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Background. Since December 2019, coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 infection has emerged in Wuhan
and rapidly spread throughout China and even to other countries. Combined therapy with modern medicine and traditional
Chinese medicine has been proposed, in which Shen Zhu San (SZS) was regarded as one of the basic prescriptions. Methods.
Network pharmacological approaches along with candidate compound screening, target prediction, target tissue location,
protein-protein interaction network, gene ontology (GO), KEGG enrichment analyses, and gene microarray analyses were
applied. Results. A total of 627 targets of the 116 active ingredients of SZS were identified. Targets in immune cells and tissues were
much more abundant than those in other tissues. A total of 597 targets were enriched in the GO biological cellular process, while
153 signaling pathways were enriched according to the KEGG analysis. A total of 450 SARS-related targets were integrated and
intersected with the targets of SZS to identify 40 common targets that were significantly enriched in five immune function aspects
of the immune system process during GO analysis. Several inflammation-related pathways were found to be significantly enriched
throughout the study. Conclusions. .e therapeutic mechanisms of the effects of SZS on COVID-19 potentially involve four
effects: suppressing cytokine storms, protecting the pulmonary alveolar-capillary barrier, regulating the immune response, and
mediating cell death and survival.
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1. Introduction

In early December 2019, a series of pneumonia cases of
unknown cause were first confirmed in Wuhan, Hubei
Province, China [1]. According to the World Health Or-
ganization (WHO), by June 30, 2020, there have been over
ten million cases and five hundred thousand deaths in 215
countries and regions worldwide. Unfortunately, the
number is still increasing. Efforts made by the Chinese
Government to curb outbreaks included initiating first
measures to isolate Wuhan, which were extended to the
whole Hubei province, standing 35 million residents during
the Chinese Spring Festival [2]. Meanwhile, 30 provinces of
China had launched a first-level response to the major public
health emergencies [3]. Because of the severity of this
outbreak, the WHO declared it a Public Health Emergency
of International Concern on January 30, 2020 [4], and then
increased assessment of the risk of spread and impact of
COVID-19 to very high at a global level on February 28, 2020
[5].

Chinese scientists rapidly isolated and confirmed a novel
type of coronavirus named SARS-CoV-2 by the Interna-
tional Committee on the Taxonomy of Viruses on February
11, 2020 [6, 7]. Coronaviruses are positive-sense single-
stranded RNA viruses, which belong to the family Coro-
naviridae. SARS-CoV-2 is the seventh member of the
coronavirus family and the third coronavirus that causes
human fatal illness after SARS-CoV and MERS-CoV [8].
SARS-CoV, which caused outbreaks of severe acute respi-
ratory syndrome (SARS) in Guangdong Province in China
in 2002, shares 79.5% genetic sequence similarity with SARS-
CoV-2 as well as the same cell entry receptor [8], and the
amino acid sequence identity between the SARS-CoV-2 and
the SARS-CoV S-proteins is 76.47% [9]. Some preliminary
studies suggested that SARS-CoV-2 was similar to SARS-
CoV to some extent, based on full-length genome phylo-
genetic analyses [8, 10] and the putative similarity of cell
entry mechanism and human cell receptor utilization
[8, 11, 12]. .e disease caused by the novel coronavirus was
named coronavirus disease 2019 (COVID-19) by the WHO
[7]. .e clinical signs and symptoms have been reported
mainly as viral pneumonia with fever and dyspnea, a few
even developed acute respiratory distress syndrome (ARDS),
with chest radiographs showing bilateral pulmonary infil-
tration [1, 13–15].

As there are no specific antiviral therapies for COVID-19
and the main treatments are supportive at present, the
Proposed Diagnosis and Treatment (5th edition) issued by
China’s National Health Commission integrated therapy
with traditional Chinese medicine (TCM) and modern
medicine [16]. To date, TCM intervention has been officially
specified as an integrant therapeutic strategy in several
provinces in China for patients who develop COVID-19
symptoms. .e experts in TCM who were assigned by
China’s National Health Commission supplied a series of
therapies to treat the COVID-19. Among these therapies, a
traditional formula called Shen Zhu San (SZS, in Chinese:神
术散) was regarded as one of the basic prescriptions for the
treatment of COVID-19 [17–19].

SZS, which is a thousand-year-old TCM formula, was
first recorded in an ancient Chinese medical book called
“Yang’s Hereditary Medical Formulary” and was later in-
cluded in the “Prescriptions of Peaceful Benevolent Dis-
pensary”, the official medical book of the Song Dynasty. SZS
is mainly composed of seven medicinal herbs: Atractylodis
Rhizoma, Angelicae Dahuricae Radix, Asari Radix Et Rhi-
zoma, Glycyrrhizae Radix Et Rhizoma,Notopterygii Rhizoma
Et Radix, Ligustici Rhizoma Et Radix, and Chuanxiong
Rhizoma [20, 21]. In the long course of history, SZS has been
widely used throughout China and has been proven to have
therapeutic effects on epidemic infectious diseases. Modern
toxicological studies demonstrated that the herbs in SZS
have a high margin of drug safety [22–29]. According to
ancient records and modern application, SZS is good for
treating respiratory tract diseases with fever, shortness of
breath, cough, nasal obstruction, headache, dizziness, body
aches, and hematochezia caused by the wind-cold damp
pathogen, for which the symptoms and TCM pathogenesis
are highly consistent with those COVID-19. As a new
pharmacological discipline, integrating network pharma-
cology emphasizes the concept of a “multicomponent,
multitarget therapeutic network” and highlights the overall
concept of TCM [30]. Network pharmacology offers a novel
concept for understanding the multitargeted mechanism of
the treatment of complex diseases with TCM [31]. In this
study, we explored the potential mechanism of SZS in
COVID-19 treatment by utilizing integrating network
pharmacological approaches.

