
Chromatin Potential Identified by Shared Single-Cell Profiling of 
RNA and Chromatin

Sai Ma1,2,3, Bing Zhang3,5, Lindsay LaFave2,3, Andrew S. Earl3, Zachary Chiang3, Yan Hu3, 
Jiarui Ding1, Alison Brack3, Vinay K. Kartha3, Tristan Tay3, Travis Law1, Caleb Lareau1,3, 
Ya-Chieh Hsu3, Aviv Regev1,2,4,6,*, Jason D. Buenrostro1,3,7,*

1Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

2Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, 
MA 02142, USA

3Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, 
USA

4Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA

5Present address: Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, School of 
Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China

6Present address: Genentech, 1 DNA Way, South San Francisco, CA 94080, USA

7Lead Contact

SUMMARY

Cell differentiation and function are regulated across multiple layers of gene regulation, including 

modulation of gene expression by changes in chromatin accessibility. However, differentiation is 

an asynchronous process precluding a temporal understanding of regulatory events leading to cell 

fate commitment. Here we developed simultaneous high-throughput ATAC and RNA expression 

with sequencing (SHARE-seq), a highly scalable approach for measurement of chromatin 

accessibility and gene expression in the same single cell, applicable to different tissues. Using 

34,774 joint profiles from mouse skin, we develop a computational strategy to identify cis-

regulatory interactions and define domains of regulatory chromatin (DORCs) that significantly 

overlap with super-enhancers. During lineage commitment, chromatin accessibility at DORCs 

precedes gene expression, suggesting that changes in chromatin accessibility may prime cells for 
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lineage commitment. We computationally infer chromatin potential as a quantitative measure of 

chromatin lineage priming and use it to predict cell fate outcomes. SHARE-seq is an extensible 

platform to study regulatory circuitry across diverse cells in tissues.

In Brief

SHARE-seq, a highly scalable approach to measure chromatin accessibility and gene expression in 

the same single cell, links distal regulatory elements to key lineage-specifying genes and finds that 

chromatin accessibility foreshadows gene expression.

Graphical Abstract

INTRODUCTION

Regulation of chromatin structure and gene expression underlies key developmental 

transitions in cell lineages (Novershtern et al., 2011; Shema et al., 2019; Spitz and Furlong, 

2012). In recent years, genome-wide profiling of gene expression and chromatin has helped 

uncover mechanisms of chromatin change at key points of multi-lineage cell fate decisions 

(Shema et al., 2019; Spitz and Furlong, 2012). Prior studies comparing profiles of purified 

populations have observed that changes in histone modifications and binding of lineage-

associated transcription factors (TFs) may precede and foreshadow changes in gene 

expression, creating poised or primed chromatin states that bias genes for activation or 

repression to alter lineage outcomes (Bernstein et al., 2006; Lara-Astiaso et al., 2014; Rada-
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Iglesias et al., 2011). For example, deposition of the histone modification H3K4me1 has 

been shown to prime regulatory elements, biasing cells for differentiation (Lara-Astiaso et 

al., 2014; Rada-Iglesias et al., 2011) or immune cell activation (Heinz et al., 2010; Ostuni et 

al., 2013). However, approaches to analyze primed chromatin states rely on bulk 

measurements of histone modifications, largely restricting analysis to well-defined 

chromatin states and synchronous cell culture models or stem cell systems with well-defined 

markers for fluorescence-activated cell sorting (FACS) isolation. We therefore reasoned that 

an experimental approach to measure chromatin accessibility and gene expression in the 

same single cell may enable identification of primed versus active accessible chromatin, 

providing a means to identify new mechanisms of chromatin-mediated lineage-priming in 

new cellular contexts at single-cell resolution.

Methods of combining measurements of different layers of gene regulation in single cells 

may serve to determine regulators of cell differentiation and can function as sensitive 

markers of cell identity and cell potential (Kelsey et al., 2017; Shema et al., 2019). 

Computational methods (Rusk, 2019) have had some success in integrating single-cell 

epigenome, transcriptome, and protein measurements profiled separately; however, these 

methods assume that these distinct measurements reflect a common cell identity and may 

not correctly recover changes unique to one layer, such as chromatin accessibility-mediated 

lineage priming. Emerging single-cell “multi-omics” technologies offer a direct means to 

determine the coordination between layers of gene regulation. Prior studies have sought to 

correlate gene expression with regulatory element accessibility (Cao et al., 2018; Chen et al., 

2019; Zhu et al., 2019). However, these approaches had limited throughput or sensitivity, 

restricting their ability to recover fine but biologically important differences between 

chromatin accessibility and gene expression.

