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Abstract

Rapidly developing single-cell sequencing analyses produce more comprehensive profiles of 

genomic, transcriptomic, and epigenomic heterogeneity present in tumor subpopulations than 

traditional bulk sequencing analyses. Moreover, single-cell techniques allow a tumor’s response to 

drug exposure to be more thoroughly investigated. Deep learning models have successfully 

extracted features from complex bulk sequence data to predict drug responses. Here, we review 

recent innovations in single-cell technologies and deep learning-based approaches related to drug 

sensitivity predictions. We believe that using insights from bulk sequence data, deep transfer 

learning would facilitate the application of single-cell data to train superior deep learning-based 

drug prediction models.
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Overview of Current Research Methodologies for the Investigation of Drug 

Resistance

Treatments for cancers have undergone major advancements with the development of 

molecularly targeted therapy, immunotherapy, chemotherapy, and radiotherapy [1]. Targeted 

drugs—monoclonal antibodies and small molecules—used by molecularly targeted therapies 
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achieve the highest level of cytotoxicity in tumors as they are able to precisely target cancer 

cells [2]. The availability of these treatments has dramatically improved patient prognoses. 

Moreover, if the feature targeted by drug treatment is shared by all the tumor’s 

subpopulations, the targeted drugs can yield complete remission of the disease. However, 

cancerous tumors are rarely homogenous. They are comprised of diverse cell subpopulations 

demarcated by distinct genomes and transcriptomes, each of which can yield a unique 

response and sensitivity to a given drug [3]. As a result, heterogeneous cancer 

subpopulations with extraordinarily dynamic characteristics often exhibit resistance to 

single-drug treatments, preventing the complete eradication of the disease [4]. After the vast 

majority of the tumor has been wiped out, a small number of remaining cancerous cells, 

called the minimal residual disease (MRD, see Glossary), survive and continue 

proliferating [4]. The inevitable relapse features a disease now largely resistant to the initial 

treatment. In addition to some tumor subpopulations possessing an inherent resistance to 

select treatments, cancer cells can also acquire resistance via multiple mechanisms such as 

drug inactivation, target alternation, and drug efflux [1, 5, 6]. Insensitivity to treatment is 

now responsible for up to 90% of cancer-related deaths [7]. Thus, it is imperative to increase 

our understanding of the mechanisms by which resistance is propagated and accurately 

predict which drug combination will be the most effective against specific cancers.

High-throughput sequencing techniques like DNA-sequencing, RNA-sequencing, assay for 
transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), and 

Chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) can 

characterize the genomic, transcriptomic, and epigenetic landscapes of tumors. These 

profiles are indispensable to gleaning insight into resistant tumors. For example, the whole-

genome characterization of resistant ovarian cancer by DNA-seq directly led to the 

identification of tumor repressors that, when inactivated, resulting in drug resistance [8]. 

The advancement of single-cell techniques, including single-cell DNA-sequencing (scDNA-
seq) and single-cell RNA-sequencing (scRNA-seq), has enabled scientists to analyze the 

genomic and transcriptomic profiles of individual cells. Such innovation allows researchers 

to better investigate cancer heterogeneity and deduce the culprits of drug resistance. 

Moreover, the findings produced by studying these concepts facilitate drug sensitivity 
predictions for independent cancer subpopulations. For example, the key regulators 

(KDM5A/B) of therapeutic resistance in breast cancers subsets have been identified via 

scRNA-seq and bulk ChIP-seq [9].

Deep learning (DL) models have also successfully predicted drug responses (Figure 1, 

Key Figure). However, vast amounts of genomic and transcriptomic data are required to 

produce meaningful and generalizable DL prediction tools. Many DL models have benefited 

from the vast libraries of drug-, protein- and gene-related data from many disease (sub)types 

that are available in the public domain. Specifically, databases such as The Cancer Genome 

Atlas, Genomics of Drug Sensitivity in Cancer [10], The Cancer Cell Line Encyclopedia 

[11], Cancer Target Discovery and Development [12], and the University of California, 

Santa Cruz TumorMap [13] are all commonly utilized to train DL models.

Even though single-cell sequencing can enhance the resolution by which heterogeneity is 

studied, the data generated by these techniques are of large volume and high complexity. 
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The copious number of cells increases the dimensionality and scale of data. Both of which 

make it challenging to use the single-cell sequence data to connect the distinct modalities 

they encode and construct heterogeneous biological networks. However, recent work in 

classifying cell types has highlighted DL architectures which can process the large-scale 

single-cell data and effectively extract high dimensional features. Yet, the small amount of 

data available at the single-cell resolution currently precludes the active development of DL 

models for drug-related predictions.

DL Models Can Accurately Predict Drug-Target Interactions and Drug 

Sensitivity

Using publicly available data, DL models have boasted modest success in predicting a novel 

cell type’s sensitivity to drug treatment options. DL models use artificial networks to 

emulate biological neural networks and learn patterns from the source data. DL has gained 

popularity due to its ability to analyze and extract insights from exceedingly large amounts 

of unstructured or unlabeled data [14]. The insights derived from these networks can be built 

into models that are used for a variety of tasks, including data denoising, cell clustering, 

phenotype prediction, and image processing. The unstructured and multi-dimensional 

datasets produced by high-throughput sequencing has been utilized by DL models to predict 

drug sensitivities in cancer and other diseases [15]. Numerous DL models have been 

developed to make these predictions. The most common DL classes of models tasked with 

evaluating anticancer treatment options have been Deep Neural Networks (DNN), 

Convolutional Neural Network (CNN), Recurrent Neural Networks (RNN), and Graph 

Convolutional Networks (GCN) (Box 1, Figure 1A). Specifically, Table 1 presents a non-

exhaustive overview of DL approaches that have been utilized to address current limitations 

in predicting drug efficacy.

