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Abstract

Due to a convergence of the availability of large datasets, graphics-specific computer hardware, 

and important theoretical advancements, artificial intelligence (AI) has recently contributed to 

dramatic progress in medicine. One type of artificial intelligence known as deep learning (DL) 

has been particularly impactful for medical image analysis. Deep learning applications have 

shown promising results in dermatology and other specialties including radiology, cardiology and 

ophthalmology. The modern clinician will benefit from an understanding of the basic features of 

deep learning in order to effectively use new applications as well as to better gauge their utility and 

limitations. In this second article of a two part series, we review the existing and emerging clinical 

applications of deep learning in dermatology and discuss future opportunities and limitations. Part 

1 of this series offered an introduction to the basic concepts of deep learning to facilitate effective 

communication between clinicians and technical experts.
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INTRODUCTION

Artificial intelligence (AI) was initially defined by John McCarthy in 1955 as the “science 

and engineering of creating intelligent machines that have the ability to achieve goals like 

humans via a constellation of technologies.”1,2 Since then, AI and its various subfields 

have played a transformative role in shaping human social and cultural institutions. 

The American Academy of Dermatology has recognized the potential impact of AI in 

dermatology and recently released an official position statement on the topic.3 In this 

statement, augmented intelligence (AuI) is proposed as an alternative term that highlights 

the complementary and assistive role of AI in human decision making.3 This terminology 

affirms the central role of clinicians in the physician-patient relationship and highlights 

machine-learning as an assistive tool to enhance patient care. Deep learning is a subset 

of AI that applies artificial neural networks to make predictions. Deep learning’s potential 

to enhance the practice of dermatology has been widely discussed3–6 with applications 

ranging from image classification to discovering novel risk factors for non-melanoma skin 

cancers.7,8 At the same time, a recent JAAD systematic review found that dermatologists 

are underrepresented in publications on AI in dermatology, authoring only 41% of published 

papers on the subject.9 Here we highlight the emerging clinical applications of deep learning 

in dermatology and discuss future opportunities and challenges.

BRIEF REVIEW

Most recent advances of AI in dermatology have leveraged a type of algorithm known 

as a neural network (NN), and more specifically a variety known as a deep neural 

network (DNN)10–13. Neural networks are small computer programs that take input data 

and process it to output predictions. Examples include diagnosing a skin disease from a 

clinical photograph or highlighting tumor regions in a pathology slide. NNs are trained 

for a particular task using examples with known outcomes. NNs then make predictions on 

these examples, and these predictions are evaluated for performance. Through the process of 

learning, internal parameters called weights are updated based on the performance, and new 

predictions are generated. This cycle is iterated until the network’s predictive capability is 

deemed acceptable at which point it can be considered for more general use.

An important improvement to the traditional training of DNNs is transfer learning. In 

transfer learning, instead of starting from scratch, one begins with a network that is known 

to perform well on a similar problem. Transfer learning dramatically reduces the amount 

of training data required, which is particularly important in medicine, where examples with 

known outcomes can be challenging to acquire. Unsurprisingly, many of the published 

dermatology deep learning studies to date, including some of those discussed in this review, 

used transfer learning to train their DNNs.
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Part I of this series offers a more detailed overview of both neural networks and transfer 

learning. Table 1 provides a summary of relevant literature on applications of deep learning 

in dermatology. Table 1 includes papers that are not discussed in detail in the body of this 

manuscript.

APPLICATIONS

Classification and Differentiation

The most frequently used form of deep neural network in image analysis is a variant known 

as a convolutional neural network (CNN). In dermatology, deep CNNs have primarily 

been employed to classify images of pigmented and non-pigmented skin lesions. For 

example, Esteva et al.14 developed a CNN model to identify epidermal and melanocytic 

lesions, then compared its performance to 21 board-certified dermatologists on two specific 

tasks: distinguishing squamous cell carcinomas (SCC) from benign seborrheic keratoses 

(SK) and malignant melanomas from benign nevi. On a biopsy-proven test set of 135 

epidermal, 130 melanocytic non-dermoscopy images and 111 melanocytic dermoscopy 

images, dermatologists were asked whether to biopsy, treat the lesion or reassure the patient 

without biopsy. In parallel, the CNN was tasked with classifying the same lesions. The 

network outperformed the average performance of the dermatologists in each case. The 

authors conclude by graphical inspection that the CNN’s performance was similar to that 

of the board-certified dermatologists.14 However, we note that no formal statistical test was 

applied..

