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Abstract

CD73 (ecto-5′-nucleotidase) is a novel immunoinhibitory protein that plays a key role for tumor 

growth and metastasis. Its main function is to convert extracellular ATP to immunosuppressive 

adenosine in concert with CD39 in normal tissues to limit excessive immune response. However, 

tumors take advantage of the CD73-mediated adenosinergic mechanism to protect them from 

immune attack. In particular, inducible expression of CD73 along with other adenosinergic 

molecules on both cancer cells and host cells sustains immunosuppressive tumor 

microenvironment by affecting multiple aspects of the immune response. Owing to its 

multifaceted capacity to tumor promotion as an emerging immune checkpoint, CD73 is an ideal 

therapeutic target for cancer treatment especially in combination with conventional therapy and/or 

other immune checkpoint inhibitors. In this review, we will discuss the roles of CD73 on tumor 

and immune cells and will highlight the therapeutic value of CD73 for combination therapy.
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Introduction

CD73, also known as ecto-5′-nucleotidase (ecto-5′-NT, EC 3.1.3.5) is a 

glycosylphosphatidyl inositol (GPI)-anchored cell surface protein that is encoded by NT5E 
gene. CD73 is widely expressed on different tissues [1,2] and cell types including, but not 

limited to the subsets of T cells and B cells [1,3–5], endothelial cells [4,6] and epithelial 

cells [7].

The balance between ATP and adenosine is crucial to prevent uncontrolled tissue damage 

due to excessive inflammatory responses. CD73, as a rate-limiting enzyme for adenosine 

production, plays a critical role to maintain tissue homeostasis by converting/switching ATP-

triggered immune activation to adenosine-mediated immunosuppression, although the 

relative contribution of non-canonical adenosinergic pathways led by alkalike phosphatases 

and/or NAD+ ectohydrolase CD38 may need consideration. The extracellular ATP level is 

elevated in stressful situations such as inflammation, malignancy, and ischemia [8,9]. While 

ATP mediates inflammatory responses through their P2 purinergic receptors, i.e. P2XRs and 

P2YRs, it is rapidly hydrolyzed by the enzymatic cascade via CD39 (NTPDases) and CD73 

(ecto-5’-nucleotidase) to generate adenosine that acts as an anti-inflammatory mediator to 

downregulate the immune cell function through its four receptors (A1, A2A, A2B, and A3). 

As such, CD73, by degrading extracellular AMP to adenosine, is a key player for the 

establishment of an immunosuppressive tumor microenvironment (TME). In this review, the 

roles of CD73 on tumor and immune cells, as well as its therapeutic potential will be 

discussed.

CD73 on tumor cells

CD73 expression level is higher in the majority of human solid tumors. Its expression and 

activity are closely associated with tumor invasiveness and metastasis [10]. We [11] and 

others [12] have demonstrated that extracellular adenosine generated by CD73 on tumor 

cells is sufficient to mediate immune evasion, facilitating tumor growth and metastasis. The 

importance of CD73 on tumor cells versus host cells in tumorigenesis has been further 

documented using multiple CD73-deficient tumor models [11,13–16]. Besides the immune 

regulation of CD73 by tumor cells [11,12], CD73 affects multiple aspects of tumorigenesis 

such as proliferation, adhesion/migration, angiogenesis and metastasis. It promotes 

proliferation of tumor cells by regulating cell cycle, apoptosis, and signaling pathways such 

as EGFR, β-catenin/cyclin D1, VEGF, and AKT/ERK[17–21]. Independent of its enzymatic 

function, CD73 can also promote cell-to-cell adhesion, migration, invasion of cancer cells as 

well as stemness [17,20,22–24]. Interestingly, CD73 on both tumor cells and host cells is 

required for tumor angiogenesis [25,26]. It has been also demonstrated the importance of 

CD73-A2AR signaling for tumor-associated lymphangiogenesis [27,28], further supporting 

the potential use of adenosine blocking agents to inhibit pathological lymphangiogenesis in 
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cancers and prevent tumor dissemination. In addition, two recent studies reported that cancer 

cell-intrinsic CD73 expedited metastasis by driving epithelial-to-mesenchymal transition 