As the table highlights, DNN is one of the most popular DL architectures used for predicting 

drug-target interactions (DTIs) using both existing and novel molecules. For example, 

DeepDTIs employed a Deep Belief Network (DBN) model to extract features from drug-

target data in the DrugBank database [16] and predicted the interaction likelihood of drug-

target pairs [17]. However, DeepDTIs creates inferences that introduce unwanted noise into 

the model, reducing its performance. Three additional DL models have since been built, 

claiming to outperform DeepDTIs: (i) DeepCPI, another DNN-based model, showed 

superior predictive performance and scalability for large-scale compound affinity data [18]; 

(ii) DeepAffinity predicts compound-protein interaction but utilizes RNN and GCN model to 

capture long-term, nonlinear dependencies among residues/atoms in proteins/compounds 

[19]. DeepAffinity also employs a deep transfer learning (DTL) framework to facilitate the 

enhancement in predicting DTIs from limited labeled protein-compound interaction data 

compared to DeepDTIs; and DeepConv-DTI captures local residue patterns of proteins 

participating in DTIs and detect the binding sites of DTIs [20]. DeepConv-DTI uses a CNN 

model which is also quite successful at extracting meaningful features from sparse 

interactions, making them an ideal model for predicting DTIs. One reason for DeepConv-
DTIs enhanced performance over DeepDTIs is that DeepConv-DTIs CNN architecture does 

not require entire structure or sequence data to learn DTIs [17, 20]. In other words, 
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DeepDTIs model learns from sequences not involved in DTIs; these irrelevant features 

detract from its prediction accuracy. AtomNet [21] also implements a CNN model to analyze 

feature locality and hierarchical composition to predict the bioactivity of small molecule 

DTIs. DEEPScreen takes advantage of CNN’s excellence in image analysis to predict DTI’s 

from simple 2-D images of compounds [22]. DeepChem does this also, but is built on a 

GCN model instead [23]. DeepAMPEP30 is another published CNN-based model. Rather 

than identifying DTIs from known drugs and proteins, this model suggests novel drugs with 

the potential to target affected cells [24]. Specifically, DeepAMPEP30 proposes short 

peptide sequences that exhibit optimized antimicrobial properties and can be used as a 

targeted treatment for a wide breadth of diseases, including bacterial infections and cancers. 

In a proof-of-concept experiment, some of the proposed peptides were as effective as 

ampicillin at treating multiple bacterial infections [24].

In addition to predicting DTIs, the aforementioned models demonstrate a capacity for 

inferring novel drug indications, or novel uses for existing drugs. This practice is referred to 

as drug repurposing. DeepCPI, for example, highlighted several drugs as candidates to be 

repurposed for neural pharmacology [18]. One such drug, oxazepam is traditionally used to 

treat alcohol withdrawal. DeepCPI found that it might also impact intramitochondrial 

cholesterol transfer, implicating its potential application for the treatment of Alzheimer’s 

disease [18, 25]. In another attempt to enhance drug repurposing efforts by predicting DTI’s, 

Zeng et al. proposed deepDTnet: a DNN for graphical representation [26]. The model 

created a drug-gene-disease network that successfully predicted topotecan—traditionally 

used to treat ovarian and lung cancers—as a drug repurposing candidate to treat multiple 

sclerosis. Specifically, deepDTnet found human retinoic-acid-receptor orphan receptor-

gamma t, whose overexpression can lead to the development of multiple sclerosis, able to be 

inhibited by topotecan [26]. Similar to deepDTnet, arbitrary-order proximity embedded deep 

forest (AOPEDF) is also proposed for drug-gene-disease network prediction using a deep 

forest model [27]. While this model is not expressly a DL model, we have included it in our 

discussion as it offered better performance than deepDTnet. Additionally, AOPEDF requires 

fewer manual adjustments of the parameters controlling the model’s learning process than 

DNNs, such as deepDTnet, to achieve high performance[27].

While DTI models can be applied to drug repurposing research, other approaches have been 

devised with this exclusive purpose. For example, a DNN-based model, deepDR [28], 

employs a Variational Autoencoder (VAE) framework to extract high-dimensional features 

from low-dimensional representations of drugs and reported drug-disease pairs and infer 

candidates for repurposing (Box 1 and Figure 1B). Aliper et al. also used a DNN model to 

classify known drugs into therapeutic categories based on the effect that drug exposure has 

on gene expression [29]. The team found that ‘misclassified’ drugs might not be 

misclassified, but rather represent novel drug indications. Two such ‘misclassified’ drugs, 

otenzepad and pinacidil, support their hypothesis [29]. These drugs were classified as central 

nervous system drugs; however, to date, both exclusively treat cardiovascular conditions. 

That said, previous studies provide evidence that confirms both drugs might also impact 

brain function. For instance, while pinacidil targets K-channels in the treatment of 

cardiovascular diseases, K-channels are also extremely prevalent in the brain and required 
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for signal transduction [29]. The prevalence of K-channels in the brain would make pinacidil 

an excellent candidate to treat certain neural conduction disorders.

Once novel drug treatment options have been identified, it becomes necessary to evaluate 

and predict a disease’s response and sensitivity to each treatment. Multiple DL models, 

including RefDNN, have been produced to make these predictions. RefDNN identified drugs 

capable of improving hepatocellular carcinoma’s (HCC) sensitivity to sorafenib, HCC’s 

only approved treatment [30]. Sorafenib typically elicits only a modest response in HCCs; 

however, the proposed drugs were experimentally validated to either synergize with 

sorafenib or target HCC’s other key regulatory pathways. Dcell, another DL model, predicts 

drug responses via a Visible Neural Network (VNN). While it is a unique approach, the 

VNN provided Ma et al. with an opportunity to glean novel biological perspectives [31]. 

Dcell predicts the impact modulating gene function has on cell phenotypes and depicts the 

underlying mechanisms and pathways, through an easily interpreted hierarchal visualization 

[31]. Dcell is a notable improvement in terms of the transparency and interpretability of DL 

models.

