Skip to main content
. 2020 Nov 17;51(5):2850–2863. doi: 10.1007/s10489-020-02055-x

Table 11.

Ablative analysis of components on D1 using average classification accuracy and computation complexity, where l, c, s, and k represents the corresponding layer of deep learning, number of input channels, and spatial size of output feature map, respectively. Bold emphasis indicate the best results

Component Accuracy (%) Computational complexity
VGG-16 with attention module 45.20 O(2.cl1.kl2)+O(cl1.sl2.kl2)
VGG-16 75.25 O(cl1.sl2.cl.kl2)
VGG-16 with both attention and convolution module (proposed model) 79.58 O(2.cl1.kl2)+O(cl1.sl2.kl2)+ O(cl1.sl2.cl.kl2)