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Abstract

Optimal integration of molecularly targeted therapies such as tyrosine kinase inhibitors (TKI) with 

concurrent chemotherapy and radiation (CRT) to improve outcomes in genotype-defined cancers 

remains a current challenge in clinical settings. Important questions regarding optimal scheduling 

and length of induction period for neoadjuvant use of targeted agents remain unsolved and vary 

among clinical trial protocols. Here we develop and validate a bio-mathematical framework 

encompassing drug resistance and radiobiology to simulate patterns of local versus distant 

recurrences in a non-small cell lung cancer (NSCLC) population with mutated epidermal growth 

factor receptor (EGFR) receiving TKI and CRT. Our model predicted that targeted induction 

before CRT, an approach currently being tested in clinical trials, may render adjuvant targeted 

therapy less effective due to proliferation of drug-resistant cancer cells when using very long 

induction periods. Furthermore, simulations not only demonstrated the competing effects of drug-

resistant cell expansion versus overall tumor regression as a function of induction length, but also 

directly estimated the probability of observing an improvement in progression-free survival at a 

given cohort size. We thus demonstrate that such stochastic biological simulations have the 

potential to quantitatively inform the design of multimodality clinical trials in genotype-defined 

cancers.

Introduction

Therapies targeting specific oncogenic driver mutations have dramatically improved survival 

in patients with metastatic cancer across several disease sites. Most significantly, tyrosine 

kinase inhibitors (TKIs) have become a standard-of-care treatment for metastatic non-small 

cell lung cancer (NSCLC) harboring mutations in the epidermal growth factor receptor 

(EGFR) (1, 2). Unfortunately, disease inevitably recurs as both pre-existing drug resistant 
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cells and acquired de-novo drug resistant cells, mutating from drug-tolerant “persistent” 

cells during the course of treatment, outcompete the drug sensitive cells, thus manifesting 

the evolution of drug resistant tumors (3–6). In contrast to metastatic EGFR-mutant NSCLC, 

the role of TKIs in locally advanced (LA), non-metastatic NSCLC remains unknown. But, 

the addition of TKIs to-standard of-care concurrent chemotherapy and radiation (CRT) in 

patients with EGFR-mutant cancers has the potential to improve long term survival in this 

cohort. The recent PACIFIC trial has demonstrated the dramatic benefit that integration of 

new systemic agents can yield in LA-NSCLC (7): using adjuvant durvalumab, an anti-PD-

L1 checkpoint immunotherapeutic agent, and standard-of-care CRT improved progression-

free and overall survival significantly. However, there was no benefit to immunotherapy over 

chemotherapy in the subset of EGFR-mutant patients (8). Therefore, the PACIFIC trial 

exemplifies not only the possible benefits of including successful systemic agents into 

earlier stages of NSCLC treatments, but also the considerable but underutilized potential 

TKIs may play in the increasing number of successful treatment options for EGFR-mutant 

LA-NSCLC.

However, it is entirely unknown how to optimally administer TKIs with CRT in order to 

minimize the risk of acquired drug resistance and improve the efficacy of CRT. 

Consequently, the design of these multimodality therapy trials is largely empirical with great 

variability in treatment protocols and a “one-size fits all” approach. Additionally, a large part 

of the treatment design space is not explored due to the infeasibility of running randomized 

controlled trials for every possible combination of treatments.

One useful method to sample treatment design space is bio-mathematical modeling, which 

enables the quantitation of abstract, interconnected phenomena making it a powerful tool in 

the field of translational oncology for both hypothesis testing and generation (9, 10). 

Specifically, mathematical modeling of tumor evolution has significantly impacted our 

understanding and interpretation of acquired resistance to targeted cancer therapies (11, 12) 

and has helped formulate the idea of collateral sensitivities to sequential drug regimens (13). 

Additionally, combing evolutionary modeling of tumors with mechanistic biological models 

of radiation cell kill and plasma level drug concentrations has enabled novel dosing 

schedules of radiation therapy in glioblastoma (14), intercalated administration of multiple 

targeted and chemotherapy agents for melanoma (11), and novel pulsed injections of TKI 

therapy in EGFR-mutant NSCLC (15). This TKI delivery protocol designed using 

mathematical modeling was successfully translated into a clinical trial (15, 16).

In this study, we present a generalized bio-mathematical model to optimize TKI plus CRT 

multimodal regimens in EGFR-mutant LA-NSCLC, with a focus on the relative effect of 

therapy on local versus occult distant disease sites. In metastatic EGFR-mutant NSCLC 

populations, TKIs result in significant improvements in overall response and survival 

compared to chemotherapy, but acquired drug resistance inevitably leads to disease 

recurrence (1–6, 17). Optimal combination regimens with EGFR TKIs and CRT for LA-

NSCLC patients have not yet been studied. A major complicating factor is that failure after 

CRT can be local or distant, which may be differentially impacted by TKIs. The goal of this 

study is to inform the design of TKI-CRT multimodal clinical trials through mechanistic, 

bio-mathematical modeling, which encompasses fundamental principles of evolutionary 
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targeted drug resistance, radiation biology, and comorbidities. The model aims at 

quantitative, in-silico analyses of varying treatment design parameters to predict effect sizes 

in heterogeneous patient populations, and also the probability of observing such effects at a 

given sample size. We achieve this by defining distributions for model parameters to 

simulate inter-patient heterogeneity, calibrating our model using several institutional 

datasets, and subsequently demonstrate accurate model predictions of recurrence rates in 

independent validation datasets of recent multicenter clinical trials and meta-analyses. Next, 

we exhaustively explore the multimodal treatment design space and show that a TKI 

induction period of 2–3 months, as used in the recent clinical trials NCT01553942 and 

NCT01822496, may reduce the effectiveness of adjuvant TKI therapy due to the 

proliferation of TKI resistant clones during the induction period. Instead, we propose and 

provide a quantitative rationale for an individualized induction period tailored to resistance 

evolution. This mathematical framework can not only inform the design of future 

multimodal TKI-CRT trials, but also be extended to other oncogene driven cancers to design 

more precise and personalized cancer treatment regimens.