While more traditional DL models have enabled researches to glean biological insights and 

predict drug responses, these models are not transparent. The underlying mechanisms 

producing these insights often remain obscured by the black boxes through which DL 

models make their predictions until they are ascertained by either in vitro or in vivo 
experimentation. DL models have also been limited by the suboptimal accuracy of drug 

sensitivity predictions in diseases with high mutation rates, including HIV and cancers [32]. 

This is owing, in part, to a lack of relevant data needed for DL models to create 

generalizable inferences [30, 32, 33]. For these hypermutable disorders, heterogeneous 

disease states can also influence the accuracy of DL models. Currently, many DL models are 

trained using bulk sequence data, which has an insufficient resolution of cells to effectively 

analyze complex heterogeneity. Models, such as DeepSynergy, which attempt to identify 

combinations of drugs that maximize treatment sensitivity in all tumor subpopulations while 

minimizing systemic side effects, could indubitably benefit from the enhanced resolution 

[34].

Single-cell Technologies Discern Heterogeneity’s Effect on Drug 

Resistance

Cellular heterogeneity inferred from single-cell data can greatly facilitate the accurate 

prediction of drug sensitivity and help the design of combinational drug. While still a 

relatively new technology, researchers are using single-cell technologies with an increasing 

frequency to study heterogeneous disorders. This increased popularity is owing to single-cell 
sequencing’s capacity to capture subtle differences in genomic and transcriptional states of 

heterogeneous subpopulations; whereas, bulk sequencing merely produces an aggregate 

estimate of gross cellular features [35]. Moreover, the high-resolution data provided by 

single-cell technologies allow researchers to harness single-cell sequencing [36] to 

individually profile the genomic and transcriptomic heterogeneity of cells within tumor 

subpopulations. Gene subnetworks identified from scRNA-seq profiles can be highly 
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correlated with a patient’s survival and drug response to cancer [37]. A non-exhaustive list 

of the recent applications of available single-cell technologies has been highlighted in Table 

2 to provide examples of what methodologies scientists have at their disposal to investigate 

the intricacies of single-cell environments.

Traditionally, single-cell technologies have primarily been utilized to characterize distinct 

cell types [9, 38]. scRNA-seq has been the obvious candidate for such tasks as distinct cell 

types possess unique transcriptional profiles [38]. Both scRNA-seq and scDNA-seq have 

been employed to characterize the distinct cell subpopulations within tumors [38–42]. 

ScDNA-seq is beneficial when attempting to discern genomic heterogeneity amongst 

cancers. For example, Yang and colleagues used scDNA-seq analysis to highlight variants in 

genes, including MLL2, as key drivers in the growth and survival of bladder cancer stem 

cells [42]. Likewise, the transcriptional variation identified through scRNA-seq is vital to 

understanding the mechanism underlying drug resistance. Kim et al. found scRNA-seq could 

characterize and predict the most aggressive tumor subpopulations in lung adenocarcinomas 

[39]. Of note, when they compared the results of their single-cell approach to conventional 

bulk tumor analysis, they discovered that the transcriptional profiles of the resistant 

subpopulations are often masked by more prominent subpopulations, obscuring meaningful 

insights. This highlights the necessity to transition from bulk methods to single-cell analyses 

when investigating heterogeneous cells. A consideration of circulating tumor cells (CTCs) 

also strengthens this notion. It is suggested that clinicians may benefit from using scDNA-

seq to detect and profile CTCs in peripheral blood to stage cancers and monitor their 

progression [40, 43]. Even in patients with advanced metastatic cancers, CTCs are only 

present at a magnitude of fewer than 100 cells per the 5 million total cells in 1mL of whole 

blood [44]. Single-cell technologies now have the sensitivity to accurately detect CTCs at 

this extremely low concentration, which is something that bulk analyses will never be able to 

replicate.

Being able to successfully distinguish unique cells, the focus of single-cell studies has 

shifted from merely characterizing cell types (Figure 2A) to elucidating the biological 

mechanisms responsible for the development of drug resistance in previously characterized, 

resistant subpopulations. Drug-resistance can be caused by genetic and non-genetic factors. 

Genetic resistance originates when a heritable mutation is introduced to a cell’s DNA, 

granting it and its progeny the resistance to current drug treatment [40, 42]. Using scDNA-

seq, genetic alterations can be quickly identified, and the treatment can be adjusted to target 

the novel subpopulation [40, 42]. In drug-resistant cell lineages without a novel mutation, 

discerning how the resistance developed is a more challenging endeavor.

Previous research using single-cell sequencing identifies two general mechanisms by which 

non-genetic resistance may develop. The first mechanism involves the development of a 

transient resistance originating from cells within a tumor in a ‘persister’ state [39]. Simply 

put, persister cells exhibit atypical growth and metabolism enabling a higher tolerance 

against drug treatment. Interestingly, following drug withdrawal, persister cells lose their 

resistance and can be eradicated by the original drug treatment [39]. The other mechanism 

results in cells entering a transcriptionally stable end state. Such cells exhibit sustained 

resistance in lieu of spontaneous re-sensitization following drug withdrawal [39, 45].
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Unfortunately, the mechanism driving this sustained resistance has remained far less 

elucidated, precluding informed drug selection. However, two hypotheses have been posited 

to explain the development of sustained resistance, respectively. The first hypothesis 

involves a rare subpopulation of resistant cells existing in the drug-naive tumor [46]. 

