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1. INTRODUCTION

One in three adults in America lives with chronic pain [1; 23]. In the majority of cases, pain 

is reported in multiple body locations and is associated with other non-painful bodily 

symptoms. These co-morbid disorders are often idiopathic, as such no identifiable structural 

pathology or biochemical aberration can be associated with the reported pain, and are 

commonly accompanied with dysregulation of the central, peripheral and/or enteric nervous 

systems [12; 13].

Recently, mitochondrial dysfunction has been shown to contribute to pain perception and 

chronic pain conditions [17; 49; 59]. This organelle is found in most eukaryotic cells, 

including most human cells. Copy numbers for mitochondria vary greatly among cell types, 

with each mitochondrion containing a few to thousands of copies of its own mitochondrial 

DNA, (mtDNA) [42; 67]. Mitochondria fuse and divide in an ongoing, dynamic process in 

response to various cell stimuli and needs [52]. They are often referred to as the “energy 

powerhouses of the cell” as they generate most of the cell’s chemical energy in the form of 

adenosine triphosphate (ATP) [56]. The mitochondrion’s genome (mtDNA) is haploid and is 

exclusively inherited from the maternal line [19]. Mitochondria play key roles in neuronal 

transmission and plasticity [25; 58], immune function [41; 68], and the ability to modulate a 

cell’s fate [24; 55; 70]. Mitochondria-related diseases generally result in abnormalities in 

tissues of neuronal and muscular origin, likely because these tissues have high and 

fluctuating energy requirements.

Several studies have shown a link between energy metabolism and chronic pain [17; 49; 59], 

suggesting several pathways through which mitochondrial dysfunction can increase or 

inhibit neuropathic and inflammatory pain. These include the mitochondria’s critical 

functions such as energy metabolism and metabolism of reactive oxygen species. 

Furthermore, mtDNA may drive some of these dysfunctions. Despite comprising only 37 

genes, mtDNA has both a high frequency inherited polymorphisms and occurrences of new 

mtDNA mutations. Yet, due to several unique characteristics of mitochondrial genetics, each 

polymorphism can be either heteroplasmic (abnormal and wild type coexist in the same cell) 

or homoplasmic (in which all mtDNA is affected). Furthermore, mtDNA mutations 

generally demonstrate marked variability in terms of clinical expression, organ systems 

affected, severity, age of onset, and natural history of disease. This complicates studying the 

role of mtDNA in the context of chronic diseases. Despite these challenges, several 

preliminary studies have found associations of candidate polymorphisms in mitochondrial 

DNA with irritable bowel syndrome, non-specific abdominal pain, migraine and cyclic 

vomiting syndrome [8; 35; 61; 64; 72].

These previous studies, however, were often small, targeted a specific genetic group of 

people (often mtDNA haplotype H) as well as specific pain conditions (e.g., only patients 

with irritable bowel syndrome), and focused on a limited number of polymorphisms. This 

current study aimed to examine the full mitochondrial genetic makeup from a wide variety 

of people affected by chronic pain in the largest sample reported to date.
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2. MATERIALS AND METHODS

2.1. Study approval

The primary study, Complex Persistent Pain Conditions (CPPC): Unique and Shared 

Pathways of Vulnerability, was approved by the Institutional Review Boards (IRBs) of the 

University of North Carolina and McGill University. The replication study, conducted using 

data and samples from the Orofacial Pain: Prospective Evaluation and Risk Assessment 

(OPPERA) cohort, was approved by IRBs of the four recruitment sites (the University of 

Florida, the University of North Carolina at Chapel Hill, the University of Maryland, and the 

University at Buffalo), the data coordinating center at Battelle Memorial Institute, and by 

McGill University.

2.2. Discovery cohort

The CPPC cohort [57] included participants enrolled in a cross-sectional study of 

overlapping pain conditions conducted at the University of North Carolina at Chapel Hill. A 

total of 848 study participants were enrolled, of which 752 had high quality DNA to perform 

mitochondria deep-sequencing. After quality controls filters were applied, 609 participants 

had simultaneous clinically assessed phenotypes with genomic data available for association 

studies (Table 1). Subjects were aged 18 to 64 years old, and included both sexes (86% 

female) and major ethnic and racial groups (69% Caucasian as determined by participant 

self-report). Subjects had at least one of five index CPPCs (episodic migraine [EM, 263 

subjects], irritable bowel syndrome [IBS, 221 subjects], fibromyalgia [FM, 96 subjects], 

vulvar vestibulitis [VVS, 100 subjects], or temporomandibular disorders [TMD, 172 

subjects], or were otherwise healthy controls with none of these conditions (237 subjects). 

Each pain condition was classified by study clinicians using validated protocols: EM was 

classified following an examination with a neurologist, IBS was classified according to 

ROME-II criteria [37], FM was classified using ACR-1990 criteria [69], and TMD was 

classified using RDC-TMD criteria [15]. Women were classified as VVS cases if they 

reported provoked pain on contact in the genital region; or having been told by a 

gynecologist that they have VVS; or both. Women who endorsed generalized pain and/ or 

itching in the genital area for 3 months or more were excluded from VVS cases. We 

performed Principal Component Analyses of the phenotype matrix (1=unaffected, 

2=affected) using the R statistical package’s function “prcomp”.

2.3. Sequencing of mitochondrial DNA

Whole blood was collected by venipuncture and genomic DNA was extracted using the 

NucleoSpin® Tissue kit (Macherey & Nagel, Dueren, Germany), diluted to 20 ng/μl, and 

aliquoted to 25 μl per sample. High-coverage (>100x) mitochondria DNA sequencing 

(mtSeq) from whole blood fractions was performed to determine allele content and assess 

heteroplasmy levels at each genomic position. The high coverage was made possible using 

the Ovation® Human Mitochondrion Target Enrichment System (NuGEN, San Carlos, CA). 