Materials and Methods

Local and Distant NSCLC Progression Model

Our tumor progression model is an advancement of our previously published bio-

mathematical models of CRT in NSCLC (18) and evolutionary TKI resistance in advanced 

EGFR-mutant NSCLC (12). An exponential vector system (Eqs. 1–14) tracked the number 

of TKI resistant, drug-tolerant persistent, and sensitive clonogenic cells (clonogens). While 

TKI sensitive clonogens are killed by the drug and TKI resistant clonogens multiply 

irrespective of drug exposure, drug-tolerant persistent clonogens neither proliferate or 

succumb to the drug, but do mutate in drug resistant clonogens (4, 5). The tumor burden was 

separated into local versus distant compartments to deconvolve in-field locoregional failures 

and out of field distant failures. Thus, time to local and distant failures (See Suppl. Eqs. S5–

S6) were directly modeled from the local and distant cell compartments respectively, rather 

than modeling overall survival as a function of total tumor burden. This was an important 

distinction as post-progression treatment in the era of targeted therapy can be highly patient 

specific with varying degrees of response (19). Comorbidity related deaths were 

implemented into our model with a Monte Carlo Russian Roulette formalism (See Suppl. 

Eqs. S1–S4) and estimated from an analysis of the Surveillance, Epidemiology, and End 

Results (SEER) Program for a regional lung cancer population (20, 21). While a recent 

SEER analysis demonstrated that lung cancer patients receiving TKIs were less likely to be 

smokers, TKI recipients did not have a statistically significant difference in comorbidity as 

measured by the Charlson comorbidity index (0 vs. 1+) (22). Progression was defined as the 

first occurring local failure, distant failure, or comorbidity related death. A pictorial 

summary conceptualizing the model and its main endpoints is shown in Fig. 1.

Model Calibration to Recurrence Dynamics of NSCLC

While the tumor progression model tracked a single tumor volume trajectory, a general 

patient population with heterogeneity in their presentation, response to treatment, and 

recurrence patterns was simulated by creating truncated normal and truncated log-normal 
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distributions for the model parameters as was done previously (18). These distributions were 

then randomly sampled for each run (i.e. simulated patient) of the tumor progression model, 

yielding a histogram of times to events, which in turn was used to create simulated Kaplan-

Meier (K-M) curves for the distributed population (see Suppl. Note). The model parameter 

distributions were then optimized such that the model predicted K-M curves matched 

clinically reported K-M curves, as was done in Geng et al. (18). In this work, the growth and 

radiosensitivity distributions were fitted to literature K-M curves of freedom from local and 

distant failure (FFLF and FFDF) in wildtype (WT) and EGFR-mutant locally advanced 

NSCLC populations receiving definitive concurrent CRT (19, 23, 24). The TKI model 

parameters were derived from a model-based analysis of advanced EGFR-mutant NSCLC 

patients (see Suppl. Note). A full summary of the optimized model parameters along with 

the source of the calibration data is shown in Table 1.

While the 2 yr. FFLF for wild-type (WT) NSCLC has been shown to be relatively poor in 

the range of [54–63] %, EGFR-mutant tumors have a noticeably better response with a 2 yr. 

FFLF in the range [70–87] % (19, 23, 24). This differential response in FFLF was observed 

after CRT alone and the results were not confounded by TKI administration. Furthermore, 

in-vitro studies have demonstrated an enhanced radiosensitivity of EGFR-mutant NSCLC 

compared to WT (25), and so in our model unique radiosensitivity distributions were defined 

for WT and EGFR-mutant populations separately and optimized against FFLF. Distant 

metastases have been observed to be the most common form of recurrence with a 2 yr. FFDF 

in the range of [31–43] % with no statistically significant relationship to EGFR status (19, 

23, 24). Therefore, a common metastatic fraction and growth rate distribution were defined 

for both populations and optimized against FFDF, as shown in Fig. 2. For each calibration 

step, two parameters were optimized simultaneously using brute force, and while each two 

parameters exhibited a correlative relationship, a global solution was determined (Suppl. 

Fig. 1(A–F)). The bootstrapped confidence intervals encompassed these correlative regions, 

and model predicted failure rates matched the calibration data over these intervals (Suppl. 

Fig. 1(G–L)).

The model predicted FFDF curve for the optimal growth and metastatic fraction parameters 

is shown in Fig. 2(A) and exhibited a strong correlation to the weighted mean of the 

literature reported values (r2>0.99, p=0.002, Fig. 2(D)). Similarly, the model predicted FFLF 

curves with the optimized WT and EGFR-mutant radiation sensitivity distributions matched 

the literature reported values as shown in Fig. 2(B) and (C), respectively. For both 

populations, the model predicted FFLF were similarly strongly correlated with reported 

values (r2>0.97, p<0.02, Fig. 2(E) and (F)). Additionally, the model predicted PFS was 

calculated with the optimized parameters for WT and EGFR-mutant populations, which 

yielded only a minor increase in PFS for the more radiosensitive EGFR-mutant population 

(HR = 1.06 CI, 1.02–1.09, Suppl. Fig. 2). This was in accordance with literature reported 

observations of a lack of statistically significant difference in time to first recurrence 

between the WT and EGFR-mutant populations (19, 24).
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Guide to Model Equations and Assumptions