(EMT) through PI3K/AKT signaling pathway [29] and RICS/Rho GTPase signaling 

pathway [30], respectively. In support, CD73 expression is often associated with worse 

prognosis [18,21,31–33] and poor response to therapeutic agents [34,35]. However, CD73 is 

not always upregulated in cancers and its expression has been reported to be correlated with 

a positive prognosis [36,37]. In fact, aberrantly glycosylated CD73 [38], as well as a human 

specific CD73 isoform (CD73s) [39] have been identified in human hepatocellular 

carcinoma (HCC), leading to the functional suppression of tumor CD73. CD73 was also 

downregulated in advance stage prostate [40], laryngeal [41] and high grade colon 

carcinomas [42]. Lower expression levels of CD73 were observed in poorly-differentiated 

and advanced stage of endometrial carcinomas compared to normal and well-differentiated, 

early state tumors, and higher CD73 expression was associated with better overall survival 

[43]. CD73-generated adenosine was further shown to protect epithelial integrity via actin 

polymerization in early-stage endometrial tumors [43]. Thus, the role of CD73 in cancers 

seems to be complex possibly due to the non-tumor promoting effects mediated by CD73.

In addition, evidence supports the existence of a soluble form of CD73 (sCD73) [44] and its 

increased levels in the plasma of cancer patients compared to healthy individuals (Q Huang 

et al., abstract 1538, 106th American Association for Cancer Research, Philadelphia, April 

2015). Although the role of sCD73 is less explored, high levels of sCD73 enzyme activity in 

serum, before nivolumab (anti-PD-1 Ab) treatment, was found to be associated with poor 

survival of metastatic melanoma patients [45], indicating sCD73 as a potential prognostic 

marker for cancer immunotherapy.

Interestingly, CD73 together with CD39 were found on exosomes isolated from 

mesothelioma patients [46] and CD73+ exosome suppressed immune cell function [46,47]. 

Furthermore, prostate cancer cell–derived exosome was able to induce CD73 expression on 

dendritic cells (DC), thereby inhibiting T cell function [48]. Thus, CD73 by tumor cells or 

their derived exosomes exerts its immunosuppressive function in an adenosine-dependent 

manner.

CD73 on immune cells

CD73 along with other adenosinergic molecules play critical roles in the establishment of an 

immunosuppressive TME by affecting multiple types of immune cells [11,13–16] (see 

Figure1). Thereafter we will summarize the roles of CD73 on the following major immune 

cell populations.

Regulatory T (Treg) cell:

In mice, CD73 is expressed on different subsets of T lymphocytes, but it is particularly 

abundant in Foxp3+ Tregs [49,50]. CD73 is crucial for Treg-mediated inhibition of effector 

T cell function as shown by impaired immunosuppressive capability of Treg cells in CD73–

deficient tumor-bearing mice [14,15]. These effects are mediated mainly through A2AR on 

T effector cells. A2AR activation in naive CD4+ T cells promotes their differentiation 

towards Foxp3+ and LAG-3+ Treg cells and induce a long-term anergy [51,52]. In human, 
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the CD73 expression level in Tregs is low, but increased in certain cancer patients [53,54]. 

especially after high-dose IL-2 therapy in melanoma patients [55]. Similar to mouse cell 

system, CD73 inhibition decreases Treg-mediated immunosuppressive function [56].

Effector T cell:

High level of CD73 is associated with the exhausted or anergic T cell phenotype [57,58]. 

Th17 cells express CD73 and CD39, and suppress effector T cell function dependent on the 

enzymatic activity of CD39/CD73 [59]. Furthermore, genetic ablation of CD73 or reducing 

CD73 by reprogramming Th17 cells improves antitumor effects by increasing their effector 

function [60]. As expected, A2AR agonist treatment inhibits T cell activation and 

proliferation, and induces T cell anergy [61–63]. Despite the role of CD73 by effector CD8+ 

T cells remains elusive, a recent study supported a prognostic value of CD8+ T cells 

expressing CD73 particularly after immunotherapy [64].

Natural killer (NK) cell:

The CD73 expression level in NK cells is low, but increased under specific conditions. For 

example, CD73 was induced on NK when co-cultured with human mesenchymal stem cells 

[65]. In gastrointestinal stromal tumors, tumor-infiltrating NK cells express higher levels of 

CD73 than those in PBMCs [66]. CD73 was also found on NK cells isolated from mouse 

melanoma [67], suggesting that tumor-infiltrating NK cells might acquire CD73 expression. 