Here we investigate the dynamics of the epigenomic and transcriptomic basis of cellular 

differentiation by developing simultaneous high-throughput ATAC (Buenrostro et al., 2013) 

and RNA expression with sequencing (SHARE-seq) for individual or joint measures of 

single-cell chromatin accessibility and gene expression at low cost and on a massive scale. 

Using SHARE-seq, we profiled 84,426 cells across 4 different cell lines and 3 tissue types, 

including mouse lung, brain, and skin. Applying SHARE-seq to mouse skin shows that cell 

type definitions are correlated between chromatin accessibility and gene expression, with 

notable exceptions including cell cycle genes. We leverage the heterogeneity across single 

cells to infer chromatin-expression relationships and identify 63,110 peak-gene associations 

in adult mouse skin. High-density peak-gene-associated regions, to which we refer as 

domains of regulatory chromatin (DORCs), are enriched for lineage-determining genes and 

overlap with known super-enhancers. Strikingly, during hair follicle differentiation, 

chromatin at DORC-regulated genes becomes accessible before induction of the 

corresponding gene’s expression, identifying a role of chromatin accessibility in priming 

active chromatin states. Building on this finding, we develop an analytical framework, called 

“chromatin potential,” to infer cell fate choices de novo. We describe an experimental and 

analytical basis for integrated measurements of the epigenome and transcriptome, opening 

new avenues to uncover principles of gene regulation and cell fate specification across single 

cells in diverse systems.
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RESULTS

SHARE-Seq for Joint Profiling of Chromatin Accessibility and Gene Expression at Scale

To create a chromatin accessibility and mRNA expression co-profiling approach that is 

scalable and sensitive, we built on SPLiT-seq and Paired-seq (Rosenberg et al., 2018; Zhu et 

al., 2019) to develop SHARE-seq, which uses multiple rounds of hybridization blocking to 

uniquely and simultaneously label mRNA and chromatin fragments in the same single cell 

(Figure 1A; Figures S1A and S1B; STAR Methods). Briefly, in SHARE-seq, (1) fixed and 

permeabilized cells or nuclei are transposed by Tn5 transposase to mark regions of open 

chromatin; (2) mRNA is reverse transcribed using a poly(T) primer containing a unique 

molecular identifier (UMI) and a biotin tag; (3) permeabilized cells or nuclei are distributed 

in a 96-well plate to hybridize well-specific barcoded oligonucleotides to transposed 

chromatin fragments and poly(T) cDNA; (4) hybridization is repeated three times, 

expanding the barcoding space to approximately 106 (963) barcode combinations (Figure 

S1B; Table S1), and, following hybridization, cell barcodes are ligated simultaneously to 

cDNA and chromatin fragments; (5) reverse crosslinking is performed to release barcoded 

molecules; (6) cDNA is specifically separated from chromatin using streptavidin beads, and 

each library is prepared for sequencing; and (7) paired profiles are identified using the 

common combination of well-specific barcodes (Figure S1A). This barcoding strategy may 

be extended to even larger experiments by using additional rounds of hybridization (Figure 

S1B).

SHARE-Seq Generates High-Quality Chromatin and Expression Profiles across Diverse 
Cell Lines and Tissues

To validate specificity and data quality, we first performed SHARE-seq on a mixture of 

human (GM12878) and mouse (NIH 3T3) cell lines. Human and mouse reads were well 

separated on chromatin and transcriptome profiles, resulting in 903 human and 1,341 mouse 

cells passing filters of 2,000 expected cells (Figures 1B–1D). We identified only one cell 

doublet, representing a remarkably low 0.04% collision rate (consistent with the expected 

rate of 0.052%; Figure S1C), a benefit of the large SHARE-seq barcoding space. Cells 

passing filter (STAR Methods) had, on average, 2,545 RNA UMIs (9,660 estimated UMI 

library size) and 8,252 unique ATAC-seq fragments (19,723 estimated library size with 

65.5% fragments in peaks) (Figures S1D and S1E).

SHARE-seq had similar performance across replicates and additional cell lines (Figures 

S1F–S1M) and showed high concordance with previously published scATAC-seq datasets 

(STAR Methods; Figure S1J). SHARE-seq also consistently outperformed previously 

published joint ATAC-RNA approaches (Cao et al., 2018; Chen et al., 2019; Zhu et al., 2019; 

Figure 1E). Notably, SHARE-seq RNA reads (starting with cells or nuclei) are enriched for 

intronic regions, similar to single-nucleus RNA sequencing (snRNA-seq) (Habib et al., 

2016; Figure S1N), which may be due to cell membrane lysis and serial washes. Intronic 

RNA is enriched for nascent RNA, which can be used not only to identify cell types (Habib 

et al., 2017) but also to investigate temporal processes in single cells (La Manno et al., 

2018). Finally, chromatin accessibility at the NFkB1 locus and NFkB1 gene expression 

significantly co-varied across single cells (Spearman ρ = 0.31, p < 10−6, Z test), validating 
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our expectation that increased chromatin accessibility results in higher gene expression and 

that SHARE-seq may be used to query chromatin-gene expression relationships (Figure 1F).