Administration of a drug treatment selects for these resistant cells while eradicating sensitive 

cell populations [43]. The continued proliferation of the MRD posttreatment leads to an 

inevitable relapse (Figure 2B). Indeed, single-cell RT-qPCR has confirmed that, in some 

breast cancers, drug-resistant subpopulations existed prior to drug exposure [46]. Finding the 

biomarkers of these refractory subpopulations during initial treatment improves outcomes by 

informing initial drug selections to target all subpopulations [40]. The other hypothesis 

involving acquired resistance is seemingly the more common phenomenon. Tumor 

subpopulations that acquire sustained resistance display transcriptional plasticity during drug 

exposure [43, 45]. Mathematical modeling, using single-cell data, has suggested that the 

existence of spatio-temporal heterogeneity might drive transcriptional plasticity towards the 

sustained resistance state during drug treatment [47]. In turn, changes in gene expression, 

identified by scRNA-seq, scATAC-seq, and fluorescence in situ hybridization (FISH), 
modulates pathways controlling functions such as epigenetic remodeling and immune 

response to initiate and propagate resistance [35, 43, 45, 48–51]. ScRNA-seq, combined 

with scATAC-seq, implicated chromatin modulation in the continuation of sustained 

resistance [45]. Chromatin enables proliferation through its retention of acetate, a significant 

source of nutrition for tumor cells [35, 52]. In selected acute myeloid lymphomas, resistance 

is initiated through the recruitment of novel enhancers to enable continued expression of 

genes vital to the disease’s survival [45]. When cancer cells circumvent gene inhibition 

through the use of alternative enhancers, different transcriptional factors are then also 

required for continued expression of these genes. This suggests that cancer cells can switch 

pathways by which key regulators of tumor survival are expressed. Single-cell sequencing 

also provides an assessment of the immunological contribution to drug-resistance in tumors. 

CD8+ T-cells are recruited to the tumor by macrophages [50]. Single-cell T-cell Receptor 
sequencing (scTCR-seq) assays found the expression of genes such as PD1 by tumor cells 

results in the exhaustion of tumor-infiltrating T-cells [48, 50]. This hampers many of the 

typical responses from effector T-cells, including cytotoxicity [41,49].

Novel insights obtained from mechanistic analyses have informed current research trends 

and led to the development of additional technologies to enhance the evaluation of drug 

response at the single-cell level. Regarding the immune system’s contribution, a novel 

therapeutic approach called immune checkpoint blockade (ICB) has been employed [48, 

53–55]. ICB drugs both stimulate T-cell infiltration and block the molecules inducing T-cell 

exhaustion [41]. ICB therapies have demonstrated surprising efficacy in re-sensitizing 

exhausted T-cell tumor infiltrate and, in doing so, represent a remarkable step for immuno-

oncology [56–58]. Similar pursuits, including the utilization of single-cell B-cell receptor 
sequencing (scBCR-seq) to study antigen specificity relevant to antibody therapies, have 

proven that immuno-oncology is a viable treatment option deserving extensive study [59–

65]. Drug discovery methods have also been adapted to utilize single-cell technologies. For 

example, the single-cell barcoding technique together with CRISPR-Cas9 is employed to 

introduce gene perturbations into individual cells and evaluate the transcriptional 
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implications of these perturbations in a high-throughput manner [45, 66–68]. As a result, it 

is possible to associate phenotypes with genetic and transcriptional perturbations at the 

single-cell level. Such insights will be harnessed in the future to make predictions regarding 

drug responses.

Challenges and Future Perspectives in Single-Cell Based Drug Prediction

Given that single-cell sequencing remains a relatively nascent field, there is still immense 

potential for growth and discovery. For scRNA-seq, signal drop-outs remain a major issue, 

where a gene is observed at a low or moderate expression level in one cell but detected as 

zero [69]. Imputation and normalization have been utilized to correct this issue as well as 

batch effects with modest success [70]. Batch effects are differences in measurements that 

arise from variations in non-biological factors, such as laboratory conditions, reagents, or 

instruments. Both the dropouts and batch effects introduce noise to the real values, leading 

to distorted drug response readouts or misclassified cell types. DL models have been proven 

to be an outstanding way to extract accurate high-dimensional features from sequencing data 

and infer the intrinsic gene relations, especially in large datasets at the single-cell level [71–

73]. Recovering true values and removing batch effects enables more accurate cell type 

annotations and more efficient integration of large datasets from different samples and 

sequencing runs which improves the drug response predictions.

On the other hand, barcoding methodologies have also been developed to further overcome 

the challenges introduced by the technical zero and batch effect [35, 69, 74]. The use of 

sample-specific barcodes in scRNA-seq enables multiplexing that reduces batch effects. One 

such barcoding technique, MULTI-seq, claims to even address dropout issues by 

distinguishing between low-RNA expression and low-quality cells [69]. Another limitation 

of scRNA-seq is that the assumption mRNA levels are correlated with translations is not 

always true. FISH and Western blot assays have confirmed multiple instances in which 

overexpression of genes was accompanied by little to no subsequent translation [45, 46]. 

Unfortunately, while fields such as proteomics and metabolomics have begun to implement 

single-cell technologies, they have not progressed rapidly enough [75]. As such, they are not 

currently scalable, and it would not be feasible to employ them in conjunction with high-

throughput techniques such as scRNA-seq to explore this phenomenon.

Facilitating Single-cell Level Drug Predictions Using Deep Transfer Learning

DL models have previously been utilized in single-cell clustering analysis, batch effect 

correction, and denoising [76–79], yet, has not been used for DTIs prediction or drug 

responses. As single-cell sequencing is still in its infancy relative to bulk sequencing, there 

does not yet exist vast public repositories for drug-related single-cell data, limiting the 

training power of DL models. To overcome such limitation, we could borrow the 

information contained in bulk sequencing data and transfer to the single-cell level.

DTL preserves previously learned features and trained parameters to apply to the testing 

dataset with a similar problem. This has been shown to improve the prediction performance, 

especially when there is limited data available for the new task and the model was trained 

originally on large amounts of data. We could first train out similar features from both bulk 
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and single-cell data by passing a discriminator covered in a generative adversarial 
network. A DTL framework can then be applied to transfer known drug-feature relationship 

at the bulk level to individual cells, resulting in predicted drug sensitivities for each cell type 

(Figure 3A). Such pursuits promise to yield significant advancements in the treatment of 

heterogeneous disorders and in turn will improve the prognosis of patients afflicted by these 

disorders. In a more advanced way, bulk data can be used to regularize inferences transferred 

between two single-cell data to improve the accuracy of drug sensitivity prediction (Figure 

3B).