Deep-sequencing was performed at the University of Toronto on an Illumina 2500 

instrument (Illumina, San Diego, CA), with data converted to FASTQ using Illumina’s 

CASAVA software. Length of reads was 101 nucleotides, single-ended.
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2.4. Bioinformatics

Deep-sequencing reads were trimmed using Trimmomatic v0.32 [6], using aggressive 

trimming command-line option: “-phred33 ILLUMINACLIP:adapters.fa:1:30:6 

LEADING:20 TRAILING:20 SLIDINGWINDOW:5:20 MINLEN:22”. Reads were then 

mapped to the human genome version GRCh38/hg38, which consists of the revised 

Cambridge Reference Sequence (rCRS) [3]. The alignment of reads was done using the 

Bowtie v2 aligner [30], chosen for its ability to perform local alignments (in contrast to 

Bowtie v1 which performs end-to-end global alignment only), with the following command-

line arguments: “--very-sensitive-local -k 10”. The circular nature of mitochondrial DNA 

was not an issue because of the very deep sequencing coverage. PCR-duplicates were 

removed using scripts provided by NuGEN (NuGEN, San Carlos, CA). BAM flags for 

secondary alignments were converted into primary alignments since Bowtie randomly 

assigns one of the equally-scored alignment as primary, and downstream bioinformatics tool 

only consider primary alignments. BAM files were analyzed using MitoSeek [22], which 

provided counts of alleles for each genomic position. Sequencing quality controls included: 

PHRED scores ≥ 30, ≥ 10 counts, ≥ 95% same allele (sequencing errors and low levels of 

heteroplasmy were tolerated). Sequencing data was transformed into genotyping data with 

allele counts provided by MitoSeek. Genotyping quality controls included: Hardy-Weinberg 

equilibrium P-value ≥ 1×10−4 (i.e. not peculiar), genotyping rate per SNP ≥ 98%, 

genotyping rate per individual ≥ 98%, minor allele frequency ≥ 5%, and required that in an 

individual, a position had to feature at least 95% of the same nucleotide, thus allowing for 

parsimonious amounts of heteroplasmy levels.

A total of 752 samples were deep sequenced at a read length of 101 nucleotides. The total 

number of sequenced reads per sample was: minimum 50K, maximum 11.9M, mean 2.0M, 

standard deviation (s.d.) 1.1M. After PCR duplicates removal, the ratio of number of 

mapped reads to reads sequenced was: mean 55.2%, s.d. 7.8%. The ratio of number of reads 

mapped to mitochondria versus total number mapped, including nuclear DNA: mean 81.4%, 

s.d. 2.8%. No single read aligned on mitochondrial DNA were reported aligned elsewhere on 

nuclear DNA, indicating perfect specificity of sequenced reads for mitochondria studies. 

Mapped alignment length in nucleotides on mitochondria (CIGAR ‘M’ symbol): mean 81.0, 

s.d. 25.6. The average nucleotide coverage was (Figure S1A): mean 3913x, s.d. 3383x; in 

the 100 nucleotides from 5’ and 3’ ends of the chromosome (Figure S1B): mean 799x, s.d. 

595x. We employed the Bowtie2 program that was able to analyze the circular configuration 

of the mitochondrial chromosome with the help of long reads, deep sequencing of mtDNA-

enriched samples, and the ability to perform a local alignment (bowtie1 performs end-to-end 

alignment only). Reads spanning the control region were either mapped at the 5’ or the 3’ 

end of the linearized chromosome sequence, whichever end yielded better alignment scores. 

The coverage is on par in quality with previous studies on mitochondria [65; 71].

2.5. Statistics

Mitochondria-wide association analyses were conducted using PLINK v1.9 [47], with 

CPPCs as phenotypes, and sex, age, as well as the first two principal genetic components as 

co-variables. The mitochondrial control region (rCRS nucleotides 1 to 576 and 16024 to 

16579), known to be hyper-variable, was excluded from association analyses. Sites with less 
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than 95% of the same allele were coded as ‘0’ (“undefined genotype”) for input to PLINK. 

The chromosome designation ‘26’ for mitochondria was also used to instruct PLINK that the 

genotyping data are haploid-based. Separate association tests were conducted for each CPPC 

using logistic regression models in which cases were defined as subjects with the relevant 

CPPC and controls were subjects who did not have that CPPC. Here, we followed 

recommendations to object to rely on “super-controls” for association testing, as people 

considered cases for one CPPC can also be subjects to other CPPCs, just as the control 

subjects [46]. An additional linear regression model tested for associations with the total 

number of CPPCs (i.e., ranging from zero to five). A position was tested if its minor allele 

frequency was at least 5% (i.e. not a rare variant). A sex-stratified analysis was done for each 

comparison. A principal component analysis (PCA)-based approach that considered 

correlated SNP alleles in linkage disequilibrium was used for determining statistical 

significance, then Bonferroni correction was applied for multiple testing based on the 

estimated number of effective SNPs. The Genetic Type I error calculator (GEC) was used to 

estimate the effective number of SNPs [33] as an alternative to mitochondrial haplogroup 

assignment.

Haplogroup assignments were determined from the deep sequencing by reconstructing each 

individual’s mitochondrial DNA sequence, in which the original rCRS sequence was 

adjusted to MitoSeek’s major allele base call. Haplogroup assignments were performed 

using HAPLOFIND [63] and HaploGrep 2 [66], and results were congruent between the two 

methods. In African-Americans, 71.9% were classified as haplogroup L, 7.8% as H and 

5.9% as U. In Caucasians, 38.8% were in H, 16.0% in U and 10.2% in T. In the ‘other’ 

ancestry group, haplogroups B (22.2%), A (18.5%) and D (14.8%) were most common. 