Haenssle et al.15 similarly sought to compare the performance of a CNN trained to recognize 

melanoma in dermoscopic images to 58 international dermatologists with varying levels 

of experience in dermoscopy (29% beginner, 19% skilled, and 52% expert by self-report). 

The dermatologists were asked to classify lesions in two experiments termed level-I and 

level-II. In level-I, dermatologists classified lesions based on dermoscopy only. After a 

4-week washout period, level-II was conducted in which dermatologists were provided 

dermoscopy, clinical images and additional clinical information. The CNN was trained on 

images only. Performance was assessed by Receiver Operator Characteristic (ROC) Area 

Under Curve (AUC). For the level-I task, the CNN’s performance (0.86) exceeded that 

of the dermatologists (expert: 0.82, skilled: 0.77, beginner: 0.75). For the level-II tasks, 

the dermatologists’ accuracy significantly improved with additional clinical information; 

however, their AUC (expert: 0.84, skilled: 0.84, beginner: 0.79) did not surpass the CNN 

(0.86).15 This study highlights the importance of including a large group of dermatologists 

with varying levels of experience, as well as using open source datasets and lesions from 

different anatomic sites and of different histologic types during CNN training. They also 

demonstrate the importance of integrating clinical information and clinical experience when 

comparing human performance to algorithmic performance.

While the above studies are highlighted for their CNN performance in comparison to human 

dermatologists, there are numerous studies that address lesion identification.16–19 Most of 

these studies are focused on improved algorithmic performance, but others demonstrate 

noteworthy results. For example, Han et al demonstrated that CNNs trained on images 

from Asian patients performed poorly on Caucasian patients and vice-versa, highlighting 
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the importance of training CNNs with skin lesions from a wide range of age groups and 

ethnicities.20

Dermatopathology

Deep learning in dermatopathology is centered around whole slides that are digitized into 

images by scanners. Andres et al. developed a diagnostic support tool to identify mitotic 

cells within detected tumor regions for whole slide images (WSI). The authors report a 

diagnostic accuracy of 83% for their model trained on 59 WSIs.21 This tool could augment 

a dermatopathologist’s practice by identifying areas of the slide with the highest density 

of mitotic figures, and could also potentially reduce the need for the immunohistochemical 

stains for mitosis. Olsen et al similarly trained a CNN using 450 WSI to classify basal 

cell carcinomas, dermal nevi, and seborrheic keratoses. Their Visual Geometry Group(VGG) 

network achieved an AUC of 0.99 for basal cell carcinomas, 0.97 for dermal nevi, and 0.99 

for seborrheic keratoses.22

Hart et al. developed a CNN to differentiate between Spitz and conventional melanocytic 

lesions on histopathology. They trained their model on 100 curated whole slide images 

and first evaluated their model on curated image sections. Their model demonstrated 

99% accuracy in this experiment. They then conducted a second experiment evaluating 

the model’s performance on noncurated image patches of the entire slide. In contrast to 

the curated experiment, the model achieved a significantly lower accuracy of 52.3% on 

the non-curated patches.23 Hekler et al built a similar CNN trained on 695 whole slide 

images to classify images as melanoma or benign nevi. They compared the performance of 

their CNN to dermatopathologists. Performance was evaluated on randomly cropped 10x 

magnification sections. The CNN achieved a melanoma sensitivity/specificity/accuracy of 

76%/60%/68% respectively, while the 11 dermatopathologists achieved a mean sensitivity/

specificity/accuracy of 51.8%/66.5%/59.2% respectively. However, these results should be 

interpreted with caution. In a normal clinical setting, pathologists have the ability to evaluate 

the whole slide and are not restricted to randomly cropped segments.24

FUTURE DIRECTIONS

To date, deep learning applications have been limited by the lack of large, labeled 

dermatologic image datasets. Such databases have yet to be created due to patient privacy 

concerns and high costs of obtaining expert-labeled images. In a recent JAAD article, Park. 

et. al point to the promise of the AAD’s DataDerm clinical registry as a potential resource 

for de-identified, clinically robust data for dermatologic images.25 This type of aggregate 

database would enable the creation of more powerful and accurate CNNs for dermatologic 

applications.