2. Results

2.1. Potential Mechanism of SZS in COVID-19 Treatment

2.1.1. Identification of Active Compounds and Targets of SZS.
Using the TCMSP and SymMap databases, the chemical
ingredients were identified based on the criteria of OB≥ 30%
and DL≥ 0.18: 9 in Atractylodis Rhizoma, 18 in Angelicae
Dahuricae Radix, 6 in Asari Radix Et Rhizoma, 71 in Gly-
cyrrhizae Radix Et Rhizoma, 12 in Notopterygii Rhizoma Et
Radix, 1 in Ligustici Rhizoma Et Radix, and 7 in Chuanxiong
Rhizoma. .ere were 116 chemical ingredients chosen for
further investigation after the removal of duplicates. A total
of 2219 human component-target interactions were gener-
ated from the 116 active ingredients of SZS. Duplicates of the
validated and predicted component targets were eliminated,
and then the 627 targets of the active ingredients of SZS were
screened (Table S1), among which the main compounds and
targets are shown in Table 1.

2.1.2. Compound-Target Network and Target Tissue Location.
.e 627 targets of the active ingredients of SZS mentioned
above were used to construct a component-target network
classified by tissue. Genes are commonly expressed in
multiple tissues and cell types. In this study, as shown in
Figure 1, the targets were located in certain tissues where
they had the highest mRNA expression level according to the
BioGPS database [32, 33], because we were interested in the
expression patterns of the targets in specialized cells and
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tissues, including immune cells and tissues, lung, brain,
heart, kidney, and liver. .e mRNA-specific expression
patterns of targets offer significant clues for understanding
the underlying therapeutic effects of SZS. Specifically, there
were 207 targets located in immune cells and tissues: 28 in
the lung, 126 in the brain, 34 in the heart, 20 in the kidney,
and 42 in the liver. .e nodes with different colors represent
the corresponding relationships of targets and organizations,
as illustrated in the lower-left corner of Figure 1..e number
and the total degree of all the nodes of component targets in
immune cells and tissues (marked in yellow) were much
greater than those in other tissues, which indicated that SZS
might exert therapeutic effect by regulating immune
function.

2.1.3. Analysis of Targets in PPI Network. A PPI network was
constructed to analyze and understand the mechanisms of
the effects of SZS according to the protein-protein inter-
actions. A total of 627 targets were inputted into the STRING
database and the target proteins were rejected independently
of the PPI network (Figure 2(a)) [34]. .ere were 201 nodes
(representing active proteins) and 292 edges (representing
the interaction between the active proteins and other pro-
teins) in the network. All the nodes represented queried
proteins and the first layer of interactors, and the protein-
protein associations represented as edges were implied to be
specific and meaningful. .e results of the network topology
analyses were as follows: the average degree of the nodes was
2.9054, and there were 81 nodes with a degree higher than
the average degree. .e average betweenness centrality of
nodes was 0.0562, and there were 34 nodes with a higher
than average betweenness centrality. .e significance of key
proteins was analyzed based on the comprehensive assess-
ment of the degree, betweenness centrality, and closeness
centrality of the nodes exported from the STRING database.
According to a threshold degree value of ≥6, 31 critical nodes
were further identified and are shown in bubble charts
(Figure 2(b)).

2.1.4. GO Functional and KEGG Pathway Enrichment
Analysis. As a bioinformatics analysis tool, GO defines the
input genes by describing their function and the rela-
tionships between concepts [35]. After collection of data by
ClueGO and CluePedia, GO annotation and enrichment of
the SZS target protein genes were performed for three
concepts of cell composition, molecular function, and bi-
ological process. .e GO enrichment analysis of 627 po-
tential targets (Figure 3(a)) showed that the main BP terms
enriched in the second GO class were cellular process,
biological regulation, and response to the stimulus. For
further exploration of the changes in these biological
functions, we selected the top 20 BP in the third GO class to
generate bubble charts according to the p value
(Figure 3(b)). .e results showed that the mechanism of
SZS was mainly related to the regulation of biological
quality, oxygen-containing compound response, drug re-
sponse, chemical response, organic substance response,
toxic substance response, chemical stimulus cellular

response, ion transport, organic cyclic compound response,
and nitrogen compound response. Among these processes,
597 genes were enriched in the BP involved in the cellular
process, 531 genes were enriched in processes of biological
regulation, and 515 genes were enriched in stimulus
response.

.ere were a total of 153 significant signaling pathways
identified by the KEGG enrichment analysis. .e bar plot of
the KEGG pathway annotation is presented in Figure 3(c).
Environmental information processing was mainly enriched
in terms of signal transduction and signaling molecules and
interactions. Human diseases mainly involved cancers, in-
fectious diseases, and endocrine and metabolic diseases. .e
data indicated that the targets of SZS were widely involved in
regulating metabolism and cell growth and death. Fur-
thermore, there were a few targets involved in genetic in-
formation processing. .e specific pathways are illustrated
in the Discussion section in detail.