CD73-produced adenosine suppresses NK cell functions primarily through A2AR [68,69]. 

A2AR activation hinders NK cell maturation, activation and cytotoxic function [67,68,70–

72]. In contrast, loss of A2AR signaling in NK cells ameliorates CD73+ tumor metastasis 

and enhances anti-tumor immune response [66,73]. A recent study demonstrated that NK 

cells underwent phenotypic and functional switch to immunosuppressive population through 

acquiring CD73 in the TME [74], suggesting the importance of targeting CD73 for NK-

based immunotherapy.

Myeloid derived suppressor cell (MDSC):

CD39 and CD73 levels on MDSC are higher in cancer patients [75–77]. CD73-mediated 

adenosine promotes MDSC function mainly through A2BR. A2BR antagonist inhibited the 

accumulation of tumor-infiltrating MDSCs in TME and this led to the delayed tumor growth 

in a mouse model [78]. In contrast, mice treated with a A2BR agonist accelerated tumor 

growth through enhanced MDSC infiltration to tumor and angiogenesis [79]. Tumor-derived 

TGF-β induced CD39 and CD73 on MDSCs through mTOR/HIF-1α pathway and 

CD39+CD73+ MDSCs represented a distinct inflammatory subpopulation associated with 

immunosuppressive signatures and chemotherapeutic response in the NSCLC patients [76]. 

On the other hand, metformin was found to reduce CD39 and CD73 via activation of AMP-

activated protein kinase α, thereby blocking MDSC activity in patients with ovarian cancer 

[77]. These data suggest the targeting CD39/CD73 improves antitumor immunity in part 

through inhibition of MDSCs.
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Macrophages:

In mice, CD39 and CD73 are expressed on resident macrophages [80,81], and their 

expression level changes depending on the activation state of the macrophage [82]. 

Modulation of CD73 activity determines macrophage function by switching M1 and M2 

phenotype [13,82,83]. Notably, tumor-associated macrophages (TAMs) express CD39/CD73 

that suppress CD4+ T cell proliferation through adenosine generation [84]. Furthermore, 

fasting-mediated tumor inhibition was related to reduced M2 polarization of TAMs with less 

CD73 and lower adenosine level in the TME [85]. Together, these data support the idea that 

activity of CD73 together with CD39 is required for fine-tuning of TAM function during 

tumor progression. However, more studies are needed for further clarification due to the 

conflicting report [86].

B cell:

The CD73 expression level is considered as an indication of B cell maturity [1,5]. In adult 

human, majority of B cells express CD73 [1], but neonatal B cells are deficient in CD73, and 

this deficiency seems to be responsible for impaired B cell function in early life [87]. 

Moreover, CD73 is required for class switch recombination in B cells [88,89]. In a murine 

melanoma model, CD73 activity in B cells was reported to play an important role in tumor 

growth [90]. Treatment with adenosine 5’-(α,β-methylene) diphosphate (APCP), a CD73 

specific inhibitor, induced IL17A and facilitated the presence of B cells and the production 

of IgG2b within the melanoma [90].

CD73 as a novel therapeutic target for combination therapy

CD73 has recently emerged as a promising target for novel immunotherapy due to its critical 

role for anti-tumor immunity. In fact, inhibition of CD73 using either monoclonal antibodies 

(mAb) or small molecule inhibitor such as APCP have demonstrated antitumor effects in 

preclinical tumor mouse models [10,91]. Furthermore, a number of anti-CD73 mAbs 

(MEDI9447, BMS986179, SRF373/NZV930, CPI-006/CPX-006, IPH5301, TJ004309) and 

selective small molecule inhibitors (LY3475070, AB680, CB-708) are being tested in early 

phase clinical trials [92–94]. Notably, CD73 expression and activity can be increased upon 

different therapeutics. We will thus review the evidence below to support feasibility of 

targeting CD73 in combination with chemotherapy, radiation therapy, and other 

immunotherapies (see Figure 2).