Future efforts should ensure training datasets include images representative of diverse 

populations in terms of race, skin phototype, age, and anatomic body site. To the same 

end, data augmentation techniques such as rotating and translating images from left to 

right and vice versa can improve CNN performance in scenarios when additional data 

cannot be obtained. For example, the ISIC database under-represents patients of color.26 

However, data augmentation techniques could be applied to artificially increase sample sizes 
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of patients of color and improve diagnostic accuracy for patients from underrepresented 

patient populations in existing datasets.

Investigations into the applications of deep learning to identify novel associations and 

predictive factors for skin diseases are warranted. A study by Roffman et al. developed 

a novel approach of using electronic health record data rather than images to predict non-

melanoma skin cancer risk. The study identified 13 health parameters that were predictive 

of NMSC including body mass index, diabetic status, emphysema, and exercise habits. The 

model achieved a sensitivity of 86.2% and a specificity of 62.7%, despite not knowing 

UVR exposure or family history.8 However, it is important to note that this study was 

not externally validated; and therefore, it is unclear whether these results are broadly 

generalizable.

Decision support systems employing deep learning could ensure diagnostic consistency, 

efficiency, and accuracy, thereby enhancing the quality and safety of patient care. Innovative 

telemedicine and teledermatology care delivery models that incorporate AI supported 

diagnostic systems could alleviate the global shortage of access to expert dermatologic 

care, particularly in rural and underserved communities44–46. This can facilitate the rapid 

and efficient provision of AI-assisted diagnoses and differential diagnoses with their 

associated probabilities directly to primary care clinicians at the point of care. Diagnostic 

decision support could also facilitate appropriate care triage and referral. In fact, numerous 

smartphone apps have recently been developed to detect high risk skin lesions in digital 

images. However, a Cochrane systematic review noted wide variability and inconsistencies 

in the accuracy of these apps, with sensitivities ranging from 7–73% and specificities 

ranging from 37–94%.27Additionally, workflow efficiencies could be gained by relieving 

dermatologists and dermatopathologists from time consuming or repetitive tasks such as 

detailed clinical assessments of multiple atypical nevi with dermoscopy in patients with 

dysplastic nevus syndrome and performing dermal mitotic counts in pathology respectively, 

for example. Automation of these tasks could enable dermatologists to more efficiently 

integrate and apply clinical data towards higher-order medical decision making.

To summarize, the potential benefits of deep learning tools include: 1) higher diagnostic 

consistency and accuracy, 2) earlier diagnosis and treatment, 3) improved efficiency and 

work flow, and 4) improved access to dermtatologic care.

LIMITATIONS

Dermatologists should view deep learning as a set of tools to augment clinicians’ human 

capabilities rather than replace them. Physician and patient relationships grounded in trust 

and empathy are the foundation of medical practice.28,29 Thus, the history taking, physical 

examination, consultation, and emotional reassurance dermatologists provide their patients 

are not threatened by advances in deep learning. Rather, ideally, deep learning tools will 

be developed to liberate dermatologists from repetitive and manual tasks so that they can 

provide more patient-centered and humanistic care.3
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One of the most substantial limitations of deep learning is that the inner workings of the 

algorithm are essentially an unknown process or “black-box.” Although the inputs and 

outputs of the algorithm are observable, the mechanisms through which the algorithm 

forms its predictions are invisible to the user. This raises important concerns because 

clinicians strive to have justifications for their medical decision making. For example, 

information gained from the physical exam description of a lesion, its distribution, clinical 

course, and histopathological features provide a reasonably clear rationale in support of 

the clinical diagnosis. However, it currently is impossible for a dermatologist to extract 

a similar rationale for a suggested diagnosis from a neural network. Some argue that an 

accurate yet opaque prediction is preferable to an inaccurate transparent prediction. There 

are multiple examples of scenarios in dermatologic practice whereby medications used 

to treat diseases do not have a clear or defined underlying mechanism of action such as 

naltrexone for the management of Hailey-Hailey or hydroxychloroquine for management of 

photodermatoses.30

Another important limitation of deep learning is its susceptibility to selection bias. For 

example, the neural network developed by Esteva et al. “learned” to identify metric rulers as 

predictors of malignancy.14 Certainly, rulers are not inherent predictors of malignancy, but 

rather the placement of a ruler in a clinical image reflects a clinician’s increased suspicion of 

a malignancy. Similarly, Winker et. al noted that surgical skin markings may have influenced 