SHARE-seq performed well with cells or nuclei from a broad range of tissues, including 

mouse skin, brain, and lung (Figures 2A–2C; Figure S2). SHARE-seq performed 

comparably with scATAC-only approaches (Lareau et al., 2019; Mezger et al., 2018) applied 

to adult mouse lung (STAR Methods; Figure 2B) and snRNA-seq and scRNA-seq (Saunders 

et al., 2018; Zeisel et al., 2018; Habib et al., 2017) of adult mouse brain (STAR Methods; 

Figure 2C; Figures S2C and S2D). SHARE-seq shows similar data quality when starting 

with cells or nuclei (Figures S2E–S2G), with the expected increase in the portion of intronic 

RNA in nuclei. Importantly, SHARE-seq also enabled experiments to be performed at a 

substantially lower cost than prior methods. Altogether, these points validate the accuracy 

and utility of SHARE-seq for integrated measures of chromatin accessibility and gene 

expression in cell lines or primary tissues.

Broad Congruence between Chromatin and RNA Defined Cell Types from SHARE-Seq

To utilize SHARE-seq to query the relationship between chromatin accessibility and gene 

expression, we focused on mouse skin. Skin is enriched for cell types from diverse lineages

—some are highly proliferative, whereas others are dormant or cycling slowly—with 

multiple populations of stem cells giving rise to well-defined cell types (Adam et al., 2015; 

Cohen et al., 2018; Fan et al., 2018; Hsu et al., 2014; Joost et al., 2018, 2020; Lien et al., 

2011; Salzer et al., 2018).

Leveraging the increased throughput and resolution of SHARE-seq, we assessed the 

congruence between the epigenome and transcriptome across an atlas of 34,774 high-quality 

profiles from adult mouse skin (Figure 2D; Figures S2H and S2I). To define cell subsets, we 

clustered the RNA portion of SHARE-seq data (Table S2). We then projected the cells based 

on ATAC-seq and RNA-seq independently to a low dimensional space (STAR Methods) and 

found that both projections separated these scRNA-seq-defined clusters (Figures 2D and 

2E). SHARE-seq not only resolved cell types from distinct lineages but could also 

distinguish between cells of closely related types (for example, αhigh CD34+ bulge versus 

αlow CD34+ bulge; Blanpain et al., 2004). Moreover, cell membership in scATAC-seq 

clusters was highly congruent with membership in scRNA-seq clusters (Figure 2F), and both 

measures revealed the same major cell types, such as transit-amplifying cells (TACs), inner 

root sheath (IRS), outer root sheath (ORS), and hair shaft cells (Figures 2D–2F).

Cells in the RNA-based clusters can also be distinguished by chromatin accessibility 

features, further confirming their identity (Figures 2G and 2H). We annotated clusters by the 

activity of lineage-determining TFs, inferred from the scATAC-seq data (Figure 2G; Schep 

et al., 2017), and their correlation with TF RNA expression levels (Figures S2I and S2K; 

STAR Methods). This analysis revealed the global transcriptional activators Dlx3 and Sox9 
and repressors Zeb1 and Sox5 (Adam et al., 2015; Huang et al., 2008; Spaderna et al., 2008), 

among many others (Figure S2K). Thus, SHARE-seq provides insights into cell identity at 

multiple scales, including chromatin regulation by key lineage-determining TFs.
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Nevertheless, some cell states may be identified at higher resolution by chromatin or gene 

expression features. Specifically, grouping clusters by their aggregate (pseudo-bulk) profiles 

revealed more distinctive chromatin accessibility differences between the permanent portion 

(clusters 1–4) and regenerative portion (clusters 5–9) of the hair follicle. Conversely, cells 

corresponding to the granular layer are easier to distinguish as a unique cluster at the gene 

expression level (Figure 2I). Moreover, a subset of actively proliferating basal cells strongly 

expressing cell cycle genes (Figure 2J), which formed a single group by RNA, was not 

identified as a coherent cluster by chromatin accessibility (with one of four different 

dimensionality reduction approaches; Figure 2J; Figure S2L; STAR Methods). On the other 

hand, the TAC populations, which also strongly expressed cell cycle genes, were identified 

as a unique cluster by chromatin accessibility (Figure S2M). In the TAC populations, 

expression of cell cycle genes is also coupled to changes in lineage identity factors (Figure 

2G). This suggests that the cell cycle is more associated with changes in gene expression and 

less predominant in chromatin accessibility profiles.

