M.) was a master’s degree student 
whose thesis research was on the same topic as the CURE. 
Data were pooled over both semesters to maximize the 
number of participants in the study.

Students in the CURE investigated whether the current 
extinction risk status of terrestrial mammals and birds is 
associated with the ecological traits they possess, as has 
been previously demonstrated for the marine vertebrates 
and molluscs that have been studied (27). Students worked 

with the same partner throughout the project on species 
that were included in the International Union for the Con-
servation of Nature (IUCN) Red List (28); the IUCN Red 
List is a systematic hierarchical classification system for the 
extinction risk status of species, from species of least con-
cern to those that have already become extinct in historical 
times. This allowed students to test for associations between 
ecological traits and extinction risk status. Specifically, stu-
dents collected the ecological data from entries in wildlife 
encyclopedias (29, 30), based on the concept of ecological 
modes of life (31). Ecological modes of life were defined by 
the combination of a species habitat association, mode of 
locomotion, and feeding mode. Students entered the data 
into a class-wide shared Google spreadsheet. These data 
that students collected are henceforth referred to as the 
“students’ own data.” 

After the data collection phase, students were randomly 
assigned to one of two groups. In one group, students ana-
lyzed the data that the class as a whole collected as described 
above (students’ own data). In the other group, students ana-
lyzed data that was previously collected in an identical way 
on other terrestrial mammal and bird species by professional 
researchers in the research lab of the instructor (profes-
sional scientists’ data). Students in both conditions analyzed 
the data for possible associations between ecological traits 
and extinction risk status by logistic regression (in a general 
linear model) in the computer programming environment 
R (32). All student pairs presented a scientific poster at an 
end-of-the-semester research symposium, which was open 
to the greater university community. A representation of the 
progression of the CURE is illustrated in Figure 1. All other 
course design features were identical for the two groups. 
Students were told which condition they were randomly 
assigned to after the data collection phase of the project 
was completed. All phases of the research project were 
performed in the classroom and only required students to 
have access to a laptop computer. 

Our research questions were as follows: 
1.	 To what extent do students in the CURE perceive 

they are conducting real scientific research? Are 
there differences between students who analyzed 
their own data and those who analyzed professional 
scientists’ data? 

2.	 To what extent do students’ scientific self-efficacy, 
scientific identity, and scientific community values 
increase over the course of the CURE? If there 
are gains in any of these measures, to what extent 
do students who analyzed their own data show 
greater gains than students who analyzed profes-
sional scientists’ data?

3.	 To what extent does a student’s intent to pursue 
a career in science change over the course of the 
CURE? Compared with students who analyzed 
professional scientists’ data, are students who ana-
lyzed their own data more likely to want to pursue 
a career in science at the end of the semester?
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4.	 To what extent did students who analyzed their 
own data develop more cognitive and emotional 
project ownership than students who analyzed 
professional scientists’ data?

METHODS

This study was conducted with approved IRB protocol 
IRB2018-00728.

Participants

We collected data from students enrolled in the CURE 
in fall 2018 and fall 2019. Twenty-six of the 29 students 
(92.9%) enrolled in the 2018 CURE and all 39 students 
enrolled in the 2019 CURE consented to participate in this 
study and were included in the data set. In total, 65 students 
in the CURE agreed to participate in the study. 

Measures

Just prior to beginning the research project, students 
in the CURE were asked to complete an online pre-CURE 
survey in exchange for a small amount of extra credit. The 
survey consisted of a scientific self-efficacy scale, a scientific 

identity scale, a scientific community values scale, and a 
single item measuring the extent to which students plan to 
pursue a research-related science career. 