Inhibition of the adenosinergic pathway:

Stimulated by the seminal work of Sitkovsky group showing the promise of A2AR 

inhibition for cancer immunotherapy [95], we [10] and others [91] have further 

demonstrated the therapeutic potential of targeting CD73-A2AR axis in multiple types of 

cancer. Inhibition of both CD73 and A2AR showed synergy in anti-tumor response in 

several mouse tumor models [67]. Importantly, a promising clinical response was reported in 

renal cell cancer (RCC) patients receiving A2AR antagonist (ciforadenant) alone or in 

combination with an anti-PD-L1 antibody (atezolizumab) [96]. Moreover, ciforadenant-

mediated antitumor activity was associated with high levels of adenosine gene signature 

expression before treatment, suggesting that adenosine gene signature might serve as a 
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predictive biomarker for adenosine blockade [67]. Although blockade of CD73 and A2AR is 

likely the most efficient strategy to neutralize tumor-driving adenosine effects, co-inhibition 

of CD73 and other adenosinergic members (e.g. A2BR, and CD39) is also a viable option, 

given their distinct expression pattern and nonredundant functionality. For example, 

blockade of CD73 and CD39 enzymatic activities resulted in greater inhibitory effect on 

human MDSC-mediated suppressive function [77]. Moreover, the anti-CD39/CD73 mAb 

combination at suboptimal doses acted in synergy to promote the proliferation of T cells 

from healthy donors and cancer patients [94]. A recent study also showed a synergistic anti-

metastatic effect between anti-CD39 mAb and A2AR antagonists in mouse models of 

experimental and spontaneous metastases [97]. Different from other agents targeting the 

adenosinergic pathway, CD39 enzyme blockade-mediated anti-tumor effect was attributed to 

the critical role of an eATP-P2X7-ASC-NALP3-inflammasome-IL-18 pathway as 

mechanism of action [97,98]. On the other hand, it was reported that a non-canonical 

adenosinergic pathway led by CD38 might contribute to the immunosuppressive TME, 

especially serving as a mechanism of tumor cell escape from PD-1/PD-L1 blockade [99]. In 

addition, CD73 was upregulated via adenosine-A2BR circuit in cancer-associated fibroblasts 

(CAF), and inhibition of A2AR and A2BR together with CD73 blockade significantly 

enhanced antitumor immunity in murine CAF-rich tumors [100].

Immune checkpoint blockade (ICB):

In several murine tumor models, combination therapy of anti-CD73 with PD-L1 and/or anti-

CTLA-4 enhanced therapeutic activity compared to monotherapy [101–104], Likewise, co-

targeting A2AR and ICB showed therapeutic synergy [105]. Although ICB is effective in 

certain cancer patients, many patients do not respond (innate/primary resistance) or acquire 

resistance after initial response (acquired resistance). This might be due to the existence of 

alternative and/or therapy-induced immunosuppressive pathways in the TME. Supporting 

this notion, CD73 level was found to be upregulated in melanoma patients who received 

PD-1 immunotherapy [106]. Furthermore, comprehensive immune profiling indicated a 

unique CD73high macrophage population that persisted in glioblastoma patients after anti-

PD-1 therapy [107]. CD73 deficiency enhanced the efficacy of anti-PD-1 and anti-CTLA-4 

in a murine model of glioblastoma [107].

Adoptive cell therapy:

CD73 knockdown on tumor cells was sufficient to facilitate T cell effector function 

following tumor-specific T cell transfer, leading to tumor regression [11]. We further 

demonstrated that inhibition of CD73 activity by APCP or anti-CD73 mAb improved the 

efficacy of adoptive T cell therapy (ACT) using B16-SIY melanoma model and peritoneal 

ID8 tumor models [14]. CD73 upregulation was also observed in melanoma patients during 

ACT therapy [106]. Furthermore, CD73 was induced in relapsed melanomas in a mouse 

model of T-cell immunotherapy [106], providing the potential foundation for combining 

ACT therapy with CD73 blockade. Similarly, inhibition of A2AR pathway in T cells also 

increased the efficacy of ACT [95] and chimeric antigen receptor (CAR)-T cell therapy 

[108]. In addition, targeting CD73 activity with anti-CD73 antibody enhanced therapeutic 

efficacy of engineered CAR-NK cells against CD73+ tumors in human lung cancer xenograft 
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models [109]. Thus, CD73 blockade could inhibit tumor growth in vivo dependent of both 

adaptive and innate immunity of ACT.