We reasoned that SHARE-seq can be used to directly test the accuracy of computational 

approaches (Stuart et al., 2019) that pair data from scATAC-seq and scRNA-seq from 

separately measured cells. Such methods typically assume congruence and may miss 

asynchrony or distinctions between these features of cellular identity. We thus tested a 

canonical correlation analysis (CCA)-based method (Stuart et al., 2019) by providing the 

ATAC-seq and RNA-seq portions of the SHARE-seq measurements separately and 

comparing inferred pairing with the correct (measured) coupling. Profiles from the same cell 

were assigned properly (defined as membership in the same cluster) with variable accuracy 

(74.9% in skin and 36.7% in mouse brain) (Figures S2N–S2S), with most mis-assignments 

between clusters representing similar cell types (e.g., IRS to TACs; Figure 2D; Figures S2Q 

and S2S). By down-sampling, we find that computational errors are exaggerated when 

sequencing depth or cell numbers are limited (Figure S2T). This suggests that SHARE-seq 

may help train computational pairing approaches across tissues or test their performance and 

help with further improvements.

Paired Measurements Associate Chromatin Peaks and Target Genes in cis

Cells exhibit significant variations in gene expression and the underlying regulation of 

chromatin because of intrinsic (e.g., bursts of expression; Larsson et al., 2019) and extrinsic 

(e.g., cell size, level of regulatory proteins; Lin and Amir, 2018) factors. SHARE-seq may 

allow us to infer the relationship between chromatin and gene expression. To test this, we 

developed an analytical framework to link distal peaks to genes in cis, based on the co-

variation in chromatin accessibility and gene expression across cells, while controlling for 

technical biases in chromatin accessibility measurements (Figure 3A; Figure S3; STAR 

Methods). We first applied this approach to a dataset of 23,278 GM12878 cells and 

identified 13,277 significant peak-gene associations (Figures S3B and S3C; Table S3; p < 

0.05, false discovery rate [FDR] = 0.11). To appropriately determine the probability of 

interaction between our peaks and the identified target gene, we first sought to normalize for 

ATAC-seq peak density surrounding gene promoters; ATAC-seq peaks are commonly 

located near gene promoters (in these data, 61.3% of ATAC-seq peaks are within 2 kb of 

transcription start sites [TSSs]). First normalizing for peak density near genes, we 
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determined the half-life of these peak-gene associations to be 24.4 ± 3.6 kb (95% confidence 

interval), resulting in a finding surprisingly similar to a recent report assessing the effect of 

cis-regulatory regions on gene expression using CRISPR-based perturbation (24.1 kb) 

(Gasperini et al., 2019). Further validating our approach, peak-gene associations are 

significantly enriched in loops identified with H3K27ac HiChIP (p < 10−608, hypergeometric 

test) and depleted in the repressive histone mark H3K27me3 (Figure S3D). Determining 

peak-gene associations without correction of technical biases (peak intensity and GC 

content) resulted in a much smaller half-life (2.6 kb; Figure S3A). Notably, down-sampling 

of cell numbers or reads dramatically reduces the ability to discover peak-gene associations 

(Figure 3B). This demonstrates that the computational and experimental improvements 

reported here are essential for accurately determining peak-gene associations.

Applying this framework to the mouse skin dataset, we identified 63,110 significant peak-

gene associations (within ± 50 kb around TSSs, p < 0.05, FDR = 0.1; Table S4; Figures S3H 

and S3I). These peak-gene associations were enriched proximally to the TSSs (Figure S3G; 

p < 2.2 × 10−16, KS test), and most of the associations regulate a single gene (83.9%; Figure 

S3J). Interestingly, in rare cases, individual peaks associated with 4 or more genes (0.14% of 

peaks), including well known gene clusters (Histone, Hox, and Keratin), suggesting that 

these peaks may coincide with regulatory hubs controlling the expression of gene clusters 

(Figure S3K). Although interesting, these occurrences were rare and may also reflect 

technical artifacts; we therefore only considered the most significant peak-gene association 

when associating target genes with peaks. Finally, most of the chromatin peaks (82%; Figure 

S3L) were not correlated with expression of any gene, a finding that supports a previous 

observation that perturbations in only a small portion of candidate enhancers significantly 

alter the expression of genes (Gasperini et al., 2019).