Results were consistent with known high-levels of Caucasian admixture among African 

Americans, and Native Americans among Hispanics, who constituted much of the ‘other’ 

group. These proportions are in line with the findings from the 1,000 Genomes Project about 

the distribution of mitochondrial haplogroups in the US population [50]. We performed 

haplogroup-based association tests with CPPC by comparing individuals of one haplogroup 

to those of all other haplogroups. Haplogroups tested featured at least 30 individuals, and 

were: H (n=177), L (n=137), U (n=79), J (n=51), T (n=47), and K (n=32). Age and sex were 

used as co-variables.

Rare variant association tests were performed using the SKAT-O approach [32]. SNPs were 

pooled by genes or by pathways. Tested genes comprised all 13 mitochondrial protein-

coding genes, 22 transfer RNAs, and small (12S rRNA) and large (16S rRNA) ribosomal 

subunits. Tested pathways pertained to the oxidative phosphorylation complexes, and were 

[34]: Complex I = [MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-

ND6], Complex III = [MT-CYB], Complex IV = [MT-CO1, MT-CO2, MT-CO3], and 

Complex V = [MT-ATP6, MT-ATP8]. Age, sex, and the first two principal genetic 

components were used to define the SKAT test null model.

Association tests with heteroplasmy levels were conducted as follows: for each genomic 

position, the distribution of heteroplasmy odds ratio in subjects with a CPPC was contrasted 

against the distribution of those without. In each individual, the heteroplasmy odds ratio was 

established from a 2×2 Fisher table composed of the observed major and minor allele 
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counts, and estimated counts of major and minor alleles from 0.1% heteroplasmy baseline 

levels, which could be attributed to sequencing error, deep-sequencing read misalignment, 

etc. The odds ratio was calculated using the observed minor allele count to that expected, 

given the background of observed and estimated major allele counts. Sequencing depth 

modulated the statistical significance of the odds ratios, but here we performed the tests 

based on effect size only, while making sure that genomic positions with marked differences 

in heteroplasmy levels would correspond to deeply sequenced positions, i.e. with several 

thousand-fold coverage on average. We performed logistic tests for CPPC as a function of 

heteroplasmy odds ratios, using age, sex, and first two genetic principal components as co-

variables. Because the odds ratio is self-normalized there was no need to account for sample 

size factors (sample-wide sequencing depth).

2.6. Visualization

Graphics were plotted using the R statistical package, version 3.5.2 (2018-12-20) [48].

2.7. Replication cohort

The replication case–control cohort included 1,754 female subjects selected from the 

OPPERA study [39], of whom 53 were fibromyalgia cases while 1,701 were non-cases 

based on self-reported item in the Medical History questionnaire in OPPERA (Fibromyalgia/

Chronic Fatigue Syndrome). Cases were defined as those that answered “yes” to the 

question: “did you have this fibromyalgia in the past or have it now?”. Cases and controls 

were not excluded if they had other CPPCs. (Supplementary Table S1). Genotyping was 

performed by the Center for Inherited Disease Research (Baltimore, MD) using the Illumina 

HumanOmni 2.5 Exome Bead Chip platform (Illumina, Inc, San Diego, CA). Genetic data 

cleaning was accomplished by the Genetic Analysis Center at the University of Washington 

following their established pipeline [31]. The genotyping array included SNP m.2352T>C, 

probed via exm2216242 [57]. Association tests used as co-variables age, sex, and the first 

two genetic principal components to account for population stratification.

2.8. Cell culture

Twenty B lymphoblast cell lines were obtained from the NHGRI sample repository for 

Human Genetic Research through the Coriell Institute (Camden, NJ). Of these cell lines, 10 

had the major allele at m.2352T>C while 10 had the minor allele at this position. All cell 

lines were derived from women of African-American or Western African ancestries; 16 

females were of African-American ancestry living in the U.S. (1,000 Genomes Project 

population code ASW), while 4 were from Western Africa (YRI). These ancestries were 

selected over other ancestries because they carry significantly higher minor allele content at 

m.2352T>C and women were selected over men because they showed stronger association 

with pain phenotypes. The cell lines were maintained according to the supplier’s protocol. 

Briefly, cells were cultured in maintenance medium of RPMI 1640 (GIBCO®; Thermo 

Fisher Scientific, Waltham) supplemented with 15% fetal bovine serum (GE Healthcare Bio-

Sciences, Marlborough), and 200mM glutamine (GIBCO®). B lymphoblast density was 

kept between 0.2 and 1 × 106 cells/ml.
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2.9. JC-10 staining

Each B lymphoblast line was washed and re-suspended at 0.5 × 106 cells/ml in either RPMI 

1640 without glucose supplemented with 4.5g/L glucose (Sigma-Aldrich, St-Louis), 15% 

dialyzed fetal bovine serum (GIBCO) and 200mM glutamine, or RPMI 1640 without 

glucose supplemented with 4.5g/L galactose (Sigma-Aldrich), 15% dialyzed fetal bovine 

serum and 200mM glutamine. Cells were incubated for 24 hours at 37°C with 5% CO2 in a 

humidified chamber. Based on optimization experiments, 1 × 105 cells were stained in 200 

μl JC-10 staining solution (AbCam, Cambridge) for 30 minutes at 37°C according to 

manufacturer’s instructions. Control samples were depleted for JC-10 aggregates by a 

mitochondrial uncoupling agent: 10 μM carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP) (Sigma-Aldrich). 3×104 events per sample were 

acquired on an LSR-Fortessa SORP (BD BioSciences, Franklin Lakes) using excitation at 

488nm and 530/30nm detection filter for the JC-10 monomers, and excitation at 561nm and 

582/15nm detection filter for the JC-10 aggregates.