2.2. Understanding SZS by Analogy: Investigation of the
Potential Mechanism of the Effects of SZS in SARS-CoV
Pneumonia Treatment

2.2.1. Screening of SARS-Related Targets and Determination
of Common Targets between SZS and SARS. To date, there
have been few data available describing the molecular
mechanisms underlying COVID-19 so far. To better un-
derstand the potential therapeutic effect of SZS on COVID-
19, we investigated the potential mechanism of the effects of
SZS in SARS-CoV pneumonia treatment. Eighteen years
ago, there was an outbreak of SARS-CoV pneumonia in
Guangdong, China. As one of the few lethal coronaviruses,
SARS-CoV-2 shares 79.5% of its sequence with SARS-CoV
and has a similar receptor-binding domain structure to that
of SARS-CoV [8, 10], which is the reason that the Inter-
national Committee on the Taxonomy of Viruses recognized
the novel coronavirus as closely related to SARS-CoV. .e
International Committee on the Taxonomy of Viruses de-
cided to formally name the novel coronavirus SARS-CoV-2
[6]. Regardless of the unclear pathogenesis, the novel
coronavirus has caused clusters of fatal pneumonia with a
clinical presentation greatly resembling SARS, including the
development of ARDS and cytokine storm-caused lethality
[1, 13, 14, 36, 37]. Moreover, front-line medical workers
announced that the abnormalities in laboratory results and
possible pathophysiology of COVID-19, such as cellular
immune deficiency, coagulation activation, and multiple
organ injury, were similar to those of SARS-CoV pneumonia
[14, 15, 36]. .us, investigating the underlying mechanisms
of the effects of SZS in relieving SARS-CoV pneumonia may
partly benefit the current fight against COVID-19.

Hence, we integrated totally 450 disease targets related to
SARS from the MalaCards database and GEO gene
microarray analysis as described in Methods 5.7. .e dif-
ferentially expressed genes are presented in a heatmap
(Figure 4(a)) and a volcano plot (Figure 4(b)). As illustrated
by the Venn diagram (Figure 4(c)), the disease targets and
the component targets intersected to identify 40 common
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targets, which implies the importance of understanding the
role of SZS in COVID-19 treatment by analogy to that in
SARS-CoV pneumonia treatment.

In addition, the compound-target networks as well as the
relationships among the herb-compound-target-pathway
interactions were constructed to better comprehend the
complicated molecular mechanisms (Figure 5).

2.2.2. Analysis of Cotargets in PPI Network. Forty cotargets
were inputted into the STRING database according to the
criteria of a confidence level greater than 0.9 and the re-
jection of target proteins excluded by the PPI network
(Figure 6(a)). .ere were 33 nodes and 133 edges in the
network. .e results of the network topology analyses were
as follows: the average degree of the nodes was 8.0606, and
there were 15 nodes with an average degree higher than
average..e average betweenness centrality of the nodes was
0.0324, and there were 9 nodes with higher than average
betweenness centrality. .e significance of the critical
proteins was analyzed based on the degree, betweenness
centrality, and closeness centrality of the node exported
from STRING database. According to the criterion of a
degree ≥6, 21 critical nodes were identified and are presented
in bubble charts (Figure 6(b)).

2.2.3. GO Functional Enrichment Analysis. .e most sig-
nificantly enriched GO terms of the 40 cotargets are shown
according to BP (red bar), MF (gray bar), and CC (blue bar)
(Figure 7(a)). .e main BP terms were cellular process,
regulation of biological process, and biological regulation.
Furthermore, the 40 cotargets were found to be enriched in
the immune system process by utilizing the ClueGO and
CluePedia plugins in Cytoscape (Figure 7(b)) [38–40]. .e
enrichment of the immune system process was determined
to a kappa score of ≥0.4 and a p value set ≤0.01..e enriched
GO terms were represented as nodes, whose sizes repre-
sented the significance of the enrichment of the term..e pie
chart shows the proportion of each group associated with the
40 target genes (Figure 7(b)). .ere were 57 terms and 322
edges contained in the GO enrichment map. .e terms were
significantly enriched in terms of five immune functions: the
regulation of the adaptive immune response, lymphocyte
activation involved in the immune response, alpha-beta
T-cell differentiation, positive regulation of myeloid cell
differentiation, and regulation of the interferon-gamma-
mediated signaling pathway.

2.2.4. KEGG Pathway Enrichment Analysis. KEGG pathway
analysis was conducted for the purpose of predicting the
potential functions of the 40 cotargets. According to a kappa
score of ≥0.4, 166 terms were found to be connected by 1247
edges (Figure 8(a))..emost significant KEGG terms for the
target genes included the IL-17 signaling pathway, hepatitis
C, Toll-like receptor signaling pathway, Yersinia infection,
Epstein-Barr virus infection, C-type lectin receptor signaling
pathway, toxoplasmosis, NOD-like receptor signaling
pathway, influenza A, malaria, Measles, and inflammatory

bowel disease. Beyond that, we noticed that several in-
flammation-related terms were also significantly enriched,
such as the JAK-STAT signaling pathway, .17 cell differ-
entiation, NF-kappa B signaling pathway, RIG-I-like re-
ceptor signaling pathway, and HIF-1 signaling pathway
(Figure 8(b)). .ese results were in accordance with those of
the KEGG enrichment analysis for all the targets of SZS,
suggesting that interventions in the inflammatory process
might be the crucial mechanism involved in the treatment by
SZS of the 2019 novel coronavirus or SARS-CoV
pneumonia.