CNNs to incorrectly classify lesions as melanocytic. Surgical skin markings increased their 

CNN’s false-positive rate by approximately 40%.31

Most studies to date have been retrospective and have utilized in silico, meaning computer 

based, validation. Future studies, however, should be prospectively validated in real 

world, clinical settings. This is of paramount importance because applying algorithms on 

curated, existing datasets is significantly different from applying algorithms on uncontrolled, 

noncurated data in a high-stakes clinical environment. Similarly, well-designed prospective 

clinical trials are able to minimize the effects of selection bias. Wang et al. conducted one 

of few existing prospective, randomized-controlled trials to prove the efficacy of a CNN for 

detecting polyps during colonoscopy.32 Dermatologists should also subject CNNs to similar 

rigorous evaluation before incorporating CNNs into clinical practice.

Similarly, clinical adoption of CNNs potentially poses risks to patients in terms of 

inappropriate diagnoses, privacy breaches of identifiable data, and other harms.33 Therefore, 

clinical adoption of CNNs will require regulatory oversight that includes extensive 

postmarket surveillance mechanisms to ensure the effectiveness and safety of CNN 

applications. The law and policy governing AI systems in health care has yet to be fully 

defined. As such, it is essential that dermatologists remain involved in policy-making efforts 

to ensure AI systems are safe and ethical for patients.

When evaluating a deep learning application, dermatologists should consider whether the 

clinical question is within the scope of the application. Since deep learning applications are 

statistical in nature, their performance is generally reduced when applied to tasks outside of 

their intended scope, environment, or patient population. For example, even though the ISIC 

collaboration found deep learning classifiers to outperform human experts for the diagnosis 
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of pigmented skin lesions, machine performance dropped dramatically when evaluated on 

images from different institutions or sources.34 Deep learning performance is measured by 

sensitivity and specificity; however, clinicians must consider other factors including the 

training and testing patient populations as well as data quality and quantity.

Deep learning offers the promise of improving diagnosis for rare dermatologic conditions. 

Data augmentation can be utilized to artificially increase sample sizes and train CNNs 

for these applications. Clinicians must keep in mind the basic principles of conditional 

probability and Bayes’ theorem. That is, algorithms for conditions with low prevalence 

are subject to high rates of false positives. Even if algorithms are developed to be highly 

sensitive and specific, they may not have high positive and negative predictive values due to 

low prevalence. For example, consider a patient presenting with epidermolysis bullosa (EB), 

a rare condition with a prevalence of 20 per 1 million live births.35 Even if a CNN were 

trained to be 99% sensitive and 99% specific for the detection of EB, the positive predictive 

value would only be 0.2%.

CONCLUSIONS

Deep learning offers numerous innovations, solutions and support to enhance the 

clinical practice of dermatology. Deep learning applications have already demonstrated 

dermatologist-level accuracy in the classification of numerous skin lesions. These algorithms 

should be further refined and rigorously validated in prospective randomized controlled 

trials to improve patient care and safety, enhance the productivity of dermatologists and 

dermatopathologists, and improve access to high quality dermatologic care.
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Table 1:

Recent Studies in Dermatology utilizing Artificial Intelligence

Study Objectives and key findings Algorithm Sample Size

Skin Cancer Classifiction

Esteva et al.14(2017) Classifying images of 1.) keratinocyte carcinomas vs. benign 
seborrheic keratosis and 2.) malignant melanomas vs. benign nevi. 
ROC AUC of 0.96 for carcinomas and 0.96 for melanomas.

GoogLeNet 
Inception v3 model

129,450 images

Han et al.20(2018) Classifying 12 different skin lesions based on clinical images. ROC 
AUCs for BCC, SCC, melanoma were 0.96, 0.83, 0.96, respectively

ResNet 19,398 images

Haenssle et al.15(2018) Classifying dermatoscopic images of melanoma vs benign nevi. 
Compared performance to 58 dermatologists. Dermatologists had 
improved sensitivity and specificity with additional clinical info but 
still did not perform as well as CNN.

