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Abstract

Tight junction (TJ) proteins are essential for mediating interactions between adjacent cells and 

coordinating cellular and organ responses. Initial investigations into TJ proteins and junctional 

adhesion molecules (JAM) in cancer suggested a tumor suppressive role where decreased 

expression led to increased metastasis. However, recent studies of the JAM family members JAM-

A and JAM-C have expanded the roles of these proteins to include pro-tumorigenic functions, 

including inhibition of apoptosis and promotion of proliferation, cancer stem cell biology, and 

epithelial-to-mesenchymal transition. JAM function by interacting with other proteins through 

three distinct molecular mechanisms: direct cell-cell interaction on adjacent cells, stabilization of 

adjacent cell surface receptors on the same cell, and interactions between JAM and cell surface 

receptors expressed on adjacent cells. Collectively, these diverse interactions contribute to both the 

pro- and anti-tumorigenic functions of JAM. In this review, we discuss these context-dependent 

functions of JAM in a variety of cancers and highlight key areas that remain poorly understood, 

including their potentially diverse intracellular signaling networks, their roles in the tumor 

microenvironment, and the consequences of post-translational modifications on their function. 
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These studies have implications in furthering our understanding of JAM in cancer and provide a 

paradigm for exploring additional roles of TJ proteins.
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Introduction

Junctional adhesion molecule A (JAM-A), also known as JAM-1 or F11R, is the founding 

member of the JAM sub-family, one branch of the larger immunoglobulin superfamily 

(IgSF) of cell surface proteins. JAM-A, JAM-B, and JAM-C, the focus of this review, are 

classical JAM molecules that display up to 35% amino acid sequence homology and contain 

a short cytoplasmic tail (40–50 residues) with a class II PSD-95/Discs-large/ZO-1 (PDZ) 

domain-binding motif at the C-terminus. There are also additional JAM-related proteins, 

including JAM-4, JAM-L, CAR, CLMP and ESAM, which have a long cytoplasmic tail (98–

120 residues) with a class I PDZ domain-binding motif (1). JAM-A was originally identified 

as the receptor of a monoclonal antibody that activates human platelets (2) and is expressed 

in the tight junctions (TJs) of both epithelial and endothelial cells, as well as some leukocyte 

populations and platelets (3,4). Like other TJ proteins, JAM-A mediates epithelial barrier 

function but also has roles in platelet aggregation and hemostasis, inflammation and immune 

homeostasis, and angiogenesis (5). Similarly, JAM-C is found at TJs, where it regulates 

epithelial cell migration, cell polarity, angiogenesis and vascular permeability (6). JAMs 

mediate these functions through three distinct molecular mechanisms, including (a) direct 

cell-cell interaction between adjacent cells, (b) stabilization of adjacent cell surface 

receptors (such as integrins) on the same cell, and (c) interactions with cell surface receptors 

expressed on adjacent cells (7). These mechanisms control intracellular signaling potentially 

through interactions with a few well-characterized PDZ domain-containing proteins, which 

are mediated through the C-terminal PDZ domain-binding motif (see JAM-A Structure and 

Function section below) (5).

In cancer, cell-cell adhesion and migration are essential processes that occur during the early 

stages of metastasis. As such, TJ proteins have well-established roles in tumor cell adhesion, 

polarity, invasion and migration. Prior landmark studies have demonstrated that the lack or 

loss of TJ-based cell adhesion and epithelial barrier function increases cell permeability, 

leading to increased tumor cell invasion, dissemination and metastasis (8,9). However, an 

increasing number of studies suggest that TJ proteins may not function as tumor suppressors 

but rather accelerate tumor progression, suggesting that TJ proteins function in a context-

dependent manner in cancer (10). This context-dependent function has also been reported 

for JAM-A, as multiple studies have demonstrated that increased JAM-A expression drives 

tumorigenesis and promotes metastasis by activating adhesion-independent intracellular 

signaling pathways (11–13). Similarly, there are also reports that support a tumor-

suppressive role for JAM-A (14,15). These functional differences are also reflected in an 

increase or decrease in JAM-A levels across a variety of cancers that either positively or 

negatively correlates with patient prognosis (16–19). For this reason, there is no clear 
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consensus for the function of JAM-A in cancer, likely reflecting the complexity of the three 

main mechanisms of interaction of JAM-A and resulting diversity in downstream signaling. 