A subset of genes, including key fate determination genes, was associated with a large 

number of peaks (p < 2.2 × 10−16, permutation test). For example, 22 peaks were 

significantly associated (within ± 50 kb around TSSs, p < 0.05) with Dlx3, highly expressed 

in TACs (Figure 3C; Adam et al., 2015). These results are reminiscent of previous 

observations describing regulatory locus complexity at key lineage genes (González et al., 

2015). Further, regions with a high density of peak-gene associations significantly 

overlapped known super-enhancers (Adam et al., 2015; Figure 3C; Table S5; 2.1-fold 

enrichment, p = 10−238, hypergeometric test)—enhancer regions that are cell-type-specific 

and highly enriched in histone H3K27 acetylation (Whyte et al., 2013). This relationship 

was not simply driven by super-enhancer length (Spearman ρ = 0.04; Figure S3M) or the 

total number of peaks surrounding a gene (Figure S3N). Furthermore, super-enhancer-

regulated genes are associated with more peaks compared with all genes (10.9 versus 4.4 

associated peaks per gene, on average; p< 2.2 × 10−16, KS test; Figures 3D and 3E; Figure 

S3O). Finally, most annotated cell cycle genes (n = 97) had lower-than-expected numbers of 

peak-gene associations (on average, 3.4 associations for cell cycle genes versus 4.4 

associations for all genes; p = 0.026, t test), further supporting a limited contribution of 

chromatin accessibility to cell cycle-associated gene expression changes and suggesting that 

variable expression is not sufficient for determining peak-gene associations.
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DORCs Identify Key Lineage-Determining Genes De Novo

We define the 857 regions with an exceptionally large (>10) number of significant peak-gene 

associations as DORCs, identified as those exceeding an inflection point (“elbow”) when 

ranking genes by the number of significant associations (Figure 3F). We quantified the 

activity of DORCs as the sum of accessibility at peaks significantly associated with the 

DORC-regulated gene. The DORCs identified in sub-populations strongly overlap with 

DORCs identified with all cells (p = 10−201, hypergeometric test; Figure S3P). Moreover, 

DORCs were strongly enriched for known key regulators of lineage commitment across the 

expected lineages (Figure 3G; Figure S3Q). Notably, only 34.4% of DORCs active in hair 

follicle stem cells (HFSCs) or TACs overlap with super-enhancers identified in these same 

cell types (Adam et al., 2015), suggesting that DORCs may encompass other mechanisms 

promoting formation of enhancer clusters (Hnisz et al., 2017; Li et al., 2002). Finally, there 

were significant differences in DORCs even between closely related populations (Figures 

S3R and S3S), suggesting that DORCs are highly cell type specific.

Interestingly, gain of chromatin accessibility does not always equate productive 

transcription. For example, although Dlx3 DORC and Dlx3 gene expression were active in 

TAC/IRS/medulla cells, this was not the case in cuticle/cortex cells, where the Dlx3 DORC 

is active and the Dlx3 gene is not highly expressed (Figure 3H; Figure S3T). Thus, DORCs 

provide an unsupervised, readily accessible approach to simultaneously identify key lineage-

determining genes and their regulatory regions at single-cell resolution without the need to 

know the cell type identity in advance, isolate cell subsets, and conduct challenging 

chromatin immunoprecipitation sequencing (ChIP-seq) experiments from primary samples.

Lineage Priming at Enhancers Precedes Gene Expression in DORCs

The hair follicle is a highly regenerative epithelial tissue that cycles between growth 

(anagen), degeneration (catagen), and rest (telogen). At anagen onset, hair follicle stem cells 

located at the bulge and hair germ proliferate transiently to produce short-lived TACs. These 

TACs are some of the most proliferative cells in adult mammals; they divide rapidly to 

produce multiple morphologically and molecularly distinct downstream differentiated cell 

types that constitute the mature hair follicle, including the companion layer, IRS, and hair 

shaft (hair shaft cuticle, cortex, and medulla) (Zhang and Hsu, 2017; Zhang et al., 2016).

We readily recovered three hair follicle differentiation trajectories (IRS, medulla, and 

cuticle/cortex, differentiated from TACs) from chromatin accessibility (Figure 4A). 

Systematically analyzing the cuticle/cortex trajectory revealed that DORCs generally 

become accessible prior to onset of their associated gene’s expression, consistent with 

lineage priming. For example, Wnt3 RNA became detectable at the late stage of hair shaft 

differentiation (Millar et al., 1999); however, accessibility in the Wnt3 DORC activated at 

TACs prior to gene expression before lineage commitment (Figure 4B), which we quantified 

by computing “residuals” (defined as the difference of chromatin accessibility and 

expression of the gene; STAR Methods). Despite peak-gene associations being defined by 

high correlation, we found that residuals were typically positive across most of the DORC-

regulated genes (92%) and lineages (Figure 4C; Figures S4A and S4B). Thus, sufficiently 
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high RNA expression is only detectable in a subset of DORC-active cells, likely reflecting a 

requisite gain of accessible chromatin at that gene’s locus.