Mathematical Implementation of Local versus Distant Tumor Progression Model

We described the evolution of the number of TKI resistant (NR), persistent (NP), or sensitive 

(NS) clonogens in the distant (ND) or local (NL) compartments (Eqs. 5–10) with exponential 

factors accounting for the differential terms of Gompertzian cell growth, Norton-Simon cell 

kill by TKIs, log cell kill by chemotherapy, and linear-quadratic (LQ) radiation cell kill 

(with the assumption of α/β = 10). While older reports suggested α/β could be higher than 

10 for lung cancer (26), our results were insensitive to the exact value of α/β as different 

fractionation schema were not considered. Additionally, the efficacy of chemoradiation was 

assumed to be independent of the proximity to TKI administration, i.e., the model 

parameters associated with chemoradiation cell kill are considered to be constant throughout 

the treatment. The initial local cell number was based on tumor volume distributions for 

each stage of NSCLC and an assumed cell density of 5.8×108 cells/cm3 estimated from 

previous model based work of NSCLC tumor growth (18, 27). The initial distant cell 

number was assumed to be a scalar fraction (fmet) of the initial local cell number (Eq. 2), 

which was fitted during the modeled calibration procedure. Time of distant failure was 

defined as the distant compartment reaching a PET-detectable volume of 1 cm3 (28), i.e. 

when NDtotal(t) > 1cc (Eqs. S6). Time of local failure was defined as growth of the local 

compartment past its size at the start of treatment, i.e. when NLtotal(t) > NLtotal[0] (Eqs. S5). 

By heuristically simulating a patient population, yielding histograms of time to failures, 

time-varying rates of freedom from local and distant failures were modeled. Throughout 

treatment and regrowth, there was also a transitional term to account for acquired mutations 

from TKI persistent to resistant cells with the mutation rate μ assumed to be 10−7 based 

upon in-vitro studies of TKI resistance (29). The model also assumed that the growth of the 

persistent compartment was slowed during TKI administration as seen clinically (Eq. 13) (5, 

12). The first order pharmacokinetic model of chemotherapy (CC, Eq. 12) and TKI plasma 

concentrations (CTKI, Eq. 14) used in our model were fully described in previous 

publications (12, 18, 30). The TKI dosing regimen of a single daily dose was implemented 

for both induction and maintenance, as is done clinically (NCT01553942). The state 

equations were implemented over 1 day time periods with 0.1 day resolution (Δt), and with 

the differential effect of each term calculated independently. Discrete treatment events, such 

as radiation delivery or a bolus injection of chemotherapy, were assumed to occur 

instantaneously at a single timepoint (Eq. 11–12). At a discrete time step, if a cell 

compartment went below 1 cell, it was assumed to be controlled and set to 0. A total of 5 

iterations of 1024 patients (n=5120) were simulated for the calibration of model parameters, 

while a total of 1024 patients having 12 unique combinations of initial resistant and 

persistent fractions (n=12288) were simulated for the model validation and multimodal 

treatment outcome predictions. The effect of simulated population size on variability of 

outcomes is examined in the simulated in-silico induction trial section of the Results.

Software Implementation

The simulations were implemented in Python v3.7 using both the SciPy v1.3.1 (31) and 

NumPy v1.17.2 (32) libraries. The scipy.odeint routine was used to implement TKI therapy 
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and growth terms, while CRT was implemented exponentially. The seaborn v0.9.0 python 

library (33) was used to present data, and the lifelines v0.24 python library (34) was used for 

the survival analysis (see Suppl. Note). The source code for the simulations and resulting 

data are available at github.com/bomcclatchy/Modeling-Multimodal-TKI-ChemoRadiation.

Results

Retrospective Model Validation Against Clinical Trial Outcomes

With all of the model parameters calibrated and fixed, the tumor progression model was then 

validated against independent data sets from multi-institutional phase 3 trials of either TKI 

alone or CRT alone (see Suppl. Note). First, the model predicted PFS in an advanced stage 

IV population was compared against the TKI arm of the EURTAC trial, which compared 

chemotherapy versus TKI in advanced EGFR-mutant NSCLC (Fig. 3(A)) (1). A recent 

meta-analysis of first generation TKIs in EGFR-mutant advanced NSCLC found the 

EURTAC trial to have the most similar effect to the median of the six analyzed trials (HR 

EURTAC = 0.42, CI, 0.27–0.64, HR median = 0.37, CI, 0.27–0.52) making it an appropriate 

benchmarking dataset (17). The model predicted PFS was similar to the trial reported PFS 

(r2=0.92, p<1e-5, Fig. 3(B)), validating the rate of progression during TKI administration as 

predicted by the model. A waterfall plot of the maximum change in tumor volume from 

baseline is shown for a simulated patient population (n=256) in Fig. 3(C), with each bar 

color-coded by degree of initial TKI resistance. From an analogous waterfall plot reported in 

the EURTAC trial, we see that the trial and the model simulated populations have similar 

tumor response dynamics with a median tumor volume decrease of 50%−75% and <10% of 

patients exhibiting progressive disease, demonstrating the validity of the derived TKI model 

parameters. Furthermore, the capacity of the model to stochastically embody a 

heterogeneous population is shown in Fig. 3(C), as tumor shrinkage was not simply a 

function of pre-existing resistance but was modulated by other factors such as growth rate.

Next, model predicted PFS for a WT LA-NSCLC population receiving concurrent CRT was 

compared against the results of the PROCLAIM trial (35), representing the pre-PACIFIC 
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standard of care for CRT alone (Fig. 3(D)). Model predicted PFS for concurrent CRT 

correlated very strongly to the aggregated reported PFS of the trial (r2>0.99, p<1e-21, Fig. 