2.10. Flow cytometry data analysis

Preliminary cleaning of flow cytometry data was done using a time-gate to exclude 

anomalies from abrupt changes in the flow rate, followed by exclusion of debris and 

doublets based on forward and side scatter parameters. Approximately 5000 live B-

lymphoblasts were selected per sample for unsupervised clustering analysis. Mean 

fluorescent intensity (MFI) signals from JC-10 monomers and polymers were normalized 

(mean = 0, standard deviation = 1) across all the 40 samples (two conditions x (ten samples 

with the reference allele + ten samples with the alternative allele)). Density-based spatial 

clustering of applications with noise was performed using the DBSCAN R-package [16]. 

Two clusters were identified: cluster A (high in JC-10 aggregate signal) and cluster B (high 

in JC-10 monomer signal). Linear modelling was performed with the ratio of cluster B to 

cluster A as the dependent variable, and the presence of minor allele and culture media 

(glucose or galactose) as independent variables. The cluster ratio served as a marker for the 

number of cells with low mitochondrial membrane potential (Δψm) compared to healthy 

cells. FlowJo™ (FlowJo, LLC, Ashland) and R version 3.6.0 were used for the analyses.

3. RESULTS

3.1. Discovery cohort sample characteristics

A total of 848 participants were enrolled in the Complex Persistent Pain Condition (CPPC) 

cohort. The pairing of samples with epidemiological data with those with deep-sequencing 

of mitochondria data resulted in 609 matched samples (Table 1). The cohort was comprised 

of individuals with at least one CPPC (61.1%; controls 38.9%), and most were female 

(85.7%), of predominantly Caucasian (69.1%) or African-American (23.3%) ancestries, and 

aged between 18 to 64 years (mean 36.0 ±11.6).

Complex persistent pain conditions were: episodic migraine (EM, 43.2%), 

temporomandibular disorders (TMD, 28.2%), irritable bowel disorder (IBS, 36.3%), 

fibromyalgia (FM, 15.8%), and vulvar vestibulitis (VVS, 16.4%). Women were more likely 

to have each CPPC compared to men; from 1.7x for IBS to 7.8x for FM (VVS, by definition, 
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affects women only). Most individuals with one or more CPPC had co-morbid conditions: 

142 (23.3%) individuals had only one CPPC, while 230 (37.8%) had two or more CPPCs. 

Principal component analysis of the phenotype matrix distinguished, as expected, the health 

status against the chronic pain conditions (Figure 1). This major axis (PC 1) contributed to 

as much as 49% of the variance in the matrix. The second major axis (PC 2) explained 15%; 

at opposite ends of the spectrum were fibromyalgia and irritable bowel syndrome. The 

principal component eigenvectors extracted from the phenotype matrix were useful 

surrogates for an association study with a simplified endophenotype underlying all CPPCs 

[4], while enabled consideration of all CPPCs into one association study, thus circumventing 

the need for sample overlap correction in a risk meta-analysis.

3.2. Association with complex persistent pain conditions

First, we performed association tests between each of the five CPPCs and allelic 

polymorphic content along the mitochondrial chromosome (Figure 2). We also tested for 

association with any CPPC, and the number of CPPCs.

The most significantly associated mitochondrial position with a CPPC after correction for 

effective number of SNPs was position 2352 with fibromyalgia (OR=5.1, P=2.8×10−4, F 

only; OR=4.62, P=4.3×10−4, F+M) (Figure 2D; Supplementary Table S2). This position 

corresponds to SNP m.2352T>C (rs28358579) that is located in the large mitochondrial 

ribosomal subunit (16S rRNA) encoded by the MT-RNR2 gene. The 16S rRNA locus also 

hosts a peptide-coding gene, humanin, found to have neuroprotective [60] and anti-apoptosis 

[21] properties, and in which m.2352T>C lies in its 5’UTR. That SNP was also significantly 

associated with vulvar vestibulitis (OR=4.6, P=1.4×10−3) (Figure 2E) and with the number 

of CPPCs (beta=+0.83, P=1.3×10−4, F only; beta=+0.68, P=3.8×10−4; F+M) (Figure 2G). 

Consistently, the presence of the C allele increased risk with almost a unit increase in 

number of CPPCs with the risk allele (beta close to +1). The latter associations were slightly 

stronger in female only populations.

A detailed account of the relationships between SNP m.2352T>C, fibromyalgia status and 

ancestry is presented in Figure 3. The percentage of subjects with fibromyalgia was similar 

in Caucasians (15.9%) and African-Americans (17.6%) (Figure 3A). The C minor allele was 

present in 32.5% of cases, whereas the T major allele was present in only 14.8% (Figure 

3B). Only 9 (<1.5%) individuals featured heteroplasmy levels above 5% for SNP 

m.2352T>C (Figure 3B; allele ‘0’). The C minor allele was predominantly found in 

participants of African-American ancestry (Figure 3C): about 24% in African-Americans 

while only about 1% in Caucasians.