To further understand the gene-regulatory mechanisms underlying these residuals, we 

tracked the accessibility changes at individual peaks near the Wnt3 locus along 

differentiation pseudotime from TACs to cuticle/cortex cells (Figure 4D; Figure S4C). We 

found sequential activation of peaks in the Wnt3 DORC, with individual enhancer peaks 

activating much earlier than the Wnt3 promoter, followed by activation of nascent RNA 

expression (estimated by intron counts) and, finally, mature RNA expression (estimated by 

exon counts) (Figure 4E). We posit that activation of the promoter was the limiting factor for 

induced expression of Wnt3. For better visualization of DORC-associated residuals, we 

clustered DORCs into 4 groups (Figure 4F; Figure S4G), including a late-activating group to 

which we refer as the “cuticle/cortex module.” There was a lag of pseudotime between the 

onset of accessibility and the corresponding RNA expression (Figure 4G). Notably, some 

TACs at late pseudotime are still proliferative (as estimated by cell cycle gene expression); 

however, they already show activated enhancer peaks, suggesting a switch between 

proliferation and differentiation transitioning (Figure 4E). Importantly, lineage priming is 

not restricted to the cuticle/cortex lineage but also exists in IRS and medulla lineages (Figure 

S4H). These analyses support the long-standing hypothesis that enhancer activation 

foreshadows expression of target genes (Lara-Astiaso et al., 2014; Rada-Iglesias et al., 2011) 

and implicates chromatin accessibility as a marker for lineage priming.

We further investigated the mechanisms leading to chromatin accessibility-primed chromatin 

states and hypothesized that TFs that prime are distinct from TFs that activate enhancers. 

Indeed, we found that binding sites for Lef1 and Hoxc13 TFs were strongly enriched (p < 

10−4, KS test; Figure 4H) in cuticle/cortex module DORCs (including the Wnt3 DORC). By 

pseudo-temporal ordering of RNA expression and TF motif activity (inferred from ATAC), 

we found clear ordering of Lef1 RNA onset first, followed by Lef1 motif accessibility, 

Hox13 RNA, Hoxc13 motif accessibility along with Wnt3 DORC activity, and, finally, Wnt3 
RNA. This implicates Lef1 as the lineage-priming TF (Merrill et al., 2001). Hoxc13 
expression following this first wave of chromatin accessibility likely further induces Wnt3 
DORC accessibility, which finally promotes expression of Wnt3 (Figure 4I; Figure S4I). 

Interestingly, the pseudotime-determined cuticle/cortex branch probability tracks closely 

with Lef1 gene expression, particularly at early stages of differentiation, providing a 

genome-wide measure supporting Lef1 as the TF regulating lineage choice. This supports a 

model where distinct modes of regulation exist to prime chromatin accessibility and 

foreshadow lineage choice.

Leveraging DORCs and the TFs that regulate them, we constructed a TF-regulatory network 

that underlies hair follicle differentiation (STAR Methods), relating each TF to each DORC 

(Figures 4J and 4K; https://buenrostrolab.shinyapps.io/skinnetwork/). Consistent with our 

stepwise model of regulatory events leading to lineage commitment, Lef1 and Hoxc13 TFs 

are central components of the network driving the activity of cuticle/cortex genes, including 

Wnt3 and Trps1 (Figure 4L). Interestingly, we also identified highly connected 

transcriptional repressors (TFs that negatively correlate with DORC activity levels), 

including Gli3 and Tcf12, associated with the Sonic hedgehog (Shh) signaling pathway 
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(Park et al., 2000; Mill et al., 2003). Thus, SHARE-seq, together with our computational 

framework, can measure lineage priming and predict novel regulators.