3. Discussion

3.1. SZS Is a Traditional TCM Formula Which Has Been
Adopted to Treat COVID-19 in China. .e manifestations of
COVID-19 mimic those of SARS-CoV in terms of symp-
tomatology, laboratory features, and chest imaging mani-
festations [1, 13–15], while there were still characteristics
useful for differential diagnosis [14, 15, 36]..emost distinct
symptoms of hospitalized COVID-19 patients were subse-
quent respiratory insufficiency caused by viral pneumonia,
even followed by ARDS or acute respiratory failure
[1, 13–15]. Combined with life support, TCM treatment has
effectively reduced the severity and enhance the recovery of
the COVID-19 in China [17, 18]. TCM already showed
therapeutic effects on SARS during 2002–2003 [41–46].
Several TCM prescriptions have already been formulated for
COVID-19 treatment, such as Ma Xing Shi Gan Decoction,
Qing-Fei-Pai-Du-Tang, Lian Hua Qing Wen Capsule, and
Shuang Huang Lian [47, 48], among which a classic formula
named Shen Zhu San was regarded as one of the basic
prescriptions [17–19, 49]. It is worth noting that different
TCM prescriptions are suitable for COVID-19 cases with
different symptoms. For example, Chinese doctors applied
Ma Xing Shi Gan Decoction to treat COVID-19 patients who
have a high-grade fever, while SZS is suitable for COVID-19
cases with a slight fever and body aches. SZS contains seven
herbs that are made into a decoction that has been used to
treat epidemic infectious diseases since the Song Dynasty in
China. Some of the herbs and the compounds in SZS have
been proven to have antiviral or anti-inflammatory influ-
ences in vitro or in vivo [50–55]. .e database-based ap-
proaches are effective and seem to become prevalent in
investigating the mechanism of TCM in treating COVID-19
[56, 57]. Our previous research utilized such approaches to
systematically reveal the material basis and underlying bi-
ological mechanisms of Ma Xing Shi Gan Decoction in the
treatment of COVID-19 [49]. In the present study, we
utilized integrating network pharmacological approaches to
investigate the potential mechanism of SZS involved in
treating COVID-19.

.e clinical manifestations, radiological evidence, and
laboratory result abnormalities all hinted that the pulmonary
pathological features were closely related to the inability of
the lung to exchange gas, which is due to viral infection and
persistent immune system responses, consequently resulting
in downstream airway obstruction and alveolar structure
loss [14, 15, 36, 58, 59]. Targeting the immune pathways that
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promote the inflammatory signals and contribute to diffuse
alveolar injury may help to maintain vitality and earn a
valuable time window for clearing the virus. Simultaneously,
TCM therapy, such as SZS, could serve as an important
adjuvant therapy [58, 60, 61]. Our data indicated that im-
mune cells and tissues were the main targets of SZS (Fig-
ure 1), and the biological effect of SZS was widely involved in
the regulation of the immune process, as illustrated in
Figure 7(b).

3.2. SZSMayRelieveCOVID-19 throughSuppressingCytokine
Storm. Resulting from virus-induced abnormal immune
activation primarily, cytokine storm is an acute, lethal, and
systemic complication connected with the severity of
COVID-19 [1, 62]. Abnormal concentrations of several
associated cytokines like TNF, IL-10, and IL-6 were found in
COVID-19 patients [1, 63, 64]. As shown in Figure 9, SZS
was likely to regulate inflammatory factor production
through different mechanisms. Specifically, the TNF path-
way was enriched in the KEGG enrichment analysis
(Table S3), and TNF was a targeted protein in the PPI
network (Figure 2(a)). TNF, a famous and perhaps the most
intensely studied proinflammatory cytokine, is considered to
play a prominent role in the cytokine storm and has been
identified as a central cytokine in acute viral diseases, in-
cluding those caused by the influenza virus, dengue virus,
and Ebola virus [65, 66]. Besides, TNF is induced by

secondary mediator cascades in respiratory epithelial cells
after influenza virus infection, as opposed to a range of
proinflammatory cytokines directly induced in respiratory
epithelial cells [67, 68], which further indicates that TNF
may act as a critical effector in amplifying and broadening
the proinflammatory response and then escalating the cy-
tokine storm [68, 69]. IL-10 is another core component of
the cytokine system to prevent immunopathology during
inflammatory responses [70]. .rough the extracellular
signal-regulated kinase/IL-10 axis, IL-10 is induced and
stimulates STAT3, one of the 31 hub targets (Figure 2(b)), to
inhibit the NF-κB signaling pathway in the early phase of
infection. Proinflammatory cytokines such as TNF are
downregulated, and the cytokine storm can thereby be al-
leviated. IL-10 dysregulation tends to injure the host because
of either excessive pathogen proliferation or cytokine storm
[71]. Although the specific effects of IL-6 are mixed, IL-6 has
a predominantly anti-inflammatory effect to protect the host
from diverse infections and tissue injuries [72]. However,
high levels of IL-6 may exert disproportionate effects like
activating the coagulation pathway and vascular endothelial
cells (ECs), thereby generating acute cytokine storms [62].

Several ingredients of SZS, such as quercetin, kaemp-
ferol, and wogonin, have been proven to reduce TNF and IL-
6, thus suppressing inflammatory activity [65, 73–76]. What
is more, quercetin could also regulate the cytokine balance
by increasing serum IL-10 [77]. From these results and
literature review, we came to the assumption that by

Table 1: .e compounds and targets of SZS.

Herb names Number of
components Main components Number of

targets Main targets

Atractylodis Rhizoma (Cang
Zhu 苍术 ) 9

Wogonin

168 AKT1, JUN, VEGFA, MMP, TNF, IL6Stigmasterol 3-O-β-D-
glucopyranoside_qt

β-sitosterol 3-O-glucoside_qt

Angelicae Dahuricae Radix
(Bai Zhi 白芷 ) 18

Alloisoimperatorin

228 AKT1, TLR4, JUN, FKBP, JAKCnidilin
Prangenidin
Prangenin

Asari Radix Et Rhizoma (Xi
Xin 细辛 ) 6

Kaempferol

134 AKT1/2, JUN, MMP, PLAT, TNF, IL10
Sesamin
Caribine

4,9-Dimethoxy-1-vinyl-
β-carboline

Glycyrrhizae Radix Et
Rhizoma (Gan Cao 甘草 ) 71

Isotrifoliol

354 TLR4, JUN, VEGFA, PLAT, Serpine1,
VCAM, IL10, STAT3, IL6, FKBP, FOS

Inflacoumarin A
Kanzonol F
Quercetin

Formononetin
Notopterygii Rhizoma Et
Radix (Qiang Huo 羌活 ) 12 Cnidilin 157 MAPK8/10, AKT1, JUN, JAKβ-sitosterol
Ligustici Rhizoma Et Radix
(Gao Ben 藁本 ) 1 Sitosterol 17 AR, ESR1, PGR