We next examined each CPPC for the effect of SNP m.2352T>C as secondary analyses 

(Figure 4; Supplementary Table S3). First, we recapitulated the initial findings for FM in 

both CPPC and OPPERA cohorts in a forest plot (Figure 4A). Then, we observed a 

consistent, nominally significant (P<0.05) increased risk for all other CPPC with the 

presence of the C allele. Notably, for episodic migraine (EM: OR=2.5, P=1.9×10−2) (Figure 

4B), for temporomandibular disorders (TMD: OR=2.6, P=2.1×10−2) (Figure 4C), and with 

number of CPPC (NB: beta=+0.7, P=3.8×10−4) (Figure 4D). The association with any CPPC 
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was also nominally significant in females only (ANY: OR=3.0, P=2.0×10−2) (Figure 4E), 

but highly significant in vulvar vestibulitis (VVS: OR=4.6, P=1.4×10−3) (Figure 4F).

We next used principal component analysis (PCA) of the phenotype matrix, which provided 

for an eigenvector associated with the largest eigenvalue (Figure 1). The eigenvector PC 1 

was used as a quantitative phenotype for association with m.2352T>C, to estimate the 

contribution of the polymorphism to chronic pain states at large. We found that the SNP’s 

effect (beta) was positive, implying that the minor allele conferred significantly increased 

risk for the presence of pain (PC 1: beta=+0.93, P=1.4×10−3; Figure 4G). Again, this effect 

was even stronger in women (PC 1: beta=+1.14, P=4.7×10−4; Figure 4G).

Haplotype-based tests were performed to explore association between CPPC and maternal-

lineage ancestry. We tested the most represented haplotypes H, L, U, J, T, and K. No 

association results were deemed significant at the FDR 10% level (Supplementary Table S4). 

We also performed rare variant-based tests with SKAT-O. SNPs were pooled by genes or by 

oxidative phosphorylation protein complexes comprising one or multiple genes. Again, no 

association results were significant at the FDR 10% level (Supplementary Table S5).

Finally, we capitalized on the very deep mitochondrial DNA sequencing to assess impact of 

heteroplasmy levels with respect to CPPC status (Supplementary Table S6). Each time, 

differences in heteroplasmy levels between cases and controls were minimal (FDR > 10%). 

Overall, heteroplasmy levels were significantly associated with the presence of all CPPC at 

multiple positions, with higher levels in control subjects than in cases. Notably, in 

association with any CPPCs (ANY) position m.6412A>G in the MT-CO1 gene (beta=−0.84, 

P=2.1×10−7) is a non-synonymous mutation AAU to AGU, coding a change from asparagine 

to serine.

3.3. Replication of m.2352T>C in the OPPERA cohort

We next tested our finding for replication in an independent cohort: Orofacial Pain: 

Prospective Evaluation and Risk Assessment Study – The OPPERA Study [39]. Even 

though the cohort was focused on the study of TMD, it contained self-reported data on 

fibromyalgia status and other CPPCs. Furthermore, the ancestry structure of OPPERA was 

similar to the discovery cohort. Female subjects were predominantly of Caucasian (61.3%) 

and African-American (23.2%) ancestries and aged between 18 to 44 years (mean 27.7 

±7.7). They were partitioned into 52 (3%) cases for fibromyalgia and 1660 controls (non-

fibromyalgia), for a total of 1712 individuals. Women of African-American ancestry 

comprised 8 (2%) cases and 402 controls (Supplementary Table S1).

We found that fibromyalgia status was associated significantly with SNP m.2352T>C in 

women (OR=4.3, P=2.6×10−2), thus replicating our initial finding. The polymorphism had 

even stronger effect size in a smaller population of African-American women (OR=7.6, 

P=1.4×10−2; Figure 4A; Supplementary Table S7). Thus, overall, we found that m.2352T>C 

consistently increased risk for fibromyalgia in both the discovery and replication cohorts 

(Figures 4A; Supplementary Table S7) with very robust effect size.
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3.4. Replication of previous work

Several previous studies have suggested a role for mtDNA polymorphisms, such as 

m.16519T>C and m.3010G>A in various chronic pain-related disorders such as IBS, 

migraine and cyclic vomiting [5; 8; 61; 62; 72]. In our study, these two SNPs exhibited 

heteroplasmy levels greater than 5% in about 5% of samples, and so were excluded from 

primary and secondary analyses after quality control for genotyping rate. Heteroplasmy 

results showed nominal association between dosage of A at position 3010 with migraine 

(P=0.03) or presence of any CPPC (P=0.04), with controls displaying greater levels of 

heteroplasmy. At position 16519, dosage of C was nominally associated with TMD 

(P=0.02), IBS (P=0.03) or presence of any CPPC (P=0.05), with controls displaying greater 

levels of heteroplasmy here too.

3.5. Effect of m.2352T>C on mitochondrial membrane potential

The mitochondrial genome encodes 37 genes, including 2 rRNAs, 22 tRNAs and 13 

polypeptides, which are required for oxidative phosphorylation as part of the electron 

transport chain (ETC). The mitochondrial rRNAs and their assembled ribosomes are solely 

responsible for translating these electron transport chain proteins. Because the m.2352T>C 

polymorphism is situated in the mitochondria’s large ribosomal subunit 16S rRNA it could 

potentially impact the translation of ETC transcripts, and consequently oxidative 

phosphorylation.

To test the functional effects of the m.2352T>C polymorphism, we employed B lymphoblast 

cell lines with known genotypes from female individuals of African-American or West 

African ancestry from the NHGRI sample repository. The obtained cell lines were from 

populations enrolled in the 1000 Genome Project, with available genotypes, sex, age, and 

ancestry, but no pain phenotypes. We identified 10 individuals that carried the T (major) 

allele, and 10 other individuals with the C (minor) allele at m.2352, for a total of 20.