The expression of JAM-B is primarily limited to endothelial cells and hence is not discussed 

here.

While less studied, there is evidence for pro-tumorigenic functions of JAM-C, another JAM 

family member expressed on epithelial cells, primarily in metastasis. Studies in the early 

2000s identified JAM-C as necessary for both adhesion of tumor cells to endothelial cells 

(20) and for tumor cell intravasation into blood vessels (21), and the RVE sequence in the 

amino terminal Ig domain was responsible for this binding (see JAM-A Structure and 

Function section below). A number of follow-up studies across a wide array of cancers have 

likewise implicated JAM-C in metastasis, including in non-small cell lung cancer (NSCLC) 

(22), melanoma (23,24), fibrosarcoma (25), ovarian cancer (26), gliomas (27), renal cell 

carcinoma (28) and multiple liquid tumors (29–31). Here, we discuss the underlying 

mechanisms through which JAMs function, using JAM-A as an illustrative example, to 

either suppress or drive tumor progression and examine how JAMs can serve as a paradigm 

to reveal additional roles for other TJ proteins in complex cancer phenotypes.

JAM-A structure and function

Given the diversity of cell types and tissues in which JAM-A is expressed, this protein is 

likely involved in the regulation of numerous physiological processes, ranging from 

intercellular TJ assembly critical for maintaining junctional integrity and permeability to 

cellular polarity, leukocyte transendothelial migration, platelet aggregation, and angiogenesis 

(32–38). All JAM family members are type I transmembrane glycoproteins and share a 

similar structure, which includes two extracellular immunoglobulin-like domains at the N-

terminus, a transmembrane region, and a cytoplasmic tail of variable length within the C-

terminus of the protein. The extracellular segment of JAM-A is composed of a membrane-

distal V-type Ig domain that contains cis-dimerization and trans-homophilic interaction 

motifs, which are thought to mediate adhesive interactions, and a membrane-proximal C2-

type domain (5). The cytoplasmic tail of JAM-A is short, consisting of only 40 amino acid 

residues with no known catalytic activity. However, the cytoplasmic tail contains a PDZ 

domain-binding motif, which can directly interact with scaffolding cytoplasmic proteins 

such as ZO-1, ZO-2, Patj, Afadin, ASIP/Par3, CASK, MUPP1, MAGI-1, and PDZ-GEF2. 

These binding partners are reviewed in greater detail elsewhere (Ebnet et al 2017)(7,39,40) 

and likely represent only a subset of the total binding proteins that mediate JAM signaling.

Additionally, the cytoplasmic tail of JAM-A has 13 amino acids that could potentially be 

phosphorylated, two of which have been shown to be functionally important (Y280 and 

S284). In epithelial cells, residue Y280 of JAM-A is phosphorylated at low levels at 

baseline; however, after treatment with TNF-α, IFNγ, IL-22 or IL-17A, phosphorylation 

increases as a result of Yes-1 kinase and PTPN13 phosphatase regulation (41). Additionally, 

when endothelial cells are treated with fibroblast growth factor (FGF), the presence of a 

single Y280F mutant protein prevents FGF-mediated p44/42 MAPK activation (42,43). In 

platelets, Ser284 is phosphorylated by PKCα in response to thrombin or collagen (44), 

whereas in epithelial cells, Ser284 is phosphorylated by aPKCζ and is thought to be 
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important for TJ formation (45). Finally, the extracellular domain contains a single known 

site for N-glycosylation (N185), which stabilizes JAM-A, enabling more efficient trans-

homophilic binding (46). While these post-translational modifications are known to regulate 

JAM-A function, little is known about these modifications in the context of cancer.