Integration of Single-cell Multi-omics Data for Drug prediction

Single-cell multi-omics (scMulti-omics) technologies simultaneously measure multiple 

modalities within an individual cell, including features from genomics, epigenomics, 

transcriptomes, and proteomics. Such approaches profile cell behavior and identity more 

comprehensively than previous individual methodologies. When multiple omics profiles are 

used in conjunction, one profile can recover the cellular characteristics— such as DNA 

methylation, gene expression, chromatin accessibility, or protein abundance—that might be 

lost by another sequencing technique. Furthermore, scMulti-omics can validate conclusions 

drawn from other omics profiles as well. The DL based integrative analysis could accurately 

answer biological questions, including tumor type classification and prognostication 

prediction [80, 81]. Thus, a unified multi-modal learning framework can be expected to 

incorporate the integrative analysis of scMulti-omics data, protein structure, drug structure, 

and side effect information. Such a framework can build intrinsic links between genomic 

variations and phenotypic phenomena induced by drugs and thus enhance the accuracy and 

efficiency of drug sensitivity prediction. However, there is an immense computational 

burden that must be addressed and overcome. While there are several methods available to 

help integrate and analyze scMulti-omics data, including factorization, Bayesian modeling, 

and network-based modeling, integrating the data from two or more technologies only 

exacerbates computational issues encountered during analysis [82, 83]. Another challenge is 

related to the analytical capabilities of integrative tools. Existing computational methods 

cannot simultaneously perform functions such as identifying cis-regulatory motifs, finding 

cell-type-specific regulons, and inferring gene regulatory networks. A robust benchmarking 

pipeline of integrative scMulti-omics analytic methods is needed to rectify this. In addition, 

there is also room for improvement in DL models. The attention mechanisms can be 

embedded into DL models to make more accurate inferences.

Concluding Remarks

The variability in the genomic and transcriptomic profiles of heterogenous tumor 

subpopulations prevents the development of an effective drug regimen for cancer patients. 

Most targeted cancer therapies and drugs exhibit diverse responses in patients, leading to 

low cure rates and high relapse rates. It is impossible to experimentally test and validate 

drug responses in vivo. As such, determining how to accurately and effectively assess drug 

responses in silico is critical for continued drug development. By training and applying 

advanced DL models, scientists can rapidly predict potential drug targets for novel 

treatment, simulate drug response under millions of conditions, and discover new purposes 

Wu et al. Page 9

Trends Pharmacol Sci. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the existing drugs. We reviewed six DL model types and summarized the application of 

DL-based tools for drug discovery and in predicting drug responses. Using these DL models, 

researchers have successfully improved how the accuracy of the predictions they make.

However, accuracy is inherently limited by the resolution of data generated from 

conventional bulk sequencing methods. One trend in alleviating this limitation is the 

transition to using advanced single-cell techniques for drug response predictions. Single-cell 

technologies comprehensively profile the heterogeneity of cancer cells to identify targeted 

treatment options and assess the risk of developing drug resistance.

Due to the high dimensionality and large sample sizes of single-cell data, DL models are 

naturally well-suited for single-cell analyses. However, currently, the quantity of available 

benchmarked, drug-related, single-cell data limits the application power of DL models. To 

fully address the limitations of both single-cell sequencing and DL models and to maximize 

their functionality as it pertains to predicting drug responses, several key points must be 

considered (See Outstanding Questions). We further propose that the substantial application 

of DL, especially the DTL framework, presents an immediate solution to enable single-cell 

informed drug response predictions by first learning drug-target information from bulk data. 

We believe that, while admittedly there is a long way to go, eventually, the combination of 

DL and single-cell technologies will reshape how drug development and target therapies are 

conducted.
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GLOSSARY

Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq)
It is used to determine chromatin accessibility across the genome

Batch effect
External factors associated with experiments will influence the produced data and result in 

inaccurate conclusions. It represents the systematic technical differences when samples are 

processed and measured in different batches

Bulk sequencing
It examines the sequence of information from bulk samples, usually many cells

Cell-type-specific regulon
The full complement of transcriptional targets that are regulated by a protein. These can 

include either direct physical targets, transcription factors, and cofactors, or indirect targets 

for signal transduction

Chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq)
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It is used to identify genome-wide DNA binding sites for transcription factors and other 

proteins

Combinational drug treatment
It uses more than one drug to treat diseases, which usually reduces the development of drug 

resistance

Deep Belief Network (DBN)
DBN is constructed on several layers of Restricted Boltzmann machine

Deep learning
An AI function that mimics the workings of the human brain in processing unstructured data 

through many layers of neural networks

Drug efflux
Cells express efflux pumps which are able to move drug out of a cell

Drug inactivation
Cancer cells may express enzymes to digest or modify drugs, which leads to the loss of 

function

Drug resistance
The reduction in effectiveness of a medication, such as an antimicrobial or an antineoplastic, 

in treating disease

Drug response
The pharmacodynamic (PD) response to a drug; this includes all the effects of the drug on 

any physiological and/or pathological processes

Drug sensitivity
The concentration of a drug that inhibits cell growth

Fluorescent in situ hybridization (FISH)
FISH is a molecular technique that uses fluorescent probes that can specifically bind to 

DNA/RNA/proteins to visualize the location of those targets

Immune checkpoint blockade (ICB)
Immune checkpoints are accessory molecules that regulate the activation and silencing of T 

cells. ICB can release inherent limits on the activation and maintenance of T cell effector 

function by inhibiting the immune checkpoints

Minimal residual disease (MRD)
A small number of cancer cells that survive the treatment and usually result in relapse

Single-cell B/T-cell receptor sequencing (scBCR/scTCR-seq)
scBCR/scTCR-seq is a genomics approach to analyze B/T cell receptors uniquely expressed 

on B/T cell surface. The diverse range of BCRs/TCRs expressed by the total B/T cell 

population of an individual is termed as B/T cell repertoire
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Single-cell sequencing
It examines the sequence of information from individual cells with optimized next-

generation sequencing technologies, providing a higher resolution of cellular differences

Target alternation
Cancer cells may downregulate the expression of proteins or modify the proteins which are 

targeted by drugs

Visualized neural network (VNN)
It can simulate not only the system function but also the system structure

Whole-exome sequencing
It will only sequence the coding regions of genes and is only able to identify variants found 

in these coding regions
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TEXT BOX

Box 1. Deep learning models and frameworks.