3(E)), validating the absolute rate of recurrences during concurrent CRT as predicted by the 

model. Additionally, the model predicted local and distant failure dynamics for sequential 

versus concurrent CRT was in accordance with the results of a meta-analysis of six 

randomized trials comparing chemotherapy scheduling in LA-NSCLC (36). The model 

accurately predicted a significant benefit in local failure rates for concurrent CRT with a 

modeled HR of 0.79 (CI, 0.77–0.82), while the meta-analysis reported a HR of 0.77 (CI, 

0.62–0.95, p=0.01) (Suppl. Fig. 3(A)). Furthermore, the model predicted no difference in 

distant failure rates for sequential versus concurrent CRT (HR = 1.00, CI, 0.97–1.03), which 

was consistent with the findings of the meta-analysis that there was no statistically 

significant effect of chemotherapy scheduling on distant failure rates (HR = 1.04, CI, 0.86–

1.25, p=0.69) (Suppl. Fig. 3(B)). Together, these results provide strong evidence for the 

validity of the model predicted local and distant recurrence patterns during various treatment 

schedules as compared to current NSCLC multicenter clinical trials.

Estimation of Improved Outcomes for TKI Induction and Maintenance

With the same simulated patient population and treatment parameters used during model 

validation (histograms shown in Suppl. Fig. 4), the expected recurrence dynamics of 

combining CRT and TKI therapy were explored. Two main treatment designs were 

simulated for locally advanced EGFR-mutant NSCLC: TKI induction with daily 

administration up to 16 weeks, followed by definitive concurrent CRT, followed with or 

without adjuvant TKI maintenance. These two treatment schemes were chosen to 

approximate the format of ongoing combined TKI+CRT trial protocols (see Suppl. Note). 

TKI therapy concurrent with CRT was not modeled as initial clinical experience suggests the 

potential for increased toxicity and also non-synergistic efficacy (37, 38). The hypothesis 

explaining these results was that TKIs cause G1 cell-cycle arrest stunting cell replication 

antagonizing both chemotherapy and radiotherapy (39, 40), despite both agents having 

cytotoxic effects regardless of cell-division.

The predicted 2 yr., 3 yr., and 5 yr. FFLF, FFDF, and PFS as a function TKI induction length 

with and without adjuvant TKI maintenance are plotted in Suppl. Fig. 5(A), (B), and (C), 

respectively, while the endpoints over the entire design space are tabulated in Suppl. Fig. 6. 

For TKI induction without maintenance, the greatest predicted benefit for FFLF, FFDF, and 

PFS over CRT alone occurred with 2 wks. of induction (Δ5 yr. FFLF 1.5%, Δ5 yr. FFDF 

11.1%, Δ5yr. PFS 6.5%), with a decreasing benefit as the induction length increased 

resulting in a similar predicted outcome to CRT alone with 16 wks. of induction. For each 

endpoint, there was a predicted additive benefit for including adjuvant TKI maintenance to 

induction regardless of the time point or duration of the induction period (Suppl. Fig. 5). 

But, the greatest benefit of including TKI maintenance was seen at shortest induction 

periods (Δ5yr. FFLF 5.8%, Δ5yr. FFDF 23.7%, Δ5yr. PFS 15.8% with 0 wks. induction and 

Δ5yr. FFLF 3.5%, Δ5yr. FFDF 7.7%, Δ5yr. PFS 6.7% with 2 wks. induction compared to 

CRT alone), with outcomes monotonically worsening as a function of induction length for 

each endpoint. The local failure rate was the least sensitive to the length of induction, given 

the high radiosensitivity and local control rates of EGFR-mutant NSCLC. The most 

McClatchy et al. Page 7

Cancer Res. Author manuscript; available in PMC 2021 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dramatic effects were seen in the distant failure rates, which have an enhanced sensitivity to 

the evolutionary dynamics during induction as the subsequent chemotherapy was the only 

modeled therapeutic able to target the occult TKI resistant subpopulation in the distant 

compartment.

Longer Induction is Predicted to Induce TKI Resistance

The maximum benefit observed with 2 wks. of TKI induction when maintenance was not 

administered is due to the fact that this time point presents a balance in benefit for both 

responders and non-responders: if a patient does not respond at all there is not much 

additional growth that early, while the responders will have at least derived some benefit 

through volume shrinkage. Furthermore, the benefit of delaying progression by means of 

extending the induction length (≥ 4 wks.) was gradually outweighed by the proliferation of 

the resistant population and resulting tumor volume increase prior to CRT. But surprisingly, 

when adjuvant maintenance was administered, the shortest induction periods were predicted 

to have the lowest local and distant failure rates. This suggests that the relative benefits of 

shrinking the tumor volume before CRT with TKIs was outweighed by the cost of acquired 

TKI resistance caused by targeted evolution during induction, which dramatically reduced 

the efficacy of TKI maintenance. This tradeoff in competing advantages of tumor size and 

TKI sensitivity is exemplified in the Kaplan-Meier analysis and simulated tumor volume 

trajectories displayed in Fig. 4.

The median tumor volume trajectory stratified by TKI sensitive, persistent, and resistant cell 

subtypes receiving 2 and 12 wks. of TKI induction with adjuvant maintenance are plotted for 

the local compartment in Fig. 4(A) and the distant compartment in Fig. 4(B). While both 

treatment schedules resulted in local control (Fig. 4(A)), a 2 wk. induction resulted in 

control of the initially microscopic resistant subpopulation of the distant compartment with 

chemotherapy during CRT and a slow regrowth of the persistent subpopulation during 

maintenance (Fig. 4(B)). But over the course of the longer 12 wks. of induction, the resistant 

subpopulation of the distant compartment out competed and outgrew the slowly proliferating 

persistent subpopulation, resulting in a rapid, resistant distant recurrence after ~1 yr. of 

adjuvant TKI therapy (Fig. 4(B)), controlling for the same efficacy of chemotherapy during 

CRT. Additionally, the resistant growth during induction was accelerated in the distant 

compartment compared to the local compartment because of the resource advantage at lower 

cell numbers inherently modeled with Gompertzian growth (12).