GoogLeNet 
Inception v3 model

not provided

Marchetti et al.17(2018) Reported the results of 25 deep learning algorithms trained to classify 
melanomas vs. benign nevi. Top 5 algorithms were combined in a 
fusion algorithm which achieved ROC AUC of 0.86

Variable 900 images

Brinker el al.18(2019) Trained a melanoma classification model on dermatoscopic images 
and then evaluated it on clinical images. For equal levels of sensitivity 
(89.4%), the model achieved a higher specificity (68.2%) than the 
mean of 157 dermatologists (64.4%)

ResNet 20,735 images

Yap et al.19(2018) Combined dermatoscopic images with macroscopic images and 
patient metadata to train a CNN for skin lesion classification. They 
report an ROC AUC of 0.866 for melanoma detection.

ResNet 2,917 cases

Aggarwal et al.36(2019) Deep learning algorithms were evaluated before and after data 
augmentation. For the five classes of lesions tested, data augmentation 
increased AUC by 0.132 on average

TensorFlow 
Inception version-3

938 images

Tschandl et al.37(2019) Classification of nonpigmented skin cancer, compared performance to 
95 human raters. ROC AUC of 0.742. CNN had higher percentage of 
correct diagnosis (37.6%) compared to average human rater (33.5%) 
but not compared to experts (37.3%).

TensorFlow 
Inception version-3

7895 dermoscopic 
images, 5829 close 
up images

Han et al.38(2019) Using unprocessed photos, localize and diagnose keratinocytic 
skin cancers without manual preselection of suspicious lesions by 
dermatologists. ROC AUC of 0.910. F1 score of 0.831. Youden index 
of 0.675

Region-based 
Convolutional 
Neural Network

182,348 images

Dermatopathology

Hekler et al.39(2019) A CNN was trained with images of melanomas and nevi. The CNN 
had a 19% discordance with the histopathologist. This is comparable 
to the discordance between human pathologists (25–26%)

ResNet 595 whole slide 
images

Olsen et al.22(2018) CNN was trained on whole slide images to identify basal cell 
carcinomas, dermal nevi, and seborrheic keratoses. The ROC AUC 
were 0.99, 0.97, 0.99 respectively

VGG 450 whole slide 
images

Hart et al.23(2019) Developed a CNN trained on whole slide images to distinguish 
between spitz and conventional melanocytic lesions. They report an 
accuracy of 92% for a single call from a whole slide image.

TensorFlow 
Inception version-3

100 whole slide 
images

Jiang et al.40(2019) Used smartphone cameras to photograph microscope ocular images 
instead of using whole slide images. Developed CNN to recognize 
BCC. ROC AUC of 0.95

GoogLeNet 
Inception v3 model

8,046 microscopic 
ocular images

Hekler et al.24(2019) Developed a CNN to classify histopathologic images as melanoma 
or nevi. CNN achieved a mean sensitivity/specificity/accuracy of 
76%/60%/68%. The 11 pathologists achieved 52%/67%/59%

ResNet 695 whole slide 
images

Predicting Novel Risk Factors/Epidemiology

Roffman et al.8(2018) Trained their model with a data set of personal health information. 
The study identified 13 parameters that were predictive of NMSC. 
The model achieved a sensitivity of 86.2% and a specificity of 62.7%

Did not specify 
further than neural 
network

2,056 NMSC cases 
and 460,574 
control cases

Lott et al.41(2018) Used natural language processing to analyze EMR pathology reports 
of patients who underwent skin biopsy to calculate population based 

NegEx 80,368 skin 
biopsies
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Study Objectives and key findings Algorithm Sample Size

frequencies of histologically confirmed melanocytic lesions. PPV 
82.4%, sensitivity 81.7%, F1 measure 0.82

Identifying Onychomycosis

Han et al.7(2018) Classified nail images as onychomycosis or not. ROC AUC of 0.98 ensemble model 
combining 
ResNet-152 and 
VGG-19 models

49,567 images

Quantifying Alopecia Areata

Bernardis et al.42(2018) Trained a texture classification model to calculate SALT score. Their 
model was able to calculate SALT scores in seconds, whereas the 
average time reported by clinicians is 7 minutes.