Given the numerous functions of JAM-A in normal physiology, it is not surprising that JAM-

A exhibits a multitude of functions in tumor growth and metastasis in different tumor types. 

This is highlighted by the diverse expression profiles of JAM-A across tumor types, where 

both decreased and increased expression of JAM-A are associated with tumor progression 

and poor prognosis (Table 1). In addition to maintaining epithelial cell barrier integrity, 

JAM-A also regulates proliferation and differentiation. Dysregulation of JAM-A intercellular 

adhesion, polarity, or signaling promotes tumorigenesis through increased proliferation and 

migration. Finally, JAM-A has been shown to be critical for cancer stem cell (CSC) 

maintenance (11,47) and induces epithelial-to-mesenchymal transition (EMT) in some 

cancers (12).

Regulation of JAM-A expression

JAM-A expression can be regulated at the epigenetic, mRNA or protein level. Histone 

acetylation regulates JAM-A expression, as deacetylase inhibitors have been shown to lead 

to increased JAM-A production in multiple myeloma (48). Regulation of JAM-A expression 

by microRNAs is also well established (49–51). In this regard, breast cancer cell motility 

and invasiveness are controlled by microRNAs (e.g., miR-145 and miR-495)(51). miR-145 

has also been shown to be reduced in glioblastoma CSCs, where its overexpression leads to 

decreased JAM-A expression and loss of CSC maintenance (49). In a model of migration 

and invasion of human prostate epithelial cellsty the SNARE protein Ykt6 was also shown to 

negatively regulate JAM-A expression through miR-145 (52). In addition to miR-145, 

miR-495 was shown to induce breast cancer cell migration by targeting JAM-A (51). To 

date, few efficacious JAM-A targeted treatments exist; however, a more in-depth 

understanding of JAM-A regulation may yield other targetable proteins that regulate JAM-A 

expression or function.

Cell proliferation and apoptosis

Most studies reveal that elevated JAM-A expression in cancer cells increases their 

proliferation and inhibits their death by apoptosis (13,16,53–56). Outside of genetic gain- 

and loss-of-function studies, a JAM-A antibody (6F4) has been developed that accelerates 

the internalization and downregulation of JAM-A and attenuates tumor proliferation in 

breast cancer cells (53). JAM-A expression using a different JAM-A neutralizing antibody 

(BV11) induces cell apoptosis and reduces cell growth in mammary tumor cells (13). Of 

note, these antibodies are thought to target JAM-A through different mechanisms from the 

well-described J10.4 antibody, which prevents JAM-A dimerization (57). JAM-A 

knockdown similarly decreases the proliferation of gastric cancer cells and the expression of 

the anti-apoptotic protein Bcl-xL (54). In addition, JAM-A knockdown with siRNA inhibited 

tumor cell proliferation and induced cell cycle arrest at the G1/S boundary in NSCLC (16). 

In another lung cancer study, treatment of a lung adenocarcinoma cell line (LHK2) with an 
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anti‐JAM‐A antibody significantly reduced cell proliferation and promoted apoptosis, and 

JAM-A knockout tumors were smaller in vivo (58).

JAM-A interactions with other cell surface receptors are also important for the promotion of 

proliferation and the inhibition of apoptosis. Elevated JAM-A levels are associated with 

increased HER2 expression, through regulation of HER2 protein degradation. JAM-A also 

assists in HER2 signaling in HER2-positive breast cancer cells via AKT, suggesting that 

JAM-A may be a potential therapeutic target in the setting of HER2-positive breast cancer 