Kaplan-Meier curves for the simulated FFLF, FFDF, and PFS for various TKI induction and 

maintenance schedules show the long term predicted benefit over CRT alone in Fig. 4(D), 

(E), and (F), respectively. While TKI induction and maintenance was predicted to have 

modest FFLF benefit over CRT alone, there was little stratification between different 

induction lengths (Fig. 4(D)). But for FFDF (Fig. 4(E)) and PFS (Fig. 4(F)), there was a 

much stronger effect with greater stratification between induction lengths. However, 

stratification between induction lengths was not observed until ~1 yr. after the start of 

treatment, due to the time needed for distant cells to proliferate to an observable threshold 

after CRT. In this analysis, a schedule of no induction with CRT and adjuvant TKI 

maintenance was not considered despite having the best predicted outcomes, as some 
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amount of induction with a measurable response in tumor volume is needed to warrant daily 

TKI administration after CRT until progression.

Calculated hazard ratios for 2 wks., 8 wks., and 12 wks. of TKI induction with adjuvant 

maintenance quantified the relative effect size of each multimodal treatment schedule 

compared to CRT alone, independent of the simulated sample size. As shown in Fig. 4(C), 

FFDF had the most dramatic effect size, having a hazard ratio of 1.89 (CI, 1.83–1.96) for 2 

wks. induction dropping to 1.38 (CI, 1.34–1.43) for 12 wks. induction. The expected 

statistical significance of these proposed treatment schema at clinically relevant sample sizes 

were stochastically investigated, as described in the next section.

Statistical Significance and Power in a Model-Based Trial Design

Evaluating the statistical significance between the predicted failure rates of different 

treatment arms was a non-trivial task as an arbitrarily large number of patients can be 

simulated, which could result in statistical significance even when hazard ratios were very 

close to one. Therefore, we determined the probability of reaching a certain level of 

statistical significance as a function of the number of trial patients. We utilized the stochastic 

nature of the model by randomly sampling multiple iterations of simulated patients in order 

to yield an estimate of the false negative rate at lower sample sizes and the corresponding 

statistical power (see Suppl. Note). Doing so, our model based analysis not only yielded an 

expected magnitude of effect between two multimodal treatments but also quantified the 

probability of observing the effect in a population of a given size.

A simulated two armed clinical trial of 2 wks. versus 12 wks. of TKI induction with CRT 

and adjuvant TKI maintenance was modeled with FFDF as the endpoint, which has both the 

strongest effect (Fig. 4(F)) and is particularly relevant for future targeted therapy trials given 

the relatively high rates of local control in NSCLC with CRT for EGFR-mutant patients. An 

induction length of 2 wks. was chosen for arm 1 as it was predicted to improve outcomes 

and also would allow to screen for initial TKI response. For arm 2, 12 wks. of induction was 

chosen to mimic an induction length currently investigated (NCT 01822496). A depiction of 

the simulated evolution of TKI resistance illustrating the hypothesized mechanism of benefit 

to a shorter induction period is shown in Fig. 5(A). Modeled FFDF K-M curves displayed a 

constant magnitude of effect but wider confidence intervals with decreased sample size (Fig. 

5(B)). A heatmap of the log-rank p-values testing the significance between the two arms 

over 1000 iterations revealed the variability in detecting the effect with fewer patients in Fig. 

5(C). This was further quantified in Fig. 5(D), where the distributions of median FFDF in 

each arm have a consistent mean but increasing variance with decreasing sample size. Note 

that the simulation ran for 5 yrs. and so the peak at 60 months can be attributed to iterations 

where the median FFDF was not yet reached. The distribution of log-rank p-values between 

the arms for the 1000 iterations is shown in Fig. 5(E) along with the median p-values. The 

fraction of iterations reaching statistical significance of 0.05 was estimated to be the 

statistical power, and is plotted as function of sample size in Fig. 5(F). Thus, this analysis 

has projected that a clinical trial would need 256 patients per arm for a power of 79%.

Additionally, this benefit to a shorter induction period was seen regardless of the initial TKI 

sensitivity. When simulated patients were stratified by initial resistant or persistent fractions 
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(see Suppl. Note), and the trial was re-run for each combination of Vr(0) and Vp(0), the 2 

wk. arm always benefitted as quantified by the hazard ratio (Suppl. Fig. 7). While this 

benefit appeared to be short term for patients with higher levels of pre-existing persistence 

and lower levels of pre-existing resistance, a durable benefit was observed higher levels of 

pre-existing resistance and lower levels of pre-existing persistence.

A corresponding analysis using PFS as the endpoint is displayed in Suppl. Fig. 8(A–E), from 

which it was estimated that 512 patients per arm are needed to reach a power over 80%. 

While these analyses assumed a general population, the modeled population can be readily 

stratified into clinically distinguishable groups. For instance, modeled populations above and 

below the median initial tumor size (7.2 cm) will exhibit diverging distributions of predicted 

failure rates, which will consequently decrease and increase the required number of patients 

in each sub-population needed for an adequately powered clinical trial.