Four deep learning models that have been applied in drug prediction are DNN, CNN, 

RNN, and GCN (Box 1, Figure IA). These are discussed below:

• DNN is a feed-forward neural network consisting of input, hidden, and output 

layers that are densely connected. For drug sensitivity prediction, we would 

like to construct a function from tumor drug profiles to sensitivity. During the 

model training, those hidden layers are able to perform data abstractions and 

transformations, which turn out to be parameters in the function.

• CNN operates in a manner inspired by the human visual cortex and consists 

of convolutional (feature extraction) and pooling (dimension reduction) 

layers. The convolution and pooling layers help to extract all information in 

datasets without consuming too much time and computational sources.

• RNN is a type of artificial neural network where connections between nodes 

form a directed graph along a temporal sequence.

• GCN is a type of neural network architectures that can leverage the graph 

structure and aggregate node information from neighbors in a convolutional 

fashion. It has natural advantages when dealing with graph-based data.

Further, two frameworks, DTL and VAE, can be combined with DL models (Box 1, 

Figure IB). DTL transfers store knowledge gained while solving one problem and 

applying it to a different but related problem. VAE consists of an encoder, a decoder, and 

a loss function. The encoding distribution is regularized by a standard deviation vector 

and a mean vector during the training in order to ensure that its latent space has good 

properties to generate new data.
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Box 1, Figure I. The scheme of deep learning models and frameworks.
(A) Four deep learning models that have been applied in drug prediction, including DNN, 

CNN, RNN, and GCN. (B) Two frameworks that can be combined with DL models.

Wu et al. Page 18

Trends Pharmacol Sci. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Outstanding Questions

• How to choose an appropriate deep learning model when dealing with several 

data categories?

• How to incorporate the analysis of drug-target interaction, structural 

information, and sequencing data using the DL transfer learning model?

• What algorithm would help to solve the “black box” problem in artificial 

intelligence and DL?

• Other than drug sensitivity prediction and drug-target interaction, what field 

will benefit from the DL transfer learning?

• How will single-cell multi-omics provide insights into heterogeneous 

responses across the tumor subpopulations?

• What methods we could use to minimize the loss during transferring bulk data 

knowledge to single-cell analysis?
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Highlights

• A comprehensive understanding of heterogeneous tumor subpopulations will 

benefit the drug sensitivity prediction and combination drug treatment design.

• Deep learning models are powerful and extensively used in drug sensitivity 

prediction and drug-target interaction inference.

• Single-cell sequencing techniques offer precise and accurate profiling of 

tumor subpopulations and reveal the subtle difference in their response to 

drug treatments.

• Applying deep transfer learning to predict drug sensitivity allows us to not 

only take advantage of prior knowledge obtained from massive bulk 

sequencing data but also utilize the heterogeneous landscapes generated by 

single-cell sequencing techniques.

• The integration of single-cell multi-omics data for drug sensitivity prediction 

using transfer learning methods poses a special challenge.
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Figure 1. Key Figure. Combination of Single-cell and DL models in drug sensitivity prediction.
DL models are typically trained on tumor profiles, chemical and structural information of 

drugs and drug-target data. Extracting high-dimensional features through multi-layer 

perceptrons, DL models can infer drug-target interactions, purpose new drugs, and predict 

drug resistance.
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Figure 2. Prediction of drug sensitivity at the single-cell level.
(A) Tumor subpopulations maintain diverse sensitivity to different drugs. Single usage of a 

drug may obtain less treatment efficiency. Knowing drug sensitivity at the single-cell level 

can guide the development of combination treatment that maximizes the efficiency of killing 

tumor cells while minimizes damage to healthy cells. (B) The MRD will proliferate and 

differentiate into a new tumor population which induces cancer relapse. The understanding 

of specific signatures characterized in MRD cells can help to discover novel drugs that 
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specifically target MRD. MRD-targeted drug(s) administered in combination with 

conventional treatments can cure cancer and prevent relapse.
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Figure 3. Potential applications of DTL framework on single-cell data for drug sensitivity 
prediction.
(A) the combination usage of generative adversarial network and DTL framework transfers 

the drug sensitivity known at the bulk level to the single-cell level. (B) A more advanced 

application of DTL would transfer drug sensitivity between two single-cell data and use bulk 

level information as a regularizer to constrain the DL parameters.
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Table 1.

Deep learning approaches and examples in predicting drug treatment efficacy.

Model Tools* Input Data Purpose Ref

Drug-Target Interactions

DBN DeepDTIsi
Drug-target pairs 
information, drug 
structure, and protein 
sequence

The probability of interaction for any provided drug-target pair was inferred 
by DeepDTI based on external, experimental drug-target pairs. Among the 
top ten predicted drug-target interactions, four had been previously 
reported, and one was found to have a low binding affinity to the 
glucocorticoid receptor.

[17]

DNN DeepCPIii
Drug structure and 
protein sequence for 
drug-target pairs

Drug-target interactions were predicted by DeepCPI. The inferred 
interactions between small molecules and glucagon-like peptide-1 receptor, 
glucagon receptor, and vasoactive intestinal peptide receptor were 
experimentally validated.