(55)(Fig 1). Follow-up studies found that JAM-A was highly expressed in HER2 

therapeutically resistant tumors due to cleavage of JAM-A by ADAM-10 and enhanced 

breast cancer invasion and proliferation. This finding suggests that JAM-A overexpression 

and cleavage drive tumorigenic behavior and indicate that JAM-A may act as a biomarker 

for resistance to HER2-targeted therapy (59). More recently, it was observed that 

downregulation of JAM-A and HER2 by the natural compound tetrocarcin-A caused 

caspase-dependent apoptosis of primary breast cells and lung CSCs and inhibited the growth 

of xenografts in vivo (56). Similarly, tetrocarcin-A induced apoptosis and reduced cell 

viability in a triple-negative breast cancer (TNBC) model through downregulation of JAM-A 

and reduced phosphorylation of ERK (56).

However, there are also reports that JAM-A functions in a tumor suppressive role by 

increasing apoptosis and suppressing proliferation. A study in colorectal adenocarcinoma 

revealed that loss of JAM-A expression increased intestinal epithelial cell (IEC) proliferation 

in SKCO-15 cells through the inhibition of Akt-dependent β-catenin activation (60). These 

studies indicate that regulation of JAM-A expression in the context of cell proliferation may 

operate in tissue- and cell-specific contexts. Determining how JAM-A functions in a cell 

type- or tissue-specific manner is an avenue for future study. One area that warrants further 

investigation is the role of the local microenvironment. For example, FGF has been shown to 

rely on JAM-A expression in multiple cell contexts, suggesting that the role of JAM-A in 

proliferation may depend on whether certain cell types rely on FGF for growth (42,61). A 

further understanding of the proteins with which JAM-A interacts and how these interactions 

may alter downstream signaling is essential to improve our understanding of the function of 

JAM-A in cell proliferation and apoptosis. Finally, the role of JAM-A in vitro may depend 

on the culture conditions. A study of breast cancer cell lines found that cells cultured at a 

high cell density have lower expression of JAM-A compared to sparse cultures (62).

Metastasis: the integration of cell migration, invasion and metastasis

Metastasis is the primary cause of cancer mortality and remains difficult to treat. The 

metastatic cascade represents a multi-step process that includes local tumor cell invasion, 

transendothelial migration of cancer cells into vessels (intravasation), the presence of 

circulating tumor cells (CTCs) within the bloodstream and their extravasation from the 

circulation, and colonization in distant organs (63). CTCs are considered to be the precursors 

of metastasis and play critical roles in tumor metastasis in various cancer types; as such, 

CTC clusters have high metastatic potential (64,65).
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Based on the function of JAM-A in maintaining TJ integrity and regulating cell-cell 

adhesion, one study assessing invasive breast cancer found that cell lines with the lowest 

migratory capacity (T47D and MCF-7 cells) express higher levels of JAM-A relative to more 

migratory lines (MDA-MB-231 cells). Ectopic expression of JAM-A in these highly 

metastatic cells attenuated both cell migration and invasion, whereas silencing of JAM-A 

expression enhanced the invasiveness of the less migratory lines (14). Similarly, 

transforming growth factor-β1 (TGF-β1) induced invasion of MCF-7 cells through 

downregulation of JAM-A expression, such that reduced TGF-β receptor expression and 

canonical Smad signaling increased JAM-A levels and inhibited cell invasion (66).

However, an emerging body of evidence supports a function for JAM-A as a positive 

regulator of cell migration and invasion, where JAM-A downregulation inhibits the 

migration and invasiveness of a variety of cancer types. Human nasopharyngeal cancer cells 

exhibit increased JAM-A levels, which leads to increased EMT via activation of the 

PI3K/AKT pathway (12). In lung adenocarcinoma, the suppression of JAM‐A expression by 

siRNA transfection inhibited cellular motility and invasiveness, while JAM-A inhibition 

caused a decrease in colony‐forming capability in vitro and an inhibition of tumorigenicity 

in vivo (58). Functional inhibition of JAM-A protein activity also inhibited the adhesion and 

transendothelial migration of breast cancer cells (67).