We tested the effect of the SNP on oxidative phosphorylation in B lymphoblasts by growing 

cells in either glucose-containing media that allowed energy production by glycolysis and 

oxidative phosphorylation or in galactose-containing media which forces the cells to use 

oxidative phosphorylation for ATP production [14; 51]. Increased oxidative phosphorylation 

results in a greater mitochondrial membrane potential (Δψm) due to a corresponding 

increase in the transport of protons across the inner mitochondrial membrane due to the ETC 

[45; 73]. Thus, Δψm is correlated with oxidative phosphorylation. The staining of both 

genotypic variants of cell lines with JC-10 dye was used to assess mitochondrial membrane 

potential by measuring fluorescence. The JC-10 dye is present as either a J-monomer in cells 

with low Δψm or as aggregates in mitochondria when Δψm is increased. These two forms 

of the dye have different excitation and emission spectra, and the ratio of fluorescence was 

used as a proxy for Δψm. Furthermore, FCCP reagent, which uncouples the electron 

transport chain and therefore decreases Δψm, was used as a negative control to specifically 

deplete JC-10 aggregate fluorescent signal (561nm excitation laser, 582/15nm detection 

filter) without significantly affecting JC-10 monomer staining (488nm excitation, 530/30nm 

detection filter). As expected, there was much lower JC-10 aggregate staining in FCCP 

treated cells (Figure 5A, FCCP-treated cells).
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For the experimental samples, the vast majority of the lymphoblasts formed two discrete 

clusters when JC-10 monomer was plotted against JC-10 aggregate signal (Figure 5A). Both 

of these clusters had more JC-10 aggregate staining than the FCCP-treated control cells, 

indicating that our assay captured gross changes in Δψm. Also, the presence of JC-10 

aggregate staining in untreated lymphoblasts indicated that they were largely a viable 

population since a collapse of Δψm is recognized as an early hallmark of apoptosis. Our 

assay also captured more subtle changes in Δψm since cells that were grown in galactose-

containing media showed an increase in JC-10 aggregate staining compared to cells grown 

in glucose (P=1.0×10−2)(data not shown). The increase in Δψm in galactose-containing 

media was expected since the cells were reliant on oxidative phosphorylation.

As the overlap in distributions on both axes did not allow for adequate conventional flow 

cytometric analysis, an unbiased cluster analysis was performed to determine that the 

population of live cells contained subpopulations, cluster A (high Δψm) and cluster B (low 

Δψm) (Figure 5B). There were no obvious differences in cluster A or cluster B between B 

lymphoblasts with the minor or major alleles when grown in glucose-containing media. 

However, when grown in galactose-containing media, the B lymphoblasts with the minor 

allele showed a significant increase in the number of cells with a higher JC-10 monomer 

signal and a lower JC-10 aggregate signal (cluster B, low Δψm) than B lymphoblasts with 

the major allele (P=3.8×10−2) (Figure 5C). This indicated that the cells with the minor allele 

had decreased Δψm under conditions where oxidative phosphorylation was required.

4. DISCUSSION

Although previous studies have unmasked the role of mitochondria in chronic pain, our 

analysis is the first to examine the full mitochondrial genetic makeup of people affected by a 

panoply of chronic pain conditions. It is also the largest sample size reported in the literature 

to date involving mitochondrial genetics and chronic pain. Because we generated 

mitochondrial sequencing data of a very high density in the CPPC cohort, we were able to 

test different modalities of the mitochondrial genetic contribution to chronic pain, such as 

rare mutations, common variants, haplogroups, and heteroplasmy.

The most robust association results have been obtained for the common polymorphic 

variants. We found that SNP m.2352T>C was associated with an increased risk for 

fibromyalgia in the presence of the alternative C allele. The replicated genetic effect size of 

the C allele on the disease risk (OR 5.1 and 4.3 in discovery and replication cohort, 

respectively) is impressive and has little precedence within the field of common diseases. 

The relatively high minor allelic frequency of the associated allele makes our result even 

more unique, as an inverse relationship between a SNP’s frequency and disease odds ratio is 

predicted by population genetics and is observed in a daily fashion with the outpouring of 

GWAS results [18; 44]. In the sex-specific stratified analysis the association was significant 

only in women but not in men, although it is difficult to be sure that the identified effect is 

truly sex-specific because of the limited number of male fibromyalgia patients. Furthermore, 

the minor allele of this SNP was abundant in participants of African American ancestry and 

much rarer in other ancestry groups. However, for the majority of pain phenotypes the effect 
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size of the C allele was stronger in a mixed population than in the African American 

population (Figures 4F–H), suggesting that the effect of the C allele is not race-specific.

Although our primary screen identified SNP m.2352T>C most significantly associated with 

FM, we observed other significant associations with VVS and number of CPPCs, and 

noticed nominal associations with all other CPPCs in secondary analyses, in a consistent 

risk-associated fashion. The association was observed in episodic migraine, 

temporomandibular disorders, IBS, and number of CPPCs. Association with the global pain 

phenotype via first principal component was also significant.

This SNP was not previously documented to be associated with a disease or trait in the 

Online Mendelian Inheritance in Man (OMIM®) catalog [2], nor is its clinical significance 

reported in the ClinVar resource [29]. This might be because genome-wide association 

studies are mainly conducted in people of European ancestry, though this shortcoming is 

now being addressed [43]. Furthermore, the m.2352T>C SNP isn’t routinely assessed as it is 

missing from popular genotyping arrays, including those used by large genetic studies such 

as the UK Biobank project and 23AndMe. We attempted, but failed to unambiguously 

impute the SNP using the large database of complete human mitochondrial sequences 

(MITOMAP [38]), indicating low linkage disequilibrium with neighboring genotyped SNPs. 