Agonistic immunotherapy:

Similar to blocking immune inhibitory molecules, activating immune co-stimulatory 

molecules on T cells is an open area to explore. Using preclinical models, we recently 

demonstrated that CD73 expression by T cells conferred tumor resistance to agonistic 

immunotherapy targeting 4–1BB, an inducible costimulatory molecule in the TNFR 

superfamily, while anti-4–1BB therapy preferentially mediated CD73-negative effector T 

cell response for tumor inhibition [110]. In addition, the synergistic antitumor effect was 

achieved by combination of CD73 blockade with anti-GITR (another potent T cell 

costimulatory molecule) as well [110]. Based on this exciting result, we infer that 

immunotherapeutic agonists targeting TNFR costimulatory receptors such as 4–1BB, GITR, 

OX40, or CD40 in combination with CD73 and/or other adenosinergic signaling molecules 

may be attractive for clinical development. Indeed, combination of CD73/A2AR blockade 

and anti-OX40 is being exploited in early phase clinical trials [110].

Chemotherapy:

CD73 has been shown to contribute to multidrug–resistance [34,111]. For instance, CD73 

especially in TNBC patients was correlated with resistance to doxorubicin [35]. Doxorubicin 

treatment increased CD73 expression that led to the suppression of CD8+ T cells [35]. 

Increased frequency of CD47+CD73+PD-L1+ cell population in TNBC cells was also 

reported after treatment of other chemotherapeutic reagents such as carboplatin, 

gemcitabine, and paclitaxel [112]. By analyzing the sensitivity of NCI-60 cell lines to a 

panel of chemotherapeutic drugs, CD73 expression was found to be negatively associated 

with sensitivity to several chemotherapeutic reagents. And CD73 level was indeed elevated 

in platinum resistant ovarian cancer cells [113]. It was also reported that mesenchymal stem/

stromal cells-derived IL-6 promoted cisplatin resistance by upregulating CD73 in 

nasopharyngeal carcinoma [114]. CD73 upregulation after chemotherapy seemed to be an 

attempt to counterbalance excess ATP released from dying tumor cells after therapy 

[115,116]. Additionally, CD73-mediated adenosine signaling seems to downregulate ABC 

transporters and P-glycoprotein, a drug efflux transporter, thereby contributing to drug 

resistance [111,117,118].

Radiation therapy:

Beside direct cancer cell killing by radiation, radiation therapy can also affect immune 

response [119]. For example, radiation induced apoptosis of NK cells and T cells, and B 

cells [120], but recruited and activated DCs. This differential effect of radiation on immune 

regulation is likely dependent on the ratio of ATP to adenosine. Interestingly, enhanced 

CD73 enzymatic activity was observed in irradiated lung tissue, and involved in pulmonary 

fibrosis [121], which is a severe side effect of thoracic irradiation. In particular, treatment 

with anti-CD73 mAb significantly reduced radiation-induced lung fibrosis [121], suggesting 

that CD73 inhibition might be a promising mean in limiting lung toxicities associated with 

the treatment of thoracic malignancies. Radiation also increased CD73 expression on human 

breast cancer cells, and CD73 inhibition combined with radiotherapy showed better 
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antitumor response due to enhanced antitumor T cell response [122]. However, 

pharmacological inhibition or knocking out CD73 was found to rescue proliferative capacity 

of T24 human bladder cancer cells, thereby reducing their sensitivity to radiation [123].

Targeted therapy:

High levels of CD73 gene expression were found to link significantly with poor outcome in 

a randomized phase III clinical trial evaluating the activity of the anti-HER2/ErbB2 mAb 

trastuzumab, indicating the potential role of CD73 in conferring tumor resistance to targeted 

therapies [124]. Indeed, anti-CD73 mAb therapy augmented the efficacy of anti-ErbB2 mAb 

in immunocompetent mouse models of HER2/ErbB2-driven breast cancer. Furthermore, it is 

of note that clinical trials are ongoing with anti-CD73 mAb in combination with anti-EGFR 

therapy or A2AR inhibitors in non-small cell lung cancer (NCT03381274). Similarly, more 

advanced clinical stage disease was associated with increased CD73 expression despite 

CD73 expression was not an independent prognostic factor in melanoma [125]. Interestingly, 

activating MAPK mutations and growth factors drove CD73 expression [106], while BRAF 

and MEK inhibition potently reduced CD73 expression [125]. Inhibition of adenosine 

signaling with A2AR antagonist along with BRAF and MEK inhibition enhanced antitumor 

effects of BRAF-mutated melanoma in mice [125]. These studies together open new avenues 

for developing targeting CD73-mediated adenosine signaling in combination with targeted 

therapies and provide insights into how CD73 is regulated in cancer treatment.