During the final week of the course, students in the 
CURE were asked to complete an online post-CURE survey 
in exchange for a small amount of extra credit. The post-
CURE survey consisted of the identical scales, comprised 
of identical questions, as the pre-CURE survey: a scientific 
self-efficacy scale, a scientific identity scale, a scientific 
community values scale, and a single item measuring the 
extent to which students plan to pursue a research-related 
science career. In addition, the post-CURE survey also 
included the Laboratory Class Assessment survey, a single 
item measuring the extent to which students perceived 
they were participating in scientific research during their 
lab course, the Project Ownership survey, and a list of 
demographic questions. We briefly describe each measure 
below. A more detailed description of each measure, the 
internal consistency, and the specific items can be found in 
the supplemental materials. 

Scientific self-efficacy. A previously developed six-
item scale (24) was used to measure students’ scientific 
self-efficacy or their perceptions of their abilities to per-
form different research-related tasks. The questions were 
identical to those used in the original paper.

FIGURE 1. Timeline of activities for students in the CURE. All students engaged in the same scientific practices with one excep-
tion: students in one group analyzed the data they had collected (students’ own data) while students in the other group analyzed 
data collected by professional scientists (professional scientists’ data).
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Scientific identity. Students’ scientific identity was 
measured using a previously developed five-item scale (24). 
The questions were identical to those used in the original 
paper and asked students to report the extent to which 
they agreed with statements, which would indicate a strong 
scientific identity. 

Scientific community values scale. Students’ sci-
entific community objective values, or the extent to which 
students value objectives of the scientific community, were 
measured using a previously developed four-item scale (24). 
This scale asks students to rate their identification with four 
statements describing people who value objectives of the 
scientific community. The questions were identical to those 
used in the original paper. 

Intent to pursue a scientific research career. 
Students’ intent to pursue a scientific research career was 
measured using a previously developed single item (24). The 
question, taken verbatim from the original paper, was rated 
on a Likert-type scale: “To what extent do you intend to 
pursue a science-related research career?” 

The Laboratory Class Assessment survey. The 
Laboratory Class Assessment survey (LCAS) consists of 
three subscales to measure students’ perceptions of the 
extent to which they engaged in three design elements of 
biology lab courses: collaboration, iteration, and discovery/
relevance (14). (i) Collaboration: The LCAS collaboration 
subscale consists of six items that evaluate the frequency 
with which students engage in collaboration-related activi-
ties, such as discussing work with other students. For all 
analyses, we used the five-item adapted collaboration scale 
to improve the internal consistency of the scale. (ii) Iteration: 
The LCAS iteration subscale consists of six items about the 
extent to which students have time to experience iterative 
processes, such as repeating or revising their work. (iii) Dis-
covery/Relevance: The LCAS discovery/relevance subscale 
uses five items to measure students’ experiences of broadly 
relevant novel discoveries by asking students to rate the 
extent to which they agree that their work could lead to 
new discoveries and whether their data are of interest to 
the scientific community. All questions were taken verbatim 
from the original survey.

Perception of scientific research. We measured 
the extent to which students perceived they were engaging 
in scientific research in the context of the course using a 
previously developed question (13). The question defines 
scientific research for the students as the type of research 
that is done in faculty members’ labs and asked students to 
rate their agreement with the statement “I conducted sci-
entific research in the Evolution course.” The question was 
taken verbatim from the original paper, with the exception 
that our question specified students’ “Evolution course.”

Project ownership. Students’ ownership of their 
research projects was measured using a 16-item survey 
developed by Hanauer and Dolan (26). The project own-
ership scale contains two subscales measuring cognitive 
ownership and emotional ownership (11, 26). (i) Cognitive 

ownership: Students’ cognitive ownership was measured 
using 10 items that ask students to what extent they agree 
that they had intellectual ownership of or responsibility for 
their lab work. (ii) Emotional ownership: Students’ emo-
tional ownership was measured using six items that assess 
the strength of students’ emotion toward their lab work. 
The questions were taken verbatim from the original paper, 
with the exception that, for each question, we replaced “the 
laboratory course” with “the Evolution course.” 

Demographic questions. Students completed a set 
of demographic questions about their gender, race/ethnicity, 
major, year in college, and prior research experience. Stu-
dents’ demographics are reported in Table 1. 