Chuanxiong Rhizoma (Chuan
Xiong 川芎 ) 7

Perlolyrine
72 MAPK8, TLR7, NOS2, HCK, CA1Sitosterol

FA
Annotation. .e active compounds suffixed with “_qt”, called aglycone, are deglycosylated from the compounds connected with glycosyl groups, called
glycosides, following the rule of the glycosidase hydrolysis reaction.
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decreasing TNF, quercetin, kaempferol, and wogonin could
inhibit the dysfunction of ECs, extravasation of cytokines
and inflammatory cells, and injury of the parenchymal cell.
.e ingredients in SZS may decrease tissue factor (TF)
(Table S1) activated by excessive IL-6, thus decreasing the
incidence of a lethal cytokine storm through suppressing the
coagulation pathway. Besides, quercetin may also protect the
host from cytokine storms by activating STAT3 to inhibit the

NF-κB/TNF-α axis. To be brief, quercetin, kaempferol, and
wogonin in SZS potentially treat COVID-19 by suppressing
cytokine storm.

3.3.Understanding theRole of SZS inCOVID-19byAnalogy to
SARSTreatment: SZSCouldParticipate inRegulating Immune
Response and Mediating Cell Death and Survival. In the

Other tissues

Kidney Liver

Lung Heart

Brain

Immune cells and tissues

Brain

Compound

Heart

Immune cells and tissues

Kidney

Liver

Lung

Other tissues

Figure 1: Compound-target-organ location map. .e displayed nodes collectively represent the organs in which each target was located.
.e nodes with different colors represent the corresponding relationships of targets and organizations.
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Figure 2: .e PPI network for SZS and hub target analysis. (a) .e nodes indicate proteins, and the edges represent protein-protein
associations. .e cyan edges represent interactions from the curated database, and the purple edges were experimentally determined. .e
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Figure 3: Continued.
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present study, due to the similarities between SARS-CoV
pneumonia and COVID-19 from aspects of the etiology,
clinical manifestation, and laboratory findings, we also
attempted to understand SZS by analogy to the mechanisms

of SZS in relieving SARS-CoV pneumonia. As illustrated in
Figure 4, SZS shared 40 common targets associated with
SARS. .e acute phase of SARS is related to a severe re-
duction in the number of T cells in the blood [78].
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Figure 3: GO functional and KEGG enrichment analysis. (a).e second GO class enrichment statistics for 627 targets..e x-axis represents
the GO terms: red for BP terms, gray for MF terms, and blue for CC terms. .e y-axis shows the number of enriched genes. (b) .e bubble
diagram shows the top 20 BP terms on the y-axis, while the annotated gene counts for the BP terms are presented on the x-axis. (c) KEGG
pathway annotation. .e x-axis represents the number of genes in the given classification. .e details of the GO and KEGG analyses are
presented in Tables S2 and S3, respectively.
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Figure 4: Continued.

10 Evidence-Based Complementary and Alternative Medicine



Jun and Fos are contained in the 21 hub cotargets
(Figure 6(b)) as well as the enriched GO terms of the im-
mune system process (Figure 7(b)). c-Jun NH2-terminal
kinases (JNKs) take part in cellular proliferation, differen-
tiation, and death, as well as the response to proin-
flammatory molecules. In particular, they play a critical role
in T helper cell (.) activation and maintenance of .1/.2
polarization [79]. Fos regulates transcription of several cy-
tokine genes affected by SARS-CoV infection, including the
proinflammatory cytokines involved in the cytokine storm
during SARS-CoV pathogenesis [80]. AP-1 consists of
members of Jun and Fos families, and the activity of AP-1 is
regulated by JNK and extracellular signal-regulated kinase
(ERK), of which the activation induces transcription of c-Fos
and succeeding AP-1 activation. .rough the activation of
JNK and ERK signaling cascades, SARS induces an increase
in the activity of AP-1, which regulates the transcription of
many cytokine genes affected in SARS-CoV infection [80].
As Jun was targeted by wogonin, beta-sitosterol, kaempferol,
and formononetin while Fos was targeted by quercetin, we
suggest that the immunomodulatory effects of SZS may be

mediated by Jun and Fos to protect against cytokine storm
for COVID-19 treatment.

In addition to the potential therapeutic mechanism
mentioned above, several targets of SZS, such as STAT3 and
MAPK, were closely related to apoptosis (Figures 2 and 3).
.e transcriptional activity of STAT3 is influenced by viral
infection and is relevant to the antiapoptotic activity of cells,
and MAPK is reported to promote both cell death and
survival [81, 82]. Moreover, Akt was the target with the
highest degree among the 31 hub genes (Figure 2(b)), and
the Akt signaling pathway is involved in cellular prosurvival
signaling, which has been proven to be involved in the
development of SARS-CoV infection [83]. .e potential
impact of SZS on cell death and survival during COVID-19
deserves further exploration.