Conclusion

CD73 is an ideal therapeutic target of cancer therapy for the following reasons; (i) CD73 

expression by cancer cells and host cells including, but limited to, a variety of immune cell 

populations, creates immunosuppressive adenosine-rich TME. Evolving data support the 

tumor-promoting role of cancer cell-intrinsic CD73. (ii) CD73 promotes tumor growth and 

metastasis primarily via its enzymatic activity. The role of CD73 independent of its 

enzymatic activity in tumorigenesis warrants intensive investigation, providing novel insight 

into the regulatory function of CD73 in cancer. (iii) As CD73 expression and activity seem 

to be modulated upon many therapies, co-targeting CD73 with other therapeutic reagents 

represents a rational strategy. CD73 inhibition in general is expected to boost immune 

response to keep the tumor cells in control. However, certain concerns on undesirable side 

effects remain due to ubiquitous expression of CD73 on multiple cell types in various 

tissues. Notably, there were patients that received BMS-986179, an anti-CD73 mAb that 

experienced cardiac events while on the clinical study; this led to a change in the inclusion 

criteria for recruitment of patients. Nevertheless, BMS-986179 in combination with 

nivolumab appears to have the same toxicity as nivolumab alone (LL Siu et al., abstract 

CT180, 109th American Association for Cancer Research, Chicago, April 2018). With 

several clinical trials currently evaluating inhibitors of the adenosine pathway in cancers, the 

pathophysiological role of adenosine with a focus on effects on antitumor immunity has 

been comprehensively reviewed [126]. We believe that designing anti-CD73 mAbs that 

incorporate alternative action mechanism such as Fc receptor engagement to maximize anti-

tumor effects and development of more potent and selective small molecule inhibitors with 

longer half-life would greatly enhance therapeutic efficacy. More attention should be paid 
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especially to important avenues of clinical studies in the future including evaluation of 

membrane and soluble CD73 as a potential prognostic or/and predictive biomarker, and 

clarification of the mechanisms of action for CD73 blockade and in combination therapy 

together with adverse effects.
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Highlights

• CD73 is a multifunctional ectoenzyme affecting both tumor cells and immune 

cells.

• CD73 has been hijacked by TME to promote tumor growth and metastasis.

• Targeting CD73 and other adenosinergic molecules orchestrates anti-tumor 

immunity.

• CD73 blockade achieves synergy in combination with conventional therapy 

and/or ICB.
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Figure 1. CD73-mediated immunosuppression in the TME
CD73 serve as a major immune suppressive mediator in TME mainly through generation of 

extracellular adenosine. Besides the effect of cancer cell-intrinsic CD73 on tumor cell 

proliferation, angiogenesis, invasion/migration and metastasis, CD73 expression by tumor 

cells and immune cells impairs anti-tumor immunity by suppressing the function of 

protective immune cells (e.g. effector T cells, NK cells, DC and B cells), while maintaining 

the function of regulatory immune cells (e.g. Treg, MDSC, TAM and CAF).
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Figure 2. Co-targeting CD73 with other therapies as an attractive therapeutic strategy for cancer 
treatment
Based on their distinct expression pattern and nonredundant functionality, CD73 along with 

other molecules of adenosinergic pathway (e.g.CD39, A2AR and A2BR) can be targeted 

together to achieve synergy in antitumor efficacy by modulating both tumor cells and 

immune cells (e.g. T cells) in many ways. In addition, CD73 expression and activity seem to 

be upregulated to confer tumor resistance to therapies. Thus, targeting CD73 with blocking 

antibodies or small molecule inhibitors in combination with other therapies such as immune 

checkpoint blockade, adoptive T cell therapy, agonistic immunotherapy, chemotherapy, and 

radiation therapy is a rational strategy to enhance therapeutic benefit in various cancers. The 

different combination therapies involving inhibition of CD73 and/or A2AR are already 

under evaluation in early phase clinical trials.
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