Discussion

We have developed a mathematical framework to forecast the relative effectiveness of user-

defined regimens of combined targeted-chemoradiation therapy and have applied this 

methodology to optimize the multimodal administration of tyrosine kinase inhibitors in 

locally advanced NSCLC. This framework integrates fundamental principles of tumor 

growth, radiation biology, and acquired drug resistance, with model parameters calibrated to 

institutional outcomes and predicted recurrence rates independently validated against 

clinical trial outcomes. While our previous modeling work has exclusively investigated 

targeted (12) or cytotoxic (18) therapy, the current framework not only integrates both 

treatment modalities, but also deconvolves local versus distant failures, creates population 

based model parameters specific for EGFR-mutant patients, and includes stochastic non-

cancerous failures. We predict local and distant recurrence rates for various lengths of TKI 

induction before CRT and estimate the expected number of patients needed to observe a 

clinical benefit. In contrast to the current design of multimodal clinical trials which prescribe 

2–3 month long induction periods, we discover an inverse relationship between progression 

and length of induction. In this sense no induction period at all would be optimal. However, 

some TKI induction is indicated because tumor response to the TKI needs to be verified 

before proposing an adjuvant TKI regimen. Thus, we propose 2 weeks because a volumetric 

reduction at this point can be observed when measured by consistent volumetric 

segmentation.

After 2 weeks of TKI exposure, there may not be maximal macroscopic gross tumor volume 

change; however, at these early time points, the occult TKI resistant and persistent 

populations will still be microscopic and with greater potential for control by cytotoxic 

therapy. Even though we make the assumption that pre-existing resistant cells exist at 

therapy initiation, our result does not entirely depend on this assumption. Even assuming no 

pre-existing cells would favor shorter induction periods, as this reduces the probability of 

cells acquiring mutations that confer resistance. The sooner CRT is administered, the sooner 

the pool of possible persister cells that could acquire resistance is diminished, increasing the 

efficacy of the TKI maintenance regimen. Thus, the benefit to shorter induction periods 

holds true regardless of the absolute of effect of CRT, as long as the CRT has the ability to 
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control non-sensitive TKI cells. This should also hold true for second and third generation 

TKIs as these drugs still result in acquired drug resistance through a combination of pre-

existing and acquired mutations (3), despite overcoming the EGFR T790M mutation which 

has indeed resulted in superior PFS compared to first generation TKIs (2). Finally, the 

predicted benefit of a shorter induction period was robust to any assumed level of pre-

existing TKI sensitivity in our model, but a greater benefit was seen in tumors with higher 

levels of pre-existing TKI resistance.

Our result that shorter induction times lead to better outcomes contradicts expectations in 

current multimodal trial protocols for LA-NSCLC, but reflects the increasing risk of TKI 

resistance as a function of TKI exposure. Induction before CRT has several benefits, most 

notably decreasing tumor size, which has been shown to improve overall survival when 

treated with CRT (41) and may also lead to surgical candidacy as outlined in the ASCENT 

trial protocol (NCT 01553942). But, upfront TKI exposure in advanced staged patients has 

resulted in a 50–75% average volume change (1), which is similar to the expected surviving 

fraction after a single 2 Gy radiation fraction (SF2Gy) in NSCLC (42). Additionally, upfront 

TKI exposure will extend the duration of treatment compared to CRT alone, which will 

ostensibly delay disease progression. But as patients systemically become resistant over the 

course of months, adjuvant TKI maintenance therapy may be rendered ineffective. 

Conversely, with upfront chemoradiation therapy and the ability to control TKI resistant 

cells, the adjuvant TKI maintenance has the potential to dramatically slow tumor regrowth. 

And in fact, a retrospective analysis of the treatment of brain metastases originating from 

EGFR-mutant NSCLC demonstrated that upfront radiotherapy with adjuvant TKIs nearly 

doubled overall survival compared to upfront TKIs until progression and subsequent 

radiotherapy (34.1 vs. 19.4 mo.; p = .01) (43). But in the locally advanced setting, some 

initial TKI exposure is needed in order to demonstrate tumor response before maintenance 

therapy can be considered. Furthermore, there is evidence to suggest that TKI exposure may 

prime the cells for radiotherapy by inducing senescence (44).

Genetic heterogeneity present throughout a patients’ tumor predicates the clinically 

observable acquired treatment resistance (45). There are two main models explaining the 

mechanism by which intratumoral heterogeneity and consequently treatment resistance 

arises: (1) branched clonogenic evolution where subpopulations arise from an accumulation 

of mutations and (2) cancer stem cells (CSCs) that are predominantly dormant and treatment 

resistant, but uniquely give rise to the diversity of differentiated cancer cells (9, 46). 

Additionally, models have been proposed unifying CSCs and clonogenic evolution, 

suggesting that CSCs themselves can acquire favorable mutations leading to competing 

subpopulations (47). In this work, a form of clonogenic evolution was assumed with CSCs 

not explicitly modeled, as the focus of this analysis was acquired TKI resistance, which has 

been shown to occur through specific genetic mutations (5, 6). As such, our model assumes 

that TKI resistant cells have the same chemo- and radiosensitivity as TKI sensitive cells, 

which is in line with experimental evidence (25).

While our model does not explicitly account for the constricting effect of TKIs on 

vasculature, resource deprivation is implicitly modeled through the slowed growth of the 

TKI persistent subpopulations resulting in apparent stunted tumor growth. However, 
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modeling based in-vitro and in-vivo studies have shown that alterations to microenvironment 

can modulate the growth of resistant and persistent sub-clonogens independently, which in 

turn can lead to frequency dependent tumor evolution (48, 49). Future work could 

incorporate the non-cell autonomous effects of vasculature modulation into the model, by 

both EGFR-TKIs and also anti-angiogenic vascular endothelial growth factor inhibitors 

(VEGF-TKIs) which have shown great synergy when administered in combination (50). 