JAMs interact in cis and trans with a variety of integrins, both α and β, across a variety of 

physiological contexts (68). The interactions among JAM-A, β1 integrin, and Rap1 were 

first established in colonic epithelial cells, where they promote cell migration (69). Follow-

up studies in breast cancer have shown that JAM-A knockdown reduces breast cancer cell 

adhesion and migration through activation of Rap1 GTPase and β1 integrin signaling (70). 

Of interest, these interactions are thought to be dependent on N-glycosylation of the 

asparagine amino acid at position 185, a posttranslational modification that warrants further 

investigation in the setting of cancer (46).

The functional roles of JAM‐A in tumor invasion and metastasis have not been fully 

elucidated. These reported differences likely reflect the underlying mechanisms driving each 

particular tumor cell state. In settings where JAM-A interacts with its neighbors to form 

strong tight junctions, loss of JAM-A is likely associated with metastasis. In contrast, when 

JAM-A functions through integrin β1 and Rap1, overexpression of JAM-A likely contributes 

to metastasis. It is also reasonable to hypothesize that in a different stages of metastasis, 

JAM-A might have different functions. For example, loss of JAM-A may be essential for 

local invasion, whereas during extravasation, colonization, and proliferation of metastatic 

lesions, elevated expression of JAM-A may be necessary for tumor progression. Another 

possible explanation is that different categories of binding (i.e., homophilic and heterophilic, 

cis and trans) may facilitate opposite functions. Therefore, a simple assessment of JAM-A 

expression may not provide a clear enough picture of what happens in an in vivo tumor 

setting. Additional studies are required to elucidate the molecular mechanisms and 

functional roles of JAM-A in tumor progression and metastasis. Conceptually, this could 

also provide new information into the mechanisms through which TJ proteins function 

during metastasis. For example, coxsackievirus and adenovirus receptor (CAR), another 

tight junction protein of the Ig superfamily, has been shown to be increased in breast and 
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other cancers. While most studies have investigated its role in metastasis (71), CAR may 

also play a role in the inhibition of apoptosis (72).

The role of JAM-C as a pro-tumorigenic protein

While JAM-A appears to have a variety of functions in cancer cells, our current 

understanding of JAM-C has focused on metastasis. JAM-C has both extrinsic and intrinsic 

functions within cancer cells. JAM-C expression on endothelial cells has also been shown to 

be necessary for tumor development, an example of an extrinsic function. In a model of 

ovarian cancer, knockout of JAM-C on endothelial cells resulted in reduced pericyte 

coverage and increased vascular leakage, leading to longer mouse survival (26). In addition 

to binding to JAM-C on endothelial cells, JAM-C also binds to JAM-B, which can stimulate 

tumor cell metastasis and invasion (27,73) (Fig 1). In a tumor cell-intrinsic manner, JAM-C 

is thought to control the activation of SRC family kinases and lead to ERK phosphorylation, 

which activates the machinery required for migration and invasion (27,29,30). JAM-C 

dimerization, either as a homodimer or a heterodimer with JAM-B, appears to be essential 

for cell migration, polarization and adhesion. The amino acids E66 and K68 are critical for 

JAM-C dimerization, and mutation of these residues diminishes the pro-metastatic function 

of JAM-C (20,74).

Numerous approaches for disrupting JAM-C have been developed. In one study, soluble 

JAM-C prevented the development of lung metastases in the B16 melanoma model (75). 

Additionally, anti-JAM-C polyclonal antibodies were found to reduce the homing of B cells 

to lymphoid organs in a model of mantle cell lymphoma (30). Finally, in glioblastoma, a 

tumor type with significant invasion into the neighboring parenchyma, anti-JAM-B/C 

blocking antibodies decreased tumor growth and invasion (27). These studies highlight the 

therapeutic potential of disrupting JAM-C interactions to limit metastasis and invasion. 