Thus, our results suggest that including the m.2352T>C SNP into future genotyping 

platforms will benefit the research field of mitochondrial genetics.

The m.2352T>C SNP is situated in mitochondria’s 16S rRNA gene, the large subunit of the 

ribosome [26] (gene MT-RNR2). It’s also situated in the 5’UTR of the humanin gene, a 

peptide with anti-apoptotic and neuroprotective properties, although, there is uncertainty 

whether this is a transcribed protein-coding gene, or if it is a nuclear pseudogene of the 

mitochondrial MT-RNR2 gene [21; 36; 40]. The alternative allele may affect the stability of 

the transcript or its secondary structure of one or both corresponding RNAs, as well as the 

translation level of humanin. It is also possible that m.2352T>C polymorphism alters 

ribosomal translation speed or decoding fidelity. Unfortunately, the crystal structure of the 

large ribosomal subunit of human mitochondria does not display enough electron density to 

unambiguously resolve the position of m.2352 (chain A of PDB code 3J7Y [7]), hampering 

the deciphering of its role.

To test if the polymorphic variant affects overall cellular function, we conducted an assay in 

which mitochondria were presented with alternative energy sources while monitoring the 

mitochondrial membrane potential. The mitochondrial membrane potential is a consequence 

of electron transport in mitochondria, which is necessary for ATP synthesis. It also has non-

ATP producing functions such as cell viability [73]. Although limited variation in the 

mitochondrial membrane potential is common, prolonged changes can affect mitochondrial 

function [73]. We found that cells carrying the minor allele compared to the major allele 

were more likely to be in the cell cluster with increased JC-10 monomer staining when 

grown in galactose, rather than in glucose. This result suggests that the presence of the 

minor allele decreased the mitochondrial membrane potential under conditions where 

oxidative phosphorylation is required. Although the exact mechanism is unknown, our 

results indicate that SNP m.2352T>C impacts oxidative phosphorylation, thus potentially 
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linking oxidative phosphorylation with the development of chronic pain conditions. Our 

results are concordant with previous findings on an association between impaired 

mitochondrial metabolism and fibromyalgia [10] and a decreased level of coenzyme Q10, an 

essential electron carrier in the mitochondrial respiratory chain, in the blood of fibromyalgia 

patients [11]. These relationships are of particular interest since they are indicative of 

potential therapeutic targets [9].

To our surprise, we did not find any significant associations when we tested the contribution 

of rare variants to pain states using the SKAT-O approach, neither by combining their effects 

on genes nor pathways. In contrast, such associations have been found for Complex I of the 

OXPHOS pathway and cancer [34], mitochondria-wide rare variants and schizophrenia [20], 

or specific, combined gene-based analyses with various metabolic traits [28]. Furthermore, 

haplogroup-based tests didn’t produce any significant results with pain-related phenotypes.

When we tested heteroplasmy levels, the coexistence of multiple alleles at the same genomic 

locus in a given individual, we found overall small but significantly elevated heteroplasmy 

levels at defined mitochondrial genomic loci in control subjects compared to those with any 

one of the CPPC. This indicated that nucleotide diversity might be beneficial regarding 

protection from painful conditions. We could not find a cohort to test this finding for 

replication. However, our results are in line with previous findings that have shown that 

mitochondrial heteroplasmy is widespread and tolerated in healthy subjects despite its 

pathogenicity under specific circumstances [71]. Moreover, the relationship between 

heteroplasmy level and pathogenicity has been demonstrated to display non-linear behavior, 

as for the case with m.3243A>G [27], in which distinct cellular consequences can be 

observed dependent on increasing minor allele dosage. The diversity hypothesis has been 

shown fruitful for cell survival in other cellular contexts [53; 54].

This study has many strengths, including (1) Deep-sequencing of mitochondrial-enriched 

DNA fragments to determine with high accuracy the complete mitochondrial genetic 

makeup of people affected by chronic pain. (2) A large sample size compared to other 

studies of the mitochondria’s genetic role in pain. (3) Inclusion of human subjects with 

diverse mtDNA haplogroups, in particular H and L. (4) Inclusion of several pain conditions 

previously unstudied with respect to mtDNA. (5) Assessment of all participants by medical 

experts for each of the five conditions providing reliable, high-quality phenotyping. It also 

has several weaknesses. (1) Even though the sample size of our study is the largest published 

yet, the results indicated that the cohort is underpowered to detect low effect size for 

common SNPs, and combined effects for grouped rare variants. (2) We have assessed the 

association between heteroplasmy and CPPCs, but couldn’t find an appropriate cohort to 

replicate our findings. (3) We employed B lymphoblast cell lines for our functional assays to 

test the allelic effect on oxidative phosphorylation. The B lymphoblasts were used as a cell 

model for measuring allelic-dependent mitochondrial membrane potential, as these were the 

only cell lines with fully characterized genotypes available; the cells contributing to 

pathophysiology of pain states, like neurons, would be better choice (4) Great care has been 

put into selecting individuals from the NHGRI sample repository such that the subjects with 

both the T and C alleles of m.2352 were randomized, but we cannot rule out the possibility 
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that other SNPs in high linkage disequilibrium are the true effectors of the observed 

modulation of the mitochondria membrane potential.