While in-vitro studies have suggested that TKI exposure can modulate DNA repair pathways 

affecting chemoradiation sensitivity (51, 52), clinical studies have shown chemotherapy 

intercalated with TKIs to be effective (53) and recent reports have demonstrated 

effectiveness of radiation therapy after TKIs in oligometastatic disease (54). Consequently, 

the effects of sequential administration of TKIs and CRT were conservatively assumed to be 

independent. However, TKIs and CRT were not simulated concurrently as uncertainty 

regarding the interplay and potential toxicity of concurrent TKIs + CRT remains (37, 38), 

but could be investigated in future studies as robust clinical data becomes available. 

Furthermore, while we parameterized our model using the chemotherapy regimen in RTOG 

9410, clinical experience has demonstrated similar outcomes with a variety of chemotherapy 

regimens (55).

Based on our framework, future modeling studies might aim at stratifying simulated 

populations (e.g. high or low radiosensitivity α, tumor growth ρ) and determine which 

patient populations experience the most benefit from shorter versus longer induction periods, 

thus further personalized therapy. Potential biomarkers for NSCLC radiosensitivity 

demonstrated to be associated with survival outcomes are rad51 expression (56) and the 

polygenic radiosensitivity index (RSI) (57, 58). Additionally, ki67 expression and 

fluorothymidine uptake imaged by positron emission tomography have both shown to be 

related to tumor cell proliferation and could be potential biomarkers of tumor growth rate 

(59). Additionally, future modeling work could focus on predicting organ specific distant 

failure rates in LA-NSCLC, as brain metastases are common in EGFR-mutant tumors and 

may be amenable to further radiation (43).

Our work shows the possible impact that mathematical modeling can have on clinical trials 

exploring the integration of new biological agents into current treatment approaches, a topic 

that has recently gathered increased attention (60). Mathematical models based on patient 

data have been used in the past to optimize radiation therapy (14) or to understand 

underlying disease dynamics (61), among a range of other applications (9, 62, 63). A recent 

example is adaptive drug therapy for metastatic castration-resistant prostate cancer (64, 65), 

which is currently being tested in a clinical trial (NCT02415621). The framework presented 

here could be translated into other disease sites or targetable mutations, however this would 

require recalibration of model parameters, which involved several studies as noted in Table 

1. To recalibrate the model, the following literature obtained data is needed for the specific 

disease site: unrestricted tumor growth with time, failure rates after chemo/radiotherapy 

(both separately and together), failures rates after targeted therapy, and rates of non-

cancerous failures (from SEER) (20, 21). With these data, along with literature estimates of 

pre-existing resistance and mutation rates, one could independently tune each model 

parameters as was done in a previous study (18).
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In conclusion, our mathematical framework provides an evolutionary argument against 

longer induction periods, as they could trigger the process of acquired drug resistance and 

may limit the efficacy of adjuvant therapy, possibly resulting in worse outcomes. According 

to our model a shorter induction period of 1–2 weeks had a greater chance of controlling 

TKI resistant cells with CRT, resulting in longer predicted progression free survival. Finally, 

the probability of observing a statistically significant increase in PFS due to a shorter 

induction period was stochastically derived as function of trial size, using randomly sampled 

heterogeneous patient populations. These model predictions are hypothesis generating and 

could have impact on clinical trial design. While this study has focused on optimizing TKI 

administration in combination with CRT for EGFR-mutant NSCLC, the generalized 

framework outlined in this paper can be applied to oncogene-driven multimodal therapy 

designs in other cancers.
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Refer to Web version on PubMed Central for supplementary material.
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Significance

A bio-mathematical framework based on fundamental principles of evolution and 

radiobiology for in silico clinical trial design allows clinicians to optimize administration 

of tyrosine kinase inhibitors before chemoradiotherapy in oncogene-driven NSCLC.
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Figure 1: 
Graphical illustration of the distant and local tumor progression model. TKI sensitive, 

persistent, and resistant cells are shaded blue, purple, and red, respectively. The distant 

tumor compartment (top) is only susceptible to systemic agents, in this case chemotherapy 

and TKI therapy. The local tumor compartment (bottom) is additionally affected by radiation 

therapy. Note that TKI therapy is not only specific to sensitive cells but also leads to slowed 

growth of persistent cells, as depicted by the downward purple arrow in the illustration. 

Chemo-radiation however is assumed to have equal effects on each cell subpopulation. The 

initial number of distant cells is assumed to be a constant fraction of the cells in the initial 

primary tumor.
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Figure 2 –. Model Calibration:
(A-C) Simulated freedom from distant (A) and local (B, WT and C, EGFR-mutant) failure 

Kaplan-Meier curves using the calibrated model parameters. (D-F) Corresponding model 

predicted versus literature reported failure rates at 1, 2, 3, and 4 yr. time points. The solid 

line represents the model predicted versus the weighted mean of literature reported failures, 

with corresponding linear regression and summary statistics. The black dashed line 

represents unity.
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Figure 3 –. Model Validation:
(A) Model predicted and trial reported PFS K-M curves for stage IV, EGFR-mutant NSCLC 

populations receiving TKIs until progression. The 12 thin K-M curves represent each initial 

starting persistent and resistant fraction combination (see Suppl. Note), while the full line is 

the aggregate response. (B) Plot of model predicted versus trial reported PFS over 3 month 

intervals corresponding to (A) with linear regression summary statistics and the black 

dashed line representing unity. (C) Waterfall plot of best model predicted volume change 

from baseline for stage IV, EGFR-mutant NSCLC populations receiving TKIs until 

progression for a random subset of 256 modeled patients, color-coded by the 12 initial TKI 

persistence/resistance conditions. (D) Model predicted and trial reported PFS K-M curves 

for stage III NSCLC populations receiving definitive CRT, with a corresponding plot of 

model predicted versus trial reported PFS over 3 month intervals and summary statistics in 