While these treatments are unlikely to demonstrate any tumor cell cytotoxicity, they may be 

utilized to prevent or limit metastasis in various tumors.

JAM-A in the immune tumor microenvironment

Within the immune system, where a unique function of JAM-A was first described and 

mediated by JAM-A/integrin binding between adjacent cells (68), JAM-A is highly enriched 

in cells of the myeloid lineage, including monocytes, macrophages, and microglia, the 

resident immune cell of the brain. Specifically, within the mouse and human nervous 

systems, JAM-A is highly expressed in microglia/macrophages and endothelial cells. In the 

setting of HIV infection, migration of CD14+ CD16+ monocytes into the brain can be 

blocked by JAM-A neutralizing antibodies (76). Loss of JAM-A impairs peritoneal 

macrophage chemokine-induced neutrophil migration (77). Lastly, JAM-A expression was 

higher in microglia relative to bone marrow-derived macrophages (78), whereas brain-

infiltrating macrophages acquire JAM-A expression in the setting of experimental high-

grade glioma and following bone-marrow transplantation. In this respect, JAM-A expression 

on microglia reduces the aggressiveness of glioblastoma by limiting microglial activation. 

Interestingly, this observation was only observed in females, suggesting that JAM-A may 

function in a sex-specific manner (79). To our knowledge, this is one of the few studies 
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investigating JAM-A within the TME. However, with the widespread expression of JAM-A 

in various tumors, stromal cell-expressed JAM-A is likely to play similar roles in other 

cancers. Precise methodologies such as single-cell sequencing should enable the 

identification of other cell populations within human tumors that express JAM-A and other 

JAM family members. Additionally, given their established role in mediating leukocyte 

trafficking (80), defining how JAM-A/C function to govern leukocyte infiltration into the 

tumor microenvironment (TME) may have relevance to future immunotherapy approaches. 

While the majority of JAM-A cancer research has focused on JAM-A expression in 

malignant cells, these studies highlight the importance of tumor cell-stromal interactions.

JAM-A expression and clinical outcomes in cancer

In breast cancer, JAM-A expression was initially found to be differentially expressed in 

normal breast epithelium, adjacent primary tumors, malignant tumors, and matched lymph 

node breast metastases, with a lower level of expression in metastatic lesions (14). However, 

analysis of several larger patient datasets demonstrated a positive correlation between JAM-

A expression and poor patient outcome (13,17,55), such that high levels of JAM-A 

expression were associated with worse patient survival. Of note, increased JAM-A 

expression in ductal carcinomas compared to lobular carcinomas has been reported, and this 

may help to explain some of the contradictory results found in other studies (13).

In other types of cancer, JAM-A dysregulation similarly correlated with tumor progression 

and prognosis. JAM-A overexpression has been reported to promote tumor progression and 

is associated with a poor prognosis in lung cancer (16,53,58,81), ovarian cancer (82), 

glioblastoma (11,83), nasopharyngeal cancer (12,84), and oral squamous cell carcinoma 

(85). However, low expression of JAM-A in pancreatic cancer was associated with poor 

patient overall survival (19). Additionally, decreased JAM-A expression was also associated 

with tumor progression and poor patient survival in gastric cancer (18) and anaplastic 

thyroid carcinoma, where lower JAM-A expression correlated with extrathyroid infiltration 

and a larger tumor size (86).

The correlation between the aberrant JAM-A expression in tumor tissues and clinical 

outcome has been investigated across a diverse range of tumor types. Although numerous 

studies have looked at the correlation between JAM-A expression and prognosis, clinical 

data and stratified analysis are very limited, and the clinical significance of JAM-A 

expression for diagnosis, prognosis, and drug resistance remains an active area of research 

(Table 1). Further studies are needed to clarify the diverse roles of JAM-A for future 

diagnostic and therapeutic applications.