In conclusion, our results suggest that the m.2352T>C polymorphism has a strong clinical 

effect on the risk of fibromyalgia and possibly other chronic pain conditions. Prevalence of 

the SNP was elevated in participants of African-American ancestry, while almost absent in 

those of Caucasian ancestry. Using a cellular assay, we identified differences in 

mitochondrial functions in B lymphoblast cells from individuals with defined allelic variants 

at that SNP position. We show that the SNP allele is associated with lower mitochondrial 

inner membrane potential during oxidative phosphorylation. This implies that decreased 

cellular energy metabolism may contribute to chronic pain, although the exact mechanisms 

still need to be identified. Taken together, our findings suggest a novel pathway for the 

development of treatments for chronic pain patients directed at detecting and restoring 

mitochondrial dysfunction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation wheel of CPPCs with the first two principal components of the phenotype 

matrix. Complex persistent pain conditions are: episodic migraine, EM; temporomandibular 

disorders, TMD; irritable bowel syndrome, IBS; fibromyalgia, FM; vulvar vestibulitis, VVS. 

HC stands for healthy controls. Percent variance explained by each principal component 

shown in parentheses.
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Figure 2. 
Mitochondria-wide association studies of CPPCs. Shown are Manhattan plots, tracking 

association P-value (P) along the mitochondrial chromosome, in everyone (top) and in 

females only (bottom). The mitochondrial chromosome shown is the linearized version with 

annotated genomic features: rRNA (orange), protein coding genes (tan), control region or D-

loop (grey). Vertical bars indicate tested positions, with minor allele frequency ≥5%. Grey 

boxes indicate areas outside of statistical significance, while vertical purple bars highlight 

significance. Significant associations with position m.2352T>C marked with a star (*). (A) 
Episodic migraine (EM). (B) Temporomandibular disorders (TMD). (C) Irritable bowel 
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syndrome (IBS). (D) Fibromyalgia (FM). (E) Vulvar vestibulitis (VVS). (F) Presence of any 

CPPC (ANY). (G) Number of CPPCs (NB).
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Figure 3. 
Relationship between fibromyalgia, ancestry, and allele content at SNP m.2352T>C in 

females. (A) Fibromyalgia in different ancestral groups. (B) Allelic distribution in 

fibromyalgia patients. (C) Allelic distribution in different ancestral groups. Allele ‘0’ stands 

for discarded samples due to heteroplasmy.
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Figure 4. 
Forest plots for the association of m.2352T>C with CPPCs. Odd ratios (log2 scale) or betas 

with 95% confidence intervals shown. CPPC discovery data in black, while OPPERA 

replication data in grey. Population stratifications are: everyone (circle), females only 

(square) or African-American females (lozenge). (A) Fibromyalgia (FM). (B) Episodic 

migraine (EM). (C) Temporomandibular disorders (TMD). (D) Number of CPPCs (NB). (E) 
Presence of any CPPC (ANY). (F) Vulvar vestibulitis (VVS). (G) Principal component 1 

(PC 1). (H) Irritable bowel syndrome (IBS).
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Figure 5. 
Cellular mitochondrial assay for functional characterization of SNP m.2352T>C using JC-10 

staining. (A) Fluorescence scatter plot showing JC-10 aggregate intensity (582nm channel) 

as a function of JC-10 monomer intensity (530nm channel). Plotted data from JC-10 stained 

B lymphoblast cells either without treatment (blue) or treated with mitochondrial uncoupling 

agent, FCCP (10 μM) (grey). Background signal shown by cells left unstained for JC-10 

(black). (B) Representation of the two cell clusters of live B lymphoblasts, A and B, 

generated by density-based spatial clustering of applications with noise (DBSCAN) on a 

fluorescence scatter plot showing JC-10 aggregate intensity (582nm channel) as a function 

of JC-10 monomer intensity (530nm channel). (C) The ratio of cells in cluster B, which have 

lower ΔΨm, to cluster A, which have higher ΔΨm. Ratio measurements performed in 
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glucose and galactose-containing growth media. In each medium, ratio measurements were 

performed for B lymphoblasts with the T- (major) and C- (minor) alleles. Error bars 

represent mean ± SEM. 10 biological replicates for each treatment group.

van Tilburg et al. Page 26

Pain. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

van Tilburg et al. Page 27

Table 1.

CPPC study demographic and patient characteristics.

Males [N] Females [N] Total [N] F/M P-value

CPPC

EM 18 245 263 2.3x < 0.01

TMD 10 162 172 2.7x < 0.01

IBS 20 201 221 1.7x 0.02

FM 2 94 96 7.8x < 0.01

VVS 0 100 100 N/A N/A

ANY 30 342 372 1.9x < 0.01

CTL 57 180 237 0.5x < 0.01

# CPPCs

0 57 180 237 0.5x < 0.01

1 19 123 142 1.1x 0.90

2 3 49 52 2.7x 0.10

3 7 115 122 2.7x < 0.01

4 1 39 40 6.5x 0.04

5 0 16 16 N/A N/A

Ancestry

Cauc 55 366 421 1.1x 0.53

Af-Am 25 117 142 0.8x 0.28

Other 7 39 46 0.9x 0.83

Age [y] 34.6 (±11.9) 36.2 (±11.6) 36.0 (±11.6) 1.05x 0.61

min/max 18/61 18/64 18/64

Counts 87 522 609

Distribution of CPPCs and characteristics in males and in females. Participants can report more than one chronic pain conditions, therefore the 
counts in each sex is higher than the total number of individuals in the cohort. All P-values obtained using exact Fisher test, except for age, using 
Welch’s two-sample unequal variance. Complex persistent pain conditions were: episodic migraine, EM; temporomandibular disorders, TMD; 
irritable bowel syndrome, IBS; fibromyalgia, FM; vulvar vestibulitis, VVS; any of preceding, ANY; or controls, CTL. Number of CPPCs (#) in any 
study participant range from 0 to 5, inclusively. Ancestries were: Caucasians, Cauc; African-Americans, Af-Am; and others.
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