3.4. SZS May Treat COVID-19 via Improving Respiratory
Function. As indicated in the pathological results of COVID-19
[84], the diffuse alveolar damage with fibrin rich hyaline
membranes and multinucleated giant cells, triggered by virus

SZS SARS

587 41040

(c)

Figure 4: Differential gene expression heatmap and volcano plot for SARS-CoV and common targets between SZS and SARS. (a)
Differential gene expression heatmap for SARS-CoV (all upregulated and downregulated genes). (b) Differentially expressed genes were
selected by volcano plot filtering (fold change≥ 1 and p value≤ 0.05). (c) Venn diagram of the overlapping targets of SZS and SARS.
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Figure 7: GO functional enrichment analysis and pathway mapping. (a).e second level GO enrichment statistics for 40 cotargets. (b).e
cotarget genes were mapped for the immune system process GO terms by utilizing Cytoscape equipped with the ClueGO and CluePedia
plugins. Each node represented a GO term, and its size represented the significance. An edge indicates the existence of common genes: a
finer line indicates a smaller overlap. .e different functional groups of GO terms were reflected by different node colors and are shown on
the pie chart. ∗∗p< 0.01. .e detailed statistics are provided in Table S4.

14 Evidence-Based Complementary and Alternative Medicine



% terms per group

IL-17 signaling pathway 45.25%∗∗

Hepatitis C 7.26%∗∗

Yersinia infection 5.59%∗∗

C-type lectin receptor signaling pathway 5.03%∗∗

NOD-like receptor signaling pathway 4.47%∗∗

Inflammatory bowel disease (IBD) 2.79%∗∗

Toll-like receptor signaling pathway 6.70%∗∗

Epstein-Barr virus infection 5.59%∗∗

Toxoplasmosis 5.03%∗∗

Influenza A 4.47%∗∗

Malaria 4.47%∗∗

Measles 3.35%∗∗

Node size mapping

75.0

0.0
0.00

0.00 0.10

0.10

N
od

e s
iz

e

Term P value corrected with bonferroni step down

0.05

Apoptosis

AGE-RAGE signaling pathway in
diabetic complications 

Choline metabolism in cancer

B cell receptor signaling pathway

Chronic myeloid leukemia

Th17 cell differentiation
Cytokine-cytokine receptor

interaction

Th1 and Th2 cell differentiation
Non-small cell lung cancer

STAT3

TP53

Hematopoietic cell lineage

Human immunodeficiency virus 1
infectionSmall cell lung cancer

Inflammam tory bowel
disease (IBD) Viral protein interaction

with cytokine and
cytokine receptor 

Insulin resistance

RIG-I-like receptor signaling pathway Chemokine signaling
pathway

ErbB signaling
pathway

ITK

Cytosolic DNA-sensing pathway

Longevity regulating pathway

Hepatitis C
Pancreatic cancer

Adipocytokine signaling pathway

FoxO signaling pathway

PD-L1 expression and PD-1
checkpoint pathway in cancer

Prolactin signaling pathway

Amphetamine addiction

CXCL11

Prostate cancer

Acute myeloid leukemia

PPIF

HIF-1 signaling pathway

SIRT1
Melanoma

Growth hormone synthesis,
secretion and action 

Toxoplasmosis

Non-alcoholic fatty liver disease
(NAFLD)

JAK-STAT signaling pathway

Renal cell carcinoma

Fc epsilon RI signaling pathway

Cellular senescence

Allograft rejection

Autoimmune thyroid disease

TLR7
Asthma

Legionellosis

Type I diabetes mellitus

Intestinal immune network for IgA
production

Pertussis

CD209

IL-17 signaling
pathway

Rheumatoid arthritisYersinia infection
NF-kappa B signaling pathway

Salmonella infection

Chagas disease (American
trypanosomiasis)

Amoebiasis

Fluid shear stress and
atherosclerosis

Pathogenic Escherichia coli infection

NOD-like receptor
signnaling pathwah y 

Tuberculosis

InflII uenza A

Mitophagy

Glioma

African trypanosomiasis
TNF signaling pathwayPLAU

T cell receptor signaling pathway C-type lectin
receptor signaling

pathway

Malaria

Human cytomegalovirus infection

Measles

Osteoclast differentiation

virusEpstein-Barr v
infection

LeishmaniasisKaposi sarcoma-associated
herpesvirus infection 

Epithelial cell signaling in
Helicobacter pylori infection 

IL1B

CCL2
CXCL10

STAT1
JUN

IL4

IFNB1
TNF

CXCL2

CD40LG

IRF1

IFNG

Human T-cell leukemia virus 1
infection

IL2

Hepatitis B

IKBKB

JAK1
IL10CASP8

RAF1

RELA
CXCL8

IL6
FOS Necroptosis

Central carbon metabolism in cancer

Graft-versus-host disease

Bladder cancer

Neurotrophin signaling pathway

KRAS

Colorectal cancer

Endometrial cancer CDKN1B

signaling pathway 

Sphingolipid signaling pathway

(a)

Figure 8: Continued.
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Figure 8: KEGG enrichment analysis and pathway mapping. (a) Functionally grouped network of the enriched categories was generated for
the target genes using ClueGO and CluePedia plugins. Pathway terms were represented as nodes, and the node size represents the
significance of the enrichment of the term..e pie chart shows the proportion of each group associated with 40 cotargets. (b).e bars show
the number of genes related to the pathway terms. ∗∗p< 0.01 . .e detailed statistics are provided in Table S5.
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Figure 9: KEGG pathway: map04657. Red boxes mark the proteins or pathways targeted by SZS.