Data analysis 

To what extent do students in the CURE perceive they 
are conducting real scientific research? Are there differences in 
perceptions between students who analyzed their own data and 
those who analyzed professional scientists’ data? 

Collaboration, iteration, and discovery/relevance are 
hypothesized to be key features of CUREs (4). We con-
ducted independent samples t tests to compare scores on 
these subscales between students who analyzed their own 
data and students who analyzed professional scientists’ data; 
we also conducted independent samples t tests to compare 
ratings of the extent to which students perceived they were 
conducting research in their evolution course. Additionally, 
we used a linear regression model to compare the ratings 
of the extent to which students perceived they were con-
ducting real research between students who analyzed their 
own data and students who analyzed professional scientists’ 
data, controlling for whether a student had previously 
participated in an undergraduate research experience in 
a faculty member’s lab (Y/N), (model: scientific.research ~ 
data.analyzed + prior.research). We did not include demo-
graphic variables, including gender or race/ethnicity, in this 
model testing whether there are differences in students’ 
perceptions of whether they were conducting real research 
because we have no reason to believe that demographics 
influence students’ perceptions of whether they are con-
ducting scientific research. 

To what extent do students’ self-efficacy, science identity, 
and scientific community values increase over the course of the 
CURE? Do students who analyzed their own data show greater 
gains than students who analyzed professional scientists’ data?

We conducted paired sample t tests to compare 
students’ scores on the self-efficacy, science identity, and 
scientific community values scales from the beginning and 
end of the CURE. We used linear regression models to 
test for whether there were differences in pre/post gains 
in these scores between students who analyzed their own 
data and students who analyzed professional scientists’ data. 
In each model, we included student demographics and our 
outcome variable was students’ post- scores. Specifically, 
we controlled for students’ pre- score, students’ major 
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(biology/non-biology), whether they had prior research 
experience (yes/no), their gender (man/woman), and their 
race/ethnicity (white/Asian/BLPA) (model: post- score ~ 
type.of.data + pre.score + major + prior.reseach + gender 
+ race.ethnicity). We recognize that not all students iden-
tify as gender binary (man or woman) (33); however, there 

were too few students who identified as non–gender binary 
to include this category in the analysis. We grouped stu-
dents who identified as Black, Latinx, Pacific Islander, and 
American Indian or Alaska Native into one category (BLPA). 
These students share the experience of being underserved 
by institutions of higher education; we recognize that the 

TABLE 1.  
Demographics of students in the CURE.

Demographics
% (n) of Students with Response

Students who analyzed 
scientists’ data (N=34)

Students who analyzed 
their own data (N=31)

Gendera

Woman 61.8 (21) 58.1 (18)

Man 35.3 (12) 38.7 (12)

Other 2.9 (1) 0.0 (0)

Declined to state 0.0 (0) 3.2 (1)

Race/ethnicityb

American Indian or Alaska Native 2.9 (1) 6.5 (2)

Asian 35.3 (12) 35.5 (11)

Black or African American 2.9 (1) 3.2 (1)

Latinx 8.8 (3) 3.2 (1)

Native Hawaiian 8.8 (3) 16.1 (5)

Pacific Islander 0.0 (0) 3.2 (1)

White 35.3 (12) 25.8 (8)

Other 2.9 (1) 3.2 (1)

Declined to state 2.9 (1) 3.2 (1)

Majorc

Anthropology 2.9 (1) 0.0 (0)

Biology 85.3 (29) 90.3 (28)

Environmental studies 5.9 (2) 6.5 (2) 

Kinesiology 5.9 (2) 0.0 (0)

Declined to state 0.0 (0) 3.2 (1)

Year in college

Junior 29.4 (10) 32.3 (10)

Senior 70.6 (24) 67.7 (21)

Prior research experience

No 47.1 (16) 58.1 (18)

Yes 52.9 (18) 41.9 (13)
a �In all analyses, we only included students who identified as men or women. While we recognize that gender is not 
binary, there were too few students who identified as a gender other than man or woman to analyze a third category. 