(E).
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Figure 4 –. Model Predictions for Variable Induction Periods:
Model predicted freedom from local failure (D), freedom from distant failure (E), and 

progression free survival (F) K-M curves for various induction lengths. The simulated 

treatment regimen is TKI induction, chemoradiotherapy, and adjuvant TKI maintenance. The 

local and distant tumor volume trajectory of the median simulated patient with an initial 

persistent fraction of 0.1 and initial resistant fraction of 0.01, stratified by TKI response cell 

subtypes, are shown in (A) and (B) respectively. Hazard ratios corresponding to the K-M 

curves (D-F) are shown in (C).
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Figure 5 –. Simulated in-silico Induction Trial:
(A) Illustration of the differential evolution of the TKI resistant and sensitive populations for 

a given tumor burden between a short 2 wk. and long 12 wk. induction length. When CRT is 

done after a significant TKI induction period, the tumor shrinks with the targeted drug 

killing the TKI sensitive cells (blue), but with more TKI resistant (red) cells at the time of 

CRT, increasing the chance of a late TKI resistant recurrence if CRT isn’t curative. (B) 

Simulated FFDF K-M curves for 2 wk. versus 12 wk. induction lengths with increasing 

number of simulated patients. Each curve corresponds to the iteration with the median log-

rank p-vale. (C) A heatmap of log rank p-values testing statistical difference between the 2 

wk. versus 12 wk. FFDF K-M curves for 1000 iterations of the simulation at each sample 

size. (D) Histograms of the median FFDF for the 1000 iterations of the 2 wk. and 12 wk. 

induction simulations at each sample size. (E) Histogram of the log rank p-value between 

the 2 wk. versus 12 wk. induction simulations at each sample size. (F) Estimated statistical 

power as a function of sample size. Here statistical power was estimated as the fraction of 

iteration resulting in a p-value<0.05.
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Table 1 –

Parameter Overview: Overview of key model parameters along with data sources used for model calibration 

and testing. Units in brackets, distributions in curly brackets, and 95% confidence intervals in parentheses for 

parameters fitted in this work.

Key Model Parameters – Estimated From Literature & Previous Studies

Parameter Description Value Source

Ncells(0) initial number of local clonogens [9.1*106 – 6.7*1011] [cells] Geng et al.(18)

K gompertzian carrying capacity 8.2*1012 [cells] Geng et al.(18)

Vp(0) = Npersistent(0)/
Ncells(0)

Vr(0) = Npersistent(0)/
Ncells(0)

initial fraction of TKI persistent & TKI 
resistant clonogens

[0.05 – 0.5] [-]
[10−4 – 10−1] [-] Grassberger et al.(12)

μ resistant mutation probability 10−7 [-] Grassberger et al.(12)

βTKI TKI cell kill parameter trunc-norm {μ=2, σ=7} [ml/μg]; 
(>1) Grassberger et al.(12)

βc chemotherapy cell kill parameter trunc-norm {μ=.028, σ=6.8*10−4} 
[m2/mg]; (>0)

Geng et al.(18)

t1/2 chemotherapy plasma half life 24 [hr] Geng et al.(18)

κ TKI plasma decay factor 0.0465 [hr−1]
Grassberger et al.(12), Foo et 
al.(30)

rdeath
comorbidity death rate for regional lung 
cancer 0.55 [%/mo] SEER(20, 21)

Key Model Parameters – Derived In Current Study

Parameter Description Value Source

fmet
initial number of metastatic clonogens as a 
fraction of Ncells(0) 2*10−6 (CI: 7.5*10−7 – 4*10−6) [-] this work

ρ NSCLC growth rate trunc-norm {μ=7*10−5, σ=.0055 
(CI: .005–.007)} [day−1]; (>0)

this work

α WT NSCLC radiosensitivity
trunc-norm {μ=.10 (CI: .04–.18), 
σ=.17 (CI: .11–.2)} [Gy−1]; (>0)

this work

αEGFR EGFR-mutant NSCLC radiosensitivity
trunc-norm {μ=.16 (CI: .10–.26), 
σ=.32 (CI: .20–.44)} [Gy−1]; (>0)

this work

Clinical Data used for Calibrating & Testing Model In Current Study

Dataset Description Endpoint Source

Calibration (N=118, 
USA)

institutional LF & DF rates in EGFR-
mutant/WT LA-NSCLC FFLF & FFDF [mo] Mak et al.(24)

Calibration (N=95, 
Japan)

institutional LF & DF rates in EGFR-
mutant /WT LA-NSCLC FFLF & FFDF [mo] Lim et al.(23)

Calibration (N=185, S. 
Korea)

institutional LF & DF rates in EGFR-
mutant /WT LA-NSCLC FFLF & FFDF [mo] Yagishita et al.(19)

Testing (N=86, France, 
Italy, Spain)

phase III clinical trial of TKIs in metastatic 
NSCLC (NCT00446225) PFS [mo]

EURTAC Trial, Rosell et al.
(1)

Testing (N=598, 
Worldwide)

phase III clinical trial of concurrent 
chemoradiation in locally advanced 
NSCLC (NCT00686959)

PFS [mo]
PROCLAIM Trial, Senan et 
al.(35)
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Testing (N=6 Clinical 
Trials)

meta-analysis of 6 clinical trials of 
sequential versus concurrent 
chemoradiotherapy in LA-NSCLC

FFLF & FFDF [mo] Auperin et al.(36)
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