16 Evidence-Based Complementary and Alternative Medicine



infection and inflammatory dysregulation, was the leading cause
of diminished respiratory function like dyspnea and ARDS
[84, 85]. Resulting from alveolar endothelial and epithelial
barriers disruption, elevated vascular permeability ultimately
leads to the dysfunction of the pulmonary alveolar-capillary
barrier [86, 87]. After virus infection, the activation of the
phosphoinositide 3-kinase (PI3K)/Akt/eNOS signaling pathway
leads to an increase in histamine and NO, which increases
microvascular permeability [88]. Sesamin is a lignan that exhibits
antioxidative and anti-inflammatory effects by blocking the Toll-
like receptor 4 signaling pathway and protecting human ECs in
the lung [89]. Sesamin seems to alleviate histamine and NO-
induced leakage by potently inhibiting Akt and p38 (MAPK)
activities [90]. Moreover, we noticed that the histamine H1/2/3
receptors were simultaneously targeted by several compounds in
SZS, including alloisoimperatorin, cnidilin, prangenidin, pran-
genin, and caribine, which probably hints at the potential role of
SZS in regulating histamine-mediated microvascular perme-
ability. Owing to the excessive fibronectin inhibited by the
Serpine1 driven tissue-type plasminogen activators (PLAT), the
elevated vascular permeability stimulates inflammatory cell
migration and proliferation and recruits neutrophils to the lung,
thus leading to severe lung injury [91]. Several compounds in
SZS targeted Serpine1 and PLAT, such as quercetin, inflacou-
marin A, 4,9-dimethoxy-1-vinyl-β-carboline, and kanzonol F
(Table 1). Quercetin has been proven to increase the expression
of PLATwhile suppressing Serpine1 [92, 93].Meanwhile, several
active ingredients of SZS also targeted the Serpine1 and PLAT,
including inflacoumarin A, 4,9-dimethoxy-1-vinyl-β-carboline,
and kanzonol F (Table 1). In summary, SZS may play a pro-
tective role in maintaining the alveolar endothelial and epithelial
barriers from disruption, relieving pulmonary capillary leakage,
inhibiting the inflammatory environment of lung, and ulti-
mately improving respiratory function.

.ere were some limitations in the present work. Since the
latest update time of TCMSP and SymMap was 2014 and
2018, respectively, there may be some omissions of the
components of SZS. Also, the dose-effect relationship of each
component in SZS is not involved in these databases [94].
Such limitations remind us of treating the network phar-
macological results more cautiously. At present, nevertheless,
the network pharmacological approaches are still beneficial to
research the mechanism of TCM in treating COVID-19.

4. Conclusion

In the present study, we investigated the underlying mecha-
nism of the effects of SZS in treating the COVID-19 by utilizing
the methods of integrating network pharmacology. .e
therapeutic effects potentially involve suppressing cytokine
storms, protecting the pulmonary alveolar-capillary barrier,
regulating the immune response, and mediating cell death and
survival. Further experiments are needed to validate the specific
molecular mechanisms of the effects of SZS on COVID-19.

5. Methods

5.1. Constructing Database of Candidate Compounds. .e
constituents of the compounds in SZS were retrieved from

the online public databases Traditional Chinese Medicine
Systems Pharmacology (TCMSP) (http://lsp.nwu.edu.cn/
tcmsp.php) and SymMap (https://www.symmap.org/)
[95–98]. Each candidate’s druggability was analyzed
according to its oral bioavailability (OB) and drug-likeness
(DL). As an important indicator to objectively evaluate the
intrinsic quality of drugs, OB is the degree and speed of the
absorption of drugs into the circulatory system. .e higher
the OB of the compound is, the more likely the compound
is to be applied clinically. DL refers to the sum of the
pharmacokinetic and safety properties derived from the
interactions of the physicochemical properties and struc-
tural factors, including solubility, permeability, and sta-
bility. .e molecules with OB≥ 30% and DL ≥ 0.18 were
considered to exhibit relatively good pharmacokinetic
properties and were identified as candidate compounds for
analysis [99, 100]. All of the compound information was
standardized according to “Canonical SMILES” based on
the PubChem database (https://pubchem.ncbi.nlm.nih.
gov/).

5.2. Predicting Targets of Active Compounds. .e validated
targets, which were confirmed by experiments, of the active
ingredients of SZS were obtained from the TCMSP database
[101]. .en, the potential target prediction of these active
ingredients was performed by utilizing ChemMapper
(http://www.lilab-ecust.cn/chemmapper/index.html), a web
server for predicting potential drug targets based on the 3D
structure similarity [102–105]. .e similarity score is cal-
culated from the molecular 3D similarity between the query
and hit compounds and is scaled to [0, 2], while only five
thresholds (0.8, 1.0, 1.2, 1.5, and 1.8, with 1.2 as the default
value) can be set. All the compounds of which the score is
below the threshold will not be exhibited. .e closer the
similarity score is to 2, the more likely a pharmacological
link between the molecules is. In the present research, the
similarity score threshold was set as the default value of 1.2
compared with drugs in the DrugBank database. Table S1
listed the targets of the active ingredients of SZS. As illus-
trated in the last column of Table S1, “validated” meant that
the interactions of ingredients and targets were validated by
the TCMSP database, while the others, which were shown in
the form of prediction scores, were obtained from the
ChemMapper. .e prediction score is a standard score
normalized to [0, 1]. .e closer the prediction score is to 1,
the higher confidence between the ingredient and the target
is. Commonly, to screen the potential targets of the active
compounds, the thresholds of prediction scores are set above
0, indicating good confidence [103–107]. To be specific, the
prediction scores were outputted with three decimal places.
If the score were still 0.000, which meant a very low level of
confidence, the target would be identified as meaningless
and removed. Moreover, duplicates of the validated and
predicted targets were eliminated. In this way, the potential
and rational targets of SZS could be taken into further
analyses as far as possible, especially when the pathogenesis
and therapeutic mechanism of COVID-19 are still not clear.
All the targets obtained above were standardized according
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to their gene names and UniProt IDs by searching the
UniProtKB (https://www.uniprot.org/) database with
“Homo sapiens” as the species [108].