b �In all analyses, we collapsed students who identify as Black or African American, Hispanic, Latino/a or of Spanish Origin, 
Pacific Islander, and American Indian or Alaska Native into one category, which we call BLPA students. These students 
share the experience of being underserved by institutions of higher education; we recognize that the experiences of 
these students are different, but the small sample sizes necessitated that we pool these identities as a single factor 
in our analyses.

c �In all analyses, we collapsed students into “biology” or “not biology” majors. We predicted that students’ self-efficacy 
or science identity in a biology course may be affected by whether they were biology majors or not, and it was 
necessary to pool non-biology majors because of small sample sizes. 
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experiences of these students are different, but the small 
sample sizes necessitated that we pool these identities as a 
single factor in our analyses.

To what extent do students’ intents to pursue a career in 
science change over the course of the CURE? Are students who 
analyzed their own data more likely to want to pursue a career 
in science at the end of the semester?

At the beginning and end of the semester, students 
reported their intent to pursue a science-related research 
career. We used linear regression models to assess whether 
there were differences in the extent of this intent at the 
end of the semester between students who analyzed their 
own data and students who analyzed professional scien-
tists’ data. Students’ post- score was the outcome variable, 
and in the model, we controlled for students’ intention 
to pursue a career in scientific research at the beginning 
of the semester, as well as for their self-efficacy, science 
identity, and scientific community value scores at the end 
of the semester (model: pursue.science.post ~ type.of.data 
+ pursue.science.pre + self.efficacy.post + science.identity.

post + community.values.post). We ran a second model 
where we controlled for students’ major, whether they 
had prior research experience, gender, and race/ethnicity 
(model: post- score ~ type.of.data + pre.score + major + 
prior.research + gender + race.ethnicity). 

To what extent did students who analyzed their own data 
develop more cognitive and emotional project ownership than 
students who did not?

At the end of the semester, students completed the 
cognitive and emotional ownership scales. We used a linear 
regression model to test whether there were differences 
in cognitive and emotional ownership between students 
who analyzed their own data and students who analyzed 
professional scientists’ data. In each model, either students’ 
cognitive or emotional ownership was the outcome variable, 
and we controlled for students’ collaboration, iteration, 
and discovery/relevance subscores, since these have been 
shown to predict student cognitive and emotional owner-
ship (11, 13) (e.g., model: cognitive.ownership ~ type.of.data 
+ collaboration + iteration + discovery.relevance). We ran 
a second set of models controlling for student major, prior 

TABLE 2.  
Student scores on the LCAS collaboration, iteration, and discovery/relevance subscales  

and student perceptions that they conducted real researcha.

Outcome

Response (mean ± SD) among 
students who: 

t p
Cohen’s 

d
Possible range 

of scores
Analyzed 

scientists’ data 
Analyzed their 

own data

Collaboration subscale 18.5 ± 2.2 19.2 ± 1.8 –1.5 0.14 –0.4 5–20

Iteration subscale 31.5 ± 4.0 32.0 ± 3.3 –0.5 0.61 –0.1 6–36

Discovery/relevance subscale 26.3 ± 3.8 26.9 ± 3.0 –0.8 0.46 –0.2 5–30

Conducting real research 8.4 ± 1.9 8.8 ± 1.7 –0.9 0.40 –0.2 1–10
a �The five-item collaboration scale measures how often students engage in collaborative activities in lab using four response options 
ranging from never (1) to weekly (4). The six-item iteration scale and five-item discovery/relevance scale measure the extent to 
which students agree that they experience these elements, with six response options ranging from strongly disagree (1) to strongly 
agree (6). The extent to which students perceived they conducted real research was measured using one item, with responses 
ranging from (1) strongly disagree to (10) strongly agree.

TABLE 3.  
All students’ scientific self-efficacy, identity, and community values scores, measured at the beginning and end of the CUREa.