[18]

DNN deepDTnetiii
Drug-target pairs 
information, drug 
similarity, and target 
similarity

deepDTnet can identify targets of known drugs using a heterogeneous 
drug–gene–disease network embedding 15 types of chemical, genomic, 
phenotypic, and cellular network profiles. A new, direct inhibitor of human 
retinoic-acid-receptor-related orphan receptor-gamma t, topotecan is 
predicted by deepDTnet, and then experimentally validated by authors.

[26]

CNN DeepConv-DTIiv
Raw protein sequences 
and drug-target pair 
data

Local residue patterns from proteins in drug-target interactions were 
captured by DeepConv-DTI via the convolution on various lengths of 
amino acid subsequences. This model achieved higher accuracy than DBN-
based DeepDTI and CNN-based DeepDTA.

[20]

CNN DEEPScreenv
2-D structure of 
compounds and 
protein structure

Drug-target interactions were predicted based on 704 target proteins and the 
2-D structure of compounds. JAK proteins were predicted by the model as 
new targets of drug cladribine and experimentally validated in vitro.

[84]

CNN AtomNet
3-D structure of target 
proteins and small 
molecules

Applying local convolutional filters to extract the target’s structural 
information, AtomNet successfully predicted new active molecules for 
targets like wee1 and 1qzy which previously had no known modulators.

[21]

GCN DeepChemvi Compound structure
GCN and long short-term memory were employed to optimize small 
molecule-based drug discovery by predicting the toxicity and bioactivity of 
candidate drugs using their structural data.

[23]

RNN 
CNN 
GCN 
DTL

DeepAffinityvii
Raw protein sequences 
and compound 
sequences (2-D 
information)

Bidirectional RNN was utilized to capture nonlinear joint dependencies 
among either protein residues or compound atoms that are sequentially 
distant. DeepAffinity unified RNN-CNN/RNN-GCN to predict drug-target 
interactions. The model outperformed conventional models in achieving 
relative error in the half-maximal inhibitory concentration within five-fold 
for test cases and 20-fold for protein classes not included in training.

[19]

DNN
Deep-

AmPEP30viii
Genomic sequence 
data and known AMP 
sequences

Antimicrobial peptides to treat a variety of diseases such as cancer and 
infections were identified based on known AMP sequences. One peptide 
(FWELWKFLKSLWSIFPRRRP) the model produced proved to have the 
same anti-bacteria efficacy as ampicillin.

[24]

Drug Repurposing

DNN -
Transcriptional 
response to drug 
exposure

The therapeutic categories of drugs were exclusively identified from 
transcriptional profiles. 26,420 drug perturbation samples were analyzed for 
three cell lines and then assigned to one of twelve therapeutic categories.

[29]

i.Resources:
https://github.com/Bjoux2/DeepDTIs_DBN
ii.https://github.com/FangpingWan/DeepCPI
iii.https://github.com/ChengF-Lab/deepDTnet
iv.https://github.com/GIST-CSBL/DeepConv-DTI
v.https://github.com/cansyl/DEEPScreen
vi.https://github.com/deepchem/deepchem
vii.https://github.com/Shen-Lab/DeepAffinity
viii.https://cbbio.cis.um.edu.mo/AxPEP/
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Model Tools* Input Data Purpose Ref

VAE deepDRix
Drug-disease pairs and 
drug’s chemical 
information

Fourteen candidates of the top 20 drug candidates to treat Parkinson’s 
disease predicted by deepDR were validated by previous studies. [28]

Drug Response

DNN RefDNNx
Drug’s structure and 
gene expression data 
prior to drug exposure

RefDNN learned representations for a high-dimensional gene expression 
vectors and a molecular structure vectors of drugs, to predict drug response, 
then labeled and identified biomarkers contributing to drug resistance. 
Among the top ten genes identified by RefDNN, six (high expression 
patterns of MYOF, UBC, NQO1, and LGALS3 and low expression patterns 
of RACK1 and RPS23) were experimentally proven to be associated with 
nilotinib resistance.

[30]

DNN 
VAE

DeepDR

Genomic and 
transcriptomic profiles 
before and after drug 
treatments

The drug response of tumors was predicted from integrated genomic 
profiles. Specifically, DeepDR improves the prediction of drug response 
and identification of novel therapeutic options. The model was applied to 
predict drug response in 9059 tumors from 33 cancer types. The resulting 
predictions include known therapies, such as EGFR inhibitors in non-small 
cell lung cancer and tamoxifen in breast cancer, as well as novel drug 
targets, such as vinorelbine for TTN-mutated tumors. [33]

MLP 
RNN 
CNN

-
HIV genome sequence 
and drug sensitivity 
data

HIV-related drug resistance was predicted by three deep learning models. 
Of the 20 most important features predicted by the models, 18, 9, and 16 
known drug resistance mutations positions were identified by using CNN, 
MLP, and RNN models, respectively.

[32]

VNN Dcellxi Genotype data
The phenotypic resulting from individual gene perturbations in eukaryotic 
cells was transparently simulated. During the simulation, 80% of the 
importance of growth prediction is captured by 484 subsystems.

[31]

Drug-Drug Interactions

DNN DeepSynergyxii
Drug chemical data 
and transcriptional 
data

DeepSynergy distinguished different cancer cell lines and found specific 
drug combinations to maximal efficacy on a given cancer cell line through 
the incorporation of genomic information with compound information.

[34]

GCN Decagonxiii

Drug-drug interaction, 
protein-drug 
interaction, protein-
protein interaction, and 
side effects

Decagon constructed a large two-layer multimodal graph of protein-protein 
interactions, drug-target interactions, and drug-drug interactions to predict 
the potential side effects of drug pairs. Decagon accurately predicted 
polypharmacy side effects, outperforming baselines by up to 69%. It had 
the best performance in modeling side effects with strong apparent 
molecular underpinnings; for example, in Mumps, Carbuncle.

[85]

Other

CNN DeepMACTxiv 3D image data
DeepMACT performed image recognition to track the biodistribution of 
antibody-based agents. Trained on an MDA-MB-231 cancer cell-based 
tumor model, DeepMACT has 80% accuracy to detect metastasis.