5.3. Constructing the Target Tissue Location Network.
BioGPS is a database for querying and organizing gene
annotation resources. It provides gene expression data for
cells or tissues obtained by microarray analysis [32]. .e
target-organ location network was constructed with the
use of the dataset: GeneAtlas U133 A, gcrma (http://
biogps.org/#goto�welcome). First, the mRNA expres-
sion patterns of each target gene were determined in 84
different organ tissues. Second, the average values for each
gene were analyzed. .ird, the genes were located in the
relevant organ tissues where the mRNA expression level
was higher than the mean. Finally, a target-organ location
network was constructed using Cytoscape 3.7.2 (https://
cytoscape.org/), a well-known tool for network pharma-
cology research, to visualize the biological pathways and
intermolecular interaction networks, among others.
Furthermore, this supplied a basic set of features for data
integration, analysis, and visualization for complex net-
work analysis [109].

5.4. Constructing the Protein-Protein Interaction (PPI)
Network. Since the chances of proteins performing their
assigned functions individually are small, proteins involved
in the biochemical process in the same cell tend to form
macromolecular complexes through interactions to perform
biological functions. .erefore, the exploration of protein
interactions and their interaction networks are vital to
understanding cellular organization, bioprocesses, and
functions. In order to better understand protein interactions
systematically, the associated targets were inputted into
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING, Version: 11.0) (https://string-db.org/) to obtain
the relevant information on protein interaction, for which
the genes were determined as nodes and the interactions as
lines in a network [34]. STRING is an online database of
functional protein association networks, providing associ-
ations between proteins according to experimentally de-
termined data, literature mining, databases, and gene
associations like neighborhood, fusions, co-occurrence,
coexpression, or protein homology [110]. To ensure high
interaction confidence, the minimum score was set to the
highest confidence value of 0.9 to include the broad scope of
protein interactions. Besides, disconnected proteins in the
network were excluded. Finally, the protein interactions
were determined according to exported statistics..e degree
of a node indicates the number of routes to which the node is
connected.

5.5. Gene Ontology (GO) Enrichment Analysis. Gene on-
tology (GO) is an international standardized gene func-
tional classification system that offers a dynamically
updated controlled vocabulary and strictly defined con-
cepts to comprehensively describe the properties of genes

and their products in any organism [35]. GO has three
ontologies: molecular function (MF), cellular component
(CC), and biological process (BP). .e basic unit of GO is
the GO term. Each GO term belongs to a type of ontology.
GO enrichment analysis provides all GO terms that are
significantly enriched in targets compared to the genome
background and filters out the targets that correspond to
biological functions. Firstly, all targets were mapped to GO
terms in the gene ontology database (http://www.
geneontology.org/), the gene numbers were calculated
for every term, and significantly enriched GO terms in
targets compared to the genome background were defined
by a hypergeometric test. .e calculated p value was then
subjected to FDR correction. In this study, GO terms with
an FDR ≤0.01, as the threshold, and the data were collected
by ClueGO and CluePedia (Cytoscape plugins) [111–113].
Moreover, the targets were mapped for biological process
(GO:0002376) and immune system process to explore the
underlying impact on immune responses by utilizing
Cytoscape equipped with the ClueGO and CluePedia
plugins [38–40].

5.6. Pathway Enrichment Analysis. Genes usually interact
with each other to play roles in certain biological functions.
.e pathway-based analysis helps to further understand
gene biological functions. KEGG is the major public path-
way-related database [114]. Pathway enrichment analysis
identified significantly enriched metabolic pathways or
signal transduction pathways involving targets compared
with the whole genome background in the KEGG pathway
database (http://www.genome.jp/kegg/). .e calculated p

value was subjected to FDR correction by taking FDR ≤0.01
as a threshold and the data were collected by the ClueGO
and CluePedia plugins [115, 116]. Moreover, R software
version 3.6.1 (http://www.r-project.org) with several R
packages, including clusterProfiler, org.Hs.eg.db, enrichplot,
and ggplot2, was applied to draw graphs during the GO and
pathway enrichment analyses, such as bar plots, bubble
diagrams, and a KEGG pathway map [117]. .e R packages
are available on Bioconductor (https://www.bioconductor.
org/) [118].

5.7. Screening of Genes Related to SARS. Genes related to
SARS were derived from MalaCards (https://www.
malacards.org/pages/info), a database of human genes and
genetic disorders. .e proteins acquired from MalaCards
were used as hub proteins and submitted to STRING and
Human Protein Reference Database (HPRD) (http://www.
hprd.org/) to determine the proteins interacting with these
hub proteins. HPRD is a resource for experimentally derived
information about the human proteome including protein-
protein interactions, posttranslational modifications, and
tissue expression [119, 120]. Meanwhile, we identified the
gene expression data regarding SARS from the Gene Ex-
pression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/), an international public repository that ar-
chives and freely distributes high-throughput gene expres-
sion and other functional genomic datasets. .e GEO
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dataset numbered GSE1739 is comprised of gene expression
data obtained using the GPL201 Affymetrix Human HG-
Focus Target Array from 14 samples, including 10 peripheral
blood samples from adult patients with SARS and 4 controls.
.e workflow has been wrapped into the R packages
“limma” and “edgeR” to identify the differentially expressed
genes (DEGs) between the case and control samples [118]. In
the current study, genes with an adjusted p value <0.05 and |
LogFC|>1.0 were regarded as DEGs. Meanwhile, the R
package “pheatmap” was used to draw the heatmap plot and
volcano plot, with the up- and downregulated genes
presented.

5.8. Construction and Analysis of Visualization Networks.
In order to understand the complex relationship between
active compounds and potential targets, the compound-
target networks as well as the relationships among the
compound-target-disease interactions were established
with the software Cytoscape-v3.7.2 to reveal the molecular
mechanisms. .is network was composed of nodes and
edges. Nodes represent molecules (compounds, targets,
pathways, herbs, or diseases), and edges indicate inter-
molecular interactions, namely, the connections between
nodes.
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