Outcome

Pre-CURE score  
(mean ± SD)

Post-CURE 
score  

(mean ± SD) t p
Cohen’s 

d
Possible range 

of scores

Scientific self-efficacy 21.1 ± 3.7 24.5 ± 4.1 –8.1 <0.0001 –0.9 6–30

Scientific identity 18.2 ± 3.9 20.1 ± 3.8 –4.8 <0.0001 –0.5 5–25

Scientific community values 20.6 ± 3.0 21.0 ± 3.2 –1.3 0.20 –0.1 4–24

a �Students’ scientific self-efficacy and identity significantly increased over the course of the CURE. However, students’ scientific com-
munity values did not significantly change. The six-item scientific self-efficacy scale measures students’ confidence in their ability 
to perform scientific tasks from (1) not confident at all to (5) absolutely confident. The five-item scientific identity scale measures 
students’ agreement with statements about science identity using a scale ranging from (1) strongly disagree to (5) strongly agree. The 
four-item scientific community values scale measures whether students perceive themselves to be like people who value objectives 
of the scientific community, using a scale ranging from (1) not like me at all to (6) very much like me.
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research experience, gender, and race/ethnicity (e.g., model: 
cognitive.ownership ~ type.of.data + major + prior.research 
+ gender + race.ethnicity). 

RESULTS

There was no statistical difference in the extent to 
which students who analyzed their own data and 
students who analyzed professional scientists’ data 
perceived they were conducting real research

We found no significant differences in students’ per-
ceptions of collaboration, iteration, or discovery/relevance 
between students who analyzed their own data and stu-
dents who analyzed professional scientists’ data (Table 
2). Additionally, there was no significant difference in the 
extent to which students perceived they were conducting 
real research between students who analyzed their own 
data and students who analyzed professional scientists’ data 
(Table 2). There was also no difference when we controlled 
for whether a student had previously participated in an 

undergraduate research experience (see the Supplemental 
Materials for the results of this regression). 

Students’ scientif ic self-eff icacy and scientif ic 
identity significantly increased over the course of the 
CURE, and students who analyzed their own data 
showed greater gains in science identity

Over the semester, all students’ scientific identity and 
self-efficacy increased significantly (Table 3). There was no 
significant change in students’ scientific community values.

Students who analyzed their own data were no more 
likely to show gains in scientific self-efficacy than students 
who analyzed professional scientists’ data. However, BLPA 
students were more likely to show gains in scientific self-
efficacy than white students (Table 4). We did find that 
students who analyzed their own data were more likely 
to show gains in scientific identity than students who ana-
lyzed professional scientists’ data (Table 4). There were no 
demographic differences with regard to gains in student 
scientific identity.

TABLE 4.  
Summary of linear regression models exploring the relationship between the type of data students analyzed and their  

post-CURE scientific self-efficacy and scientific identify scores, controlling for students’ pre-CURE scores and demographicsa.

Variable

Model A: Self-Efficacy Model B: Science Identity

B SE B b p B SE B b p

Intercept 8.8 2.9 <0.01 9.5 2.4 <0.001

Type of data analyzed (own) 0.5 0.8 0.1 0.56 1.6 0.8 0.2 <0.05

Pre-CURE score 0.8 0.1 0.7 <0.0001 0.6 0.1 0.6 <0.001

Major (other) –1.7 1.4 –0.1 0.22 –1.1 1.3 –0.1 0.43

Prior research (yes) –0.6 0.9 –0.1 0.51 0.2 0.8 0.3 0.80

Gender (woman) –1.3 0.9 –0.2 0.14 –0.7 0.8 –0.1 0.38

Race/ethnicity (Asian) 0.2 1.0 0.0 0.83 –0.7 1.0 –0.1 0.50

Race/ethnicity (BLPA) 2.1 1.0 0.2 0.05 –0.6 1.0 –0.1 0.57

Adjusted R2 0.43 0.39
a �B represents unstandardized coefficients and b represents standardized coefficients. Focus categories are provided in parentheses in column 1.