Chromatin Accessibility Priming Coincides with Multilineage Fate Bias and Histone 
Modifications

We further sought to find out how early during differentiation we could identify markers of 

lineage commitment. To investigate this, we identified DORCs that were differentially active 

between cuticle/cortex and medulla cells preceding the lineage decision, including Notch1, 
Cux1, and Lef1 (Figure S5A). Notch1, highly expressed in hair shaft cells, is critical in 

controlling hair follicle differentiation (Pan et al., 2004). When we partitioned the lineage-

priming region into 3 sub-regions by the DORCs’ accessibility (Figures 5A and 5B), 

Notch1+ and Notch1− regions showed distinct chromatin patterns with coordinated changes 

in gene expression (Figures S5A and S5B), whereas Notch1+ cells were not distinctly 

identified by their gene expression pattern alone (Figure 5B). We observed clear chromatin 

differences across Notch1+ and Notch1− cells in the lineage priming-associated regions 

(Figures 5C and 5D). This further demonstrates that genome-wide changes in chromatin 

accessibility reflect lineage-primed cell states and highlights Notch1- and Tchh-specific 

chromatin changes priming gene expression activation.

Further analyses of chromatin accessibility-primed states revealed that lineage-primed loci 

also reflect primed histone modification states. Enhancers can be categorized as poised 

(H3K4me1high and H3K27aclow), active (H3K4me1high and H3K27achigh), and inactive 

(H3K4me1low and H3K27aclow) (Lara-Astiaso et al., 2014; Rada-Iglesias et al., 2011; 

Figure 5E). We found that Lef1 and Hoxc13 loci are poised in telogen HFSCs located at the 

bulge and hair germ (Rompolas et al., 2012, 2013) and then become active when HFSCs 

differentiate to TACs (Figure 5F). Furthermore, Wnt3 and Tchh loci are poised in TACs and 

then become active when TACs differentiate to hair shaft cells (Figure 5F). Extending this 

analysis to all DORCs, we found that DORCs with higher residuals coincided with a 

stronger signature of a poised chromatin state (p = 0.009; Figure 5G). We demonstrate that 

low levels of chromatin accessibility at DORCs are a marker of poised chromatin correlating 

with lineage fate outcomes across single cells.

Chromatin Potential Describes Chromatin-to-Gene Expression Dynamics during 
Differentiation

Empowered by our findings, we hypothesized that lineage priming by chromatin 

accessibility may foreshadow gene expression and may be used to predict lineage choice 

prior to lineage commitment. Focusing on DORC-regulated genes, we devised an approach 

to calculate “chromatin potential,” defined as the future RNA state most compatible with a 

cell’s current chromatin state (STAR Methods). We computed RNA-chromatin neighbors (k-

NN, k = 10) and found, for each cell (cell x, chromatin neighborhood), 10 cells (cell y, RNA 

neighborhood) whose RNA expression of DORC-regulated genes is most correlated with the 

current chromatin state. Chromatin potential (arrow) is the direction and distance between 

each cell (cell x, chromatin neighborhood) and the 10 nearest cells (cell y, RNA 

neighborhood) in chromatin low-dimensional space (Figure 5H; Figures S5C and S5D). Its 

arrow length is a measure of how different the chromatin state is from the “future” RNA 
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state. Notably, this analysis does not rely on the inferred pseudotime. Chromatin potential 

relates a potential “future” RNA state (observed in another cell) that is best predicted by the 

chromatin state of a given cell.

In general, chromatin potential flows from progenitor cells (TACs) to differentiated cells 

(IRS/hair shaft) (Figure 5H). Chromatin potential arrows are longer at key multi-lineage 

defining transitions, including the branchpoint that defines the cuticle/cortex and medulla 

lineages. However, some long arrows reflecting rare cells may be due to noise in the assay, 

errors in embedding the cells into lower dimensions, or technical biases. Chromatin potential 

identified a distinct root-like position in addition to the original pseudotime-identified root 

(Figure 5H). TACs are molecularly and spatially heterogeneous (Genander et al., 2014; Joost 

et al., 2020; Legué and Nicolas, 2005; Xin et al., 2018; Yang et al., 2017). These progenitors 

divide perpendicularly relative to the basement membrane and are set up by epithelial-

mesenchymal niches in the regenerating hair follicle (Figure 5I; Figure S5E). At anagen III, 

lineage-primed and spatially restricted TACs emerge and are largely unipotent progenitors. 

These TACs are distinct and emerge from multi-lineage progenitor TACs seen in earlier 

anagen stages. The identified two roots show distinct molecular profiles consistent with 

previous reports of lineage-biased TACs (Joost et al., 2020; Yang et al., 2017; Figure S5F). 

The novel root is supported by RNA velocity (Figure S5G) as well as pseudotime inferred 

from the scRNA-seq data alone (Figure S5H), further supporting a model where both roots 

are associated with cells in an undifferentiated state.