[86]

*
The superscript numbers refer to the websites in the Resource section.

ix.https://github.com/ChengF-Lab/deepDR
x.https://github.com/mathcom/RefDNN
xi.https://github.com/idekerlab/DCeN
xii.https://github.com/KristinaPreuer/DeepSynergy
xiii.https://github.com/mims-harvard/decagon
xiv.http://discotechnologies.org/DeepMACT/
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Table 2.

Overview of available single-cell technologies used to study drug resistance in heterogeneous disorders.

Technology Purpose Ref

Targeted drugs

cDNA-seq
Single-cell DNA sequencing (scDNA-seq) was performed on 510 circulating tumor cells and 189 leukocytes. 
Microheterogeneity analysis of individual CTCs discerned there existed cells prior to drug exposure that was 
resistant to ERBB2-targeted therapies.

[40]

scRNA-seq bulk 
ATAC-seq

Single-cell RNA-sequencing (scRNA-seq) of paired drug naïve and resistant acute myeloid leukemia patient 
samples highlighted regulators of enhancer function as important modulators of the resistant cell state. The 
inhibition of Lsd1 facilitated the binding of the pioneer factor and cofactor to nucleate new enhancers, overcoming 
stable epigenetic-derived resistance.

[45]

CROP-seq
Pooled CRISPR screening was combined with single-cell RNA sequencing to facilitate high-throughput functional 
dissection of complex regulatory mechanisms and heterogeneous cell populations. ETS1, RUNX1, and GATA3 
were found to be essential for Jurkat T-cell function.

[66]

Single-cell FISH

Single-cell FISH visualized transcriptional variability at the single-cell level which was used to predict drug 
resistance development. It was found that the addition of drugs induces epigenetic reprogramming in certain cells, 
converting a transient transcriptional state to a stable one. Reprogramming began with a loss of SOX70-mediated 
differentiation followed by activation of new signaling pathways, partially mediated by Jun-AP-1 and TEAD 
transcription factors.

[43]

sci-Plex scRNA-
seq

‘Nuclear hashing’ was used to quantify global transcriptional responses in thousands of independent perturbations 
at a single-cell resolution. sci-Plex was employed to screen three cancer cell lines exposed to 188 compounds. 
Approximately 650,000 single-cell transcriptomes across ~5,000 independent samples were profiled in one 
experiment. The similarity in single-cell transcriptomes treated with distinct compounds highlighted drugs that 
target convergent molecular pathways.

[35]

scRNA-seq

A candidate tumor cell subgroup associated with anti-cancer drug resistance was identified using scRNA-seq on 
viable patient-derived xenograft (PDX) cells. 50 tumor-specific single-nucleotide variations were observed to be 
heterogeneous in individual PDX cells after performing scRNA-seq on 34 PDX tumor cells from a lung 
adenocarcinoma patient. PDX cells that survived in vitro anti-cancer drug treatment displayed transcriptome 
signatures consistent with the group characterized by KRAS(G12D).

[39]

scRNA-seq

4645 cells isolated from 19 patients, including malignant, immune, stromal, and endothelial cells, were profiled 
using scRNA-seq. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with 
drug-resistance. Analysis of tumor-infiltrating T-cells revealed exhaustion mechanisms were connected to T cell 
activation and clonal expansion, and their variability across patients.

[41]

RT–qPCR
Single-cell RT-qPCR of the luminal-type breast cancer cell line MCF7 and its derivatives, including docetaxel-
resistant cells identified that in the drug-resistant cells, epithelial-to-mesenchymal transition and stemness-related 
genes were upregulated and cell-cycle-related genes were downregulated. Both were primarily regulated by LEF1.

[46]

Microfluidic 
Platform

An integrated microfluidic platform was built to construct single-cell arrays that could analyze drug resistance. A 
proof-of-concept experiment was implemented by determining the vincristine resistance of single glioblastoma 
cells with different biomechanical properties. The results indicated that the biomechanics of tumor cells has 
significant implications for cell drug resistance

[87]

MULTI-seq
MULTI-seq: multiplexing using lipid-tagged indices for single-cell and single-nucleus RNA sequencing. MULTI-
seq reagents were shown to be able to barcode any cell type or nucleus from any species so long as there was an 
accessible plasma membrane.

[88]

Single-cell 
barcoding

Transient transfection with short barcode oligonucleotides simultaneously analyzed multiple samples with 
scRNA-seq. The accuracy of the method was validated and its ability to identify multiplets and negatives was 
confirmed by analyzing samples from a 48-plex drug treatment experiment.

[74]

Immunotherapy

TCR-seq scRNA-
seq

By performing single-cell RNA sequencing on 5,063 single T-cells and coupled TCR-seq, 11 T-cell subsets were 
distinguished based on their molecular and functional properties which also delineated their developmental 
trajectory. The gene layilin, which was found to be upregulated on both activated CD8+ T-cells and Tregs, 
represses the CD8+ T-cell functions in vitro.

[58]

LIBRA-seq 
(scBCR-seq)

The antigen specificity of thousands of B-cells from two HIV-infected subjects was mapped. The predicted 
antigen specificities were confirmed for a number of HIV- and influenza-specific antibodies. [60]

RAGE-seq 
(scTCR-seq
+scBCR-seq)

7138 cells sampled from the primary tumor and draining lymph node of breast cancer were used to infer B-cell 
clonal evolution and identify alternatively spliced BCR transcripts. [61]
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Technology Purpose Ref

Perturb-seq
Perturb-seq was performed on 200,000 immune cells, identifying transcription factors that regulate the response of 
dendritic cells to lipopolysaccharide. Perturb-seq was shown to accurately identify individual gene targets, gene 
signatures, and cell states affected by both individual perturbations and their genetic interactions.

[67]

scRNA-seq By combing single-cell RNA-seq and T cell receptor (TCR) analysis, TCR signal intensity was found to not affect 
resting/activated Treg proportions but activated Treg programs [57]
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