TABLE 5.  
Summary of linear regression model exploring the relationship between the type of data  

students analyzed and their post-CURE intent to pursue a science-related research careera.

Variable

Pursue a career in science

B SE B b p

Intercept 0.3 1.9 0.87

Type of data analyzed (own) 0.4 0.5 0.1 0.49

Intention to pursue research career pre-CURE 0.6 0.1 0.6 <0.001

Scientific self-efficacy post- score –0.0 0.1 –0.0 0.93

Scientific identity post- score 0.2 0.1 0.3 0.02

Scientific community values post- score –0.1 0.1 –0.1 0.28

Adjusted R2 0.52
a �B represents unstandardized coefficients and b represents standardized coefficients. In the analysis we controlled 
for students’ pre-CURE intent as well as their scientific self-efficacy, scientific identity, and scientific community 
value scores. Focus categories are shown in parentheses in column 1.
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Students’ intentions to pursue a career in scientific 
research did not statistically change over the 
course of the semester, and there was no statistical 
difference between the intentions of students who 
analyzed their own data and those of students who 
analyzed professional scientists’ data

Controlling for students’ intention to pursue a career 
in scientific research at the beginning of the semester, as 
well as for their scientific self-efficacy, identity, and com-
munity value scores at the end of the semester, there was 
no significant difference in students’ intentions to pursue a 
career in research at the end of the CURE between students 
who analyzed their own data and students who did not 
(Table 5). However, students’ scientific identity significantly 
predicted their intent to pursue a science-related research 
career. There was also no difference between the intent of 
students who analyzed their own data and students who 
analyzed professional scientists’ data when we controlled for 
students’ major, prior research experience, gender, and race/
ethnicity. The mean intent to pursue a career in scientific 
research from the pre- and post- survey for each group is 

presented in Table 6. The results from this regression are 
reported in the Supplemental Materials. 

Students who analyzed their own data developed 
greater emotional ownership than students who 
analyzed professional scientists’ data

Controlling for the extent to which students expe-
rienced collaboration, iteration, and discovery/relevance, 
as well as students’ major and whether they had prior 
research experience, we found that students who analyzed 
their own data were more likely to have higher emotional 
project ownership than students who analyzed professional 
scientists’ data (Table 7). However, there was no differ-
ence in students’ cognitive ownership. We also identified 
that students’ scores on the discovery/relevance subscale 
significantly predicted both their emotional and cognitive 
ownership and students’ scores on the iteration subscale 
predicted their cognitive ownership. We ran a second model 
controlling for students’ major, prior research experience, 
gender, and race/ethnicity and found the same results; stu-
dents who analyzed their own data demonstrated higher 
emotional ownership but not cognitive ownership than 

TABLE 6.  
Intent to pursue research score and cognitive and emotional ownership scores of students  

who analyzed professional scientists’ data and students who analyzed their own dataa.

Pre-CURE score  
(mean ± SD) among 

students who analyzed:
Post-CURE (mean ± SD) 

among students who analyzed:
Possible range 

of scores

Outcome

Scientists’ 
data

Their own 
data

Scientists’ 
data

Their own 
data

Intent to pursue a research career 5.7 ± 2.6 5.9 ± 3.1   5.7 ± 2.7   6.4 ± 2.6 1–10

Cognitive ownership — — 41.4 ± 6.0 43.2 ± 4.8 10–50

Emotional ownership — — 21.5 ± 4.5 24.3 ± 3.9 6–30
a �Students’ intent to pursue a research career was measured on the pre- and post-CURE survey with one item with 10 response options 
ranging from definitely will not (1) to definitely will (10). Cognitive ownership was measured on the post-CURE survey using 10 items 
with five response options ranging from strongly disagree (1) to strongly agree (5). Emotional ownership was measured on the post-
CURE survey using six items with five response options ranging from very slightly (1) to very strongly (5).

TABLE 7.  
Summary of linear regression model exploring the relationship between the type of data students analyzed and  

their emotional and cognitive ownership, controlling for students’ collaboration, iteration, and discovery/relevance scoresa.