Conclusion

The initial assessments of TJs in cancer suggested a tumor suppressive role, with loss/

reduction resulting in increased metastasis. However, recent evidence has expanded the 

possible functions of the JAM family of proteins in cancer, including apoptosis, 

proliferation, CSC maintenance and EMT. As described herein, both pro-tumorigenic and 

anti-tumorigenic roles of JAM-A have been reported (Fig. 1). While the majority of recent 
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studies support a pro-tumorigenic function, one cannot ignore the numerous studies that 

provide evidence for a tumor suppressive role. JAM-A may have pro-tumorigenic functions 

in some cancers (glioblastoma and NSCLC), while in other tumors (pancreatic cancer and 

gastric cancer), loss of JAM-A expression is associated with tumor progression. JAM-B/C 

on the other hand appear to play a role in metastasis, and all data to this point support a pro-

tumorigenic role. The possibility remains that JAM-B/C have other cell signaling functions 

that have yet to be elucidated.

While the presence or absence of JAMs within a tumor provides a starting point for our 

understanding, future studies should prioritize investigating the role of post-translational 

modifications. JAM-A phosphorylation and N-glycosylation have been studied in other 

fields and appear to be important for JAM-A function. However, very little is known about 

the roles these modifications play in cancer. Additionally, JAM proteins could undergo other 

post-translational alterations. In parallel, the identification of novel binding partners required 

for intracellular signaling is also essential. The majority of studies identifying JAM-A 

binding targets were performed using epithelial cells, where JAM-A canonically functions as 

a tight junction protein. However, the identification of additional JAM-A interacting proteins 

is essential to elucidate its mechanism(s) of action in other cell types in neoplasia that may 

utilize a different repertoire of binding partners and downstream signaling networks. Finally, 

the role of these proteins in non-neoplastic cells within the tumor microenvironment should 

be further investigated. In this respect, JAM function in endothelial cells, pericytes and 

monocytes warrants more in-depth study.

Lastly, our expanded understanding of JAMs in cancer has the potential to inform new roles 

for other TJ proteins in the process of tumorigenesis and progression. As JAM-A highlights, 

these proteins have a wide range of functions outside of mere cell adhesion and could 

represent future potential targets for cancer prognosis and treatment.
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Figure 1. Summary of JAM interactions within the tumor microenvironment.
JAM-A expressed on tumor cells interacts with numerous other proteins to stimulate tumor 

cell proliferation, migration, invasion and metastasis and to inhibit apoptosis. The role of 

JAM-A in the tumor microenvironment, particularly in microglia and macrophages, is 

currently being investigated. JAM-C is essential for metastasis, a process mediated by JAM-

B on endothelial cells through increased tumor cell extravasation.
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Table 1.

JAM-A expression in different tumors and its association with clinical outcome

Type of cancer JAM-A level compared to normal tissue JAM-A correlation with poor prognosis Refs

Breast Mixed Positive (13,14,17,55)

Lung Increased Positive (16,53,58,81)

Gastric Decreased Negative (18)

Pancreatic Decreased Negative (19)

Glioblastoma Increased Positive (11,49,83)

Nasopharyngeal Increased Positive (12,84)

Oral squamous cell carcinoma Increased Positive (85)

Ovarian Increased None (82)

Anaplastic Thyroid Decreased Unknown (86)

Increased/decreased denotes JAM-A expression in tumor cells compared to normal tissue. Positive/negative denotes the correlation between JAM-A 
and poor prognosis in each tumor.

Cancer Res. Author manuscript; available in PMC 2021 May 15.


	Abstract
	Introduction
	JAM-A structure and function
	Regulation of JAM-A expression
	Cell proliferation and apoptosis
	Metastasis: the integration of cell migration, invasion and metastasis
	The role of JAM-C as a pro-tumorigenic protein
	JAM-A in the immune tumor microenvironment
	JAM-A expression and clinical outcomes in cancer
	Conclusion
	References
	Figure 1.
	Table 1.