Texture 
classification 
model

250 images

Automating Reflectance Confocal Microscopy

Bozkurt et al.43(2017) Developed a segmentation algorithm to distinguish the stratum 
corneum layer and accurately calculate its thickness

Complex Wavelet 
Transform

15 RCM stacks w/ 
30 images in each 
stack

Mitosis Detection

Andres et al.21(2017) Identified mitotic cells and detect relevant regions in whole slide 
images. The study reports an accuracy of 83% and a dice coefficient 
of 0.72.

Random Forest 
Classifier

59 whole slide 
images
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Table 2.

GLOSSARY

Term Definition

Machine Learning The subset of artificial intelligence in which algorithms learn without being explicitly programmed

Deep Learning A class of machine learning which applies artificial neural networks to train its algorithms by processing multilayered 
networks of data

Artificial Neural 
Networks

Systems modeled after the human brain’s neurons, which adaptively learn and optimize performance.

Convolutional Neural 
Networks

A type of neural network, primarily used for images, which decomposes a dataset into smaller, overlapping tiles. 
These smaller, overlapping tiles create a compositional hierarchy of structures within the data.

Machine Learning Vocabulary

Supervised Learning Learns from known outcome, similar to studying from a set of Kodachrome images with known diagnoses

Unsupervised 
Learning

Learns without a known outcome, utilizing groupings of properties or features

Classification Predicts content of image as a whole – is this a photo of melanoma or seborrheic keratosis?

Segmentation Predicts regional contents of image – which parts of this biopsy are tumor regions?

Object Detection Finds object of interest – where are the pigmented lesions on a patient’s back

Predictors Input variables, also known as independent variables or covariates. Pixels are the predictors when using a digital 
image.

Response The predicted outcome, such as classification of a lesion’s diagnosis from an input image

Transfer Learning Training approach that starts with an existing pre-trained network rather than from scratch

Data Augmentation Artificially creating valid new data from existing data, for example rotating a picture of a melanoma

Overfitting Occurs when a model memorizes the idiosyncratic variations of a training set and does not learn generally useful data 
patterns. For example, including too many variables/features may improve internal validity, but may lead to biases in 
external validation.

Neural Network Training Terms

Training Data A subset of data that is used to teach and improve a network’s performance.

Test Data A subset of data used solely for evaluating a network’s performance. The test data is independent from the training 
data.

Ground Truth The most accurate reference based on the most up-to-date medical understanding. This usually refers to the 
annotation provided by physicians in supervised learning. In circumstances where disagreements exist between 
experts, the ground truth could be obtained from an average or a majority vote of professional opinions.

Back Propagation Backpropagation of errors helps to update weights in the neural network to optimize accurate predications for current 
and future inputs. It is not a factor requiring decision/knowledge in practical experiments. While backpropagation is 
important and discussed in many textbooks, in practice it is completely abstracted by software.

Epoch One “pass” through the entire training set. A training iteration during which the network examines all possible data 
points. The performance will often be plotted as a function of epoch.

Batch Size The entire training set can be divided into smaller batches with a batch size of choosing, where the batch size is the 
number of training examples used in each backpropagation calculation (weight update). The batch size shapes overall 
training speed and performance, and is influenced by the size of available graphic processing units (GPUs). A GPU is 
specialized computer hardware helpful for deep learning.

Neural Network Components

Weights Internal numbers that “instruct” a network on how to make predictions. Weights are updated during training until they 
reach or closely approach the maximum potential performance.

Node A basic computational unit of a neural network. The nodes combine inputs, weights, and an activation function to 
produce an output. These nodes can be viewed as neuron analogues, hence the name of “neural network.”

Activation Function A non-linear function that’s part of a node or potentially a layer of nodes. These functions are critical for allowing 
neural networks to outperform the simpler linear models. Softmax and ReLu are commonly used activation functions.
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Term Definition

Loss This value quantifies a network’s performance on a given set of data. Higher loss indicates worse performance, so 
the goal is to minimize the loss through additional training. Common loss functions include binary cross-entropy and 
categorical cross-entropy (commonly mildly misattributed as Softmax loss).

Optimization Method Numerical routine used to update the weights so as to minimize the loss, thus improve performance. Common 
optimization methods include SGD, RMSProp, and Adam.

Learning Rate The learning rate is an important parameter that influences how much weights are adjusted during training. Best 
learning rates are likely found through experimentation.
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