Skip to main content
. 2020 Nov 17;51(5):2850–2863. doi: 10.1007/s10489-020-02055-x

Table 6.

Comparison with other fine-tuned models based on pre-trained deep learning models using average classification accuracy (%) and training parameters (in millions) on three datasets (D1, D2, and D3). Bold emphasis indicate the best results

Method D1(%) D2(%) D3(%) Params
Incep.-V3, 2016 [46] 65.55 83.44 80.95 26
ResNet50, 2016 [35] 62.24 74.15 67.58 36.6
DenseNet121, 2017 [47] 64.61 80.40 75.86 11
Incep.-ResnetV2, 2017 [48] 68.10 83.93 84.35 57
MobileNet, 2017 [49] 67.33 82.35 84.16 7
EfficientNetB0, 2019 [39] 56.03 81.82 72.87 12
Ours (VGG-16) 79.58 85.43 87.49 18
Ours (VGG-19) 74.84 82.83 85.00 21.2