Model A: Emotional ownership Model B: Cognitive ownership

Variable B SE B b p B SE B b p

Intercept –0.9 5.2 0.86 5.7 5.4 0.29

Type of data analyzed (own) 2.2 0.9 0.2 0.03 1.0 1.0 0.1 0.33

Collaboration 0.4 0.3 0.2 0.14 0.1 0.3 0.0 0.78

Iteration 0.1 0.2 0.1 0.41 0.3 0.2 0.2 0.05

Discovery 0.41 0.15 0.3 <0.01 0.9 0.2 0.6 <0.0001

Adjusted R2 0.29 0.50
a �B represents unstandardized coefficients and b represents standardized coefficients. Focus categories are shown in parentheses in column 1.
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students who analyzed professional scientists’ data. The 
mean cognitive and emotional ownership score for each 
group is presented in Table 6. The results of this regression 
are reported in the Supplemental Materials. 

DISCUSSION

In this study, we assessed the impact of students ana-
lyzing their own data versus analyzing data that professional 
scientists collected. We created the CURE so that the 
experiences of students in the two groups were designed to 
be identical with the exception of which data they analyzed. 
Indeed, we found that students in both groups perceived 
they engaged in similar levels of collaboration, iteration, and 
discovery/relevance, three key design elements of CUREs 
(4). We hypothesized that students who analyzed their own 
data may be more likely to perceive that they conducted 
real scientific research because students sometimes perceive 
research to be inauthentic if others are doing an aspect 
of their project or if they do not see all the steps of the 
research process in a linear way (13). However, we found 
this was not true in this study. Both groups of students in 
our study collected data, despite one group then analyzing 
data that was collected by professional scientists. Since 
students who analyzed professional scientists’ data still went 
through the process of collecting data and were aware that 
their data were analyzed by the other group of students, 
this may have bolstered their sense that they were doing 
scientific research. Further investigations would need to be 
conducted to understand how analyzing data collected by 
others without being involved at all in data collection affects 
students’ perceptions that they are doing authentic research. 

CUREs have been hypothesized to lead to increased 
student scientific identity (25, 34, 35). Additionally, CUREs 
have been shown to improve student research self-efficacy 
or students’ perceptions of their ability to perform research-
related tasks (18, 19, 36). On average, students in the CURE 
that we studied showed gains in both self-efficacy and sci-
entific identity. However, students who analyzed their own 
data showed a significantly greater gain in scientific identity 
than students who analyzed scientists’ data. Researchers 
have hypothesized that gains in scientific identity in CUREs 
could be due to a sense of belonging to the larger scientific 
community as they receive validation from the community 
(37), or because of an increased tolerance for obstacles and 
recognizing one’s scientific disposition (12, 35, 38–40). It is 
possible that students who analyzed their own data felt more 
confident in the data that they collected because they were 
able to analyze it, which could contribute to their positive 
thoughts about themselves as a scientist. 

In addition to scientific identity, we also identified that, 
compared with students who analyzed professional scien-
tists’ data, students who analyzed their own data showed 
greater gains in emotional ownership or the strength of 
students’ emotions towards their work (11, 25, 26). It has 

been well established that mere exposure can enhance 
familiarity and that familiarity leads to liking, and in some 
cases, happiness as well (41–43). We suspect that students 
who analyzed their own data may have felt more emotional 
ownership toward the overall research project because 
they were more familiar with their own dataset that they 
collected. However, these hypotheses need to be further 
explored in future research. 

CONCLUSION

In this study, we examined the impact of students in a 
CURE analyzing data they collected versus analyzing data 
collected by professional scientists. We found that stu-
dents who analyzed their own data showed greater gains 
in scientific identity and emotional ownership than their 
counterparts who analyzed data collected by professional 
scientists. This study highlights the importance of students 
analyzing their own data in CUREs.

SUPPLEMENTAL MATERIALS

Appendix 1: Relevant measures and additional results 
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