To further validate the hypothesis that the novel root reflects lineage-biased progenitors, we 

performed SHARE-seq on different hair follicle stages (first telogen, anagen III, anagen VI, 

and second telogen) and evaluated the cell type compositions (Figures 5J and 5K; Figures 

S5I–S5K). Consistent with prior studies (Joost et al., 2020; Yang et al., 2017), we found a 

similar proportion of TAC-1 (the pseudotime-defined root) and TAC-2 (the additional root 

determined by chromatin potential) cells in anagen III and anagen VI stages and a 

significantly higher portion of stem cells in first telogen (hair germ) and differentiated cells 

(IRS/medulla/hair shaft) in anagen VI. This suggests that TAC-1 and TAC-2 are the roots in 

differentiation (Figure S5K). Chromatin potential allows us to relate the chromatin state of 

one cell to future RNA states, identifying likely paths cells may follow during 

developmental transitions.

Chromatin potential exceeds our ability to predict future RNA states from the cell’s current 

RNA state by its mRNA or nascent RNA (as shown by RNA velocity; La Manno et al., 

2018), emphasizing the longer timescales foreshadowed by chromatin states (Figures S5L–

S5N). RNA velocity-derived vectors provided little resolution of cell fate dynamics within 

TACs (Figure 5L; Figure S5G). The discrepancy between RNA velocity and chromatin 

potential is most prominent in TACs (Figure 5M). Interestingly, chromatin potential has a 

longer reach (prediction timescales) at early stages, whereas RNA velocity has a farther 

reach at late pseudotimes (p < 2.2 × 10−16, KS test; Figure S5P). RNA velocity, which relies 

on differences between unspliced and spliced mRNAs (Rabani et al., 2011), predicts the 

future of individual cells on a timescale of hours (La Manno et al., 2018). In contrast, the 

timescales of changes associated with chromatin states are less well defined (Kelsey et al., 

2017); however, they are largely established prior to gene expression (Bernstein et al., 2006; 
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Rada-Iglesias et al., 2011; Shema et al., 2019). We therefore reasonably expect that 

chromatin potential may predict the future cell state on a timescale greater than that seen by 

RNA velocity, especially during differentiation.

DISCUSSION

To infer transcriptional regulation and recover key regulatory regions in differentiation, 

SHARE-seq provides a means to infer DORCs reflecting key lineage-determining genes and 

the TFs that regulate them. Leveraging SHARE-seq, it should now be possible to identify 

key regulatory regions, including developmental super-enhancers, and their associated target 

genes without isolating specific cell subsets or ChIP-seq experiments, which can be 

challenging for in vivo samples or may not even be known a priori. Inclusion of more layers 

of measurements and improved computational methods to illustrate the differences between 

chromatin regulators and gene expression should enable a more robust approach to defining 

chromatin-gene dynamics in complex tissues. This is important in developmental biology, 

cancer research, and especially human genetics, where genetic variants associated with 

complex human diseases are found in non-coding regions, which can be challenging to relate 

to specific cell types and target genes.

We define chromatin potential to describe the difference between chromatin and expression 

upon hair follicle differentiation. Recently, RNA velocity approaches have predicted a cell’s 

future state from the differences between nascent and mature RNA (categorized by intronic 

and exonic reads). In contrast, chromatin potential enables analysis of genes irrespective of 

whether they have introns (e.g., the TFs Jun, Sox2, and Foxq1 in our analysis have no 

introns) and prediction of lineage fates prior to nascent transcription. Chromatin changes 

may also reflect lineage bias rather than lineage choice. Primed chromatin states can be 

altered or reversed (Bernstein et al., 2006; Lara-Astiaso et al., 2014; Ostuni et al., 2013; 

Weiner et al., 2016). Therefore, unlike RNA velocity, we consider chromatin potential a 

measure of what the cell will likely do rather than a measure of what the cell has committed 

to do. A fascinating direction for future research will be to determine differences in 

chromatin potential, RNA velocity, and lineage choice (through lineage tracing). 

Furthermore, building computational tools to integrate chromatin potential with RNA 

velocity may enable multi-state vectors aimed to predict the continuous trajectory a cell may 

follow.

SHARE-seq provides a generalizable platform and opportunity to include additional layers 

of information per cell. With further development, we expect to integrate other scRNA-seq-

compatible measurements (Stuart et al., 2019), such as protein measurements (Stoeckius et 

al., 2017), genotyping, and lineage barcoding. Furthermore, powered by the massive 

scalability of this approach, SHARE-seq may be adapted to identify RNA barcodes, 

particularly useful for CRISPR-based perturbation screens (Dixit et al., 2016). As we move 

toward a cell atlas, we anticipate that SHARE-seq will likely play a key role in determining 

the full diversity of cell types and cell states, the regulators that define them, and the effect 

of common genetic variants on molecular processes in specific cell types.
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STAR⋆METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Jason Buenrostro 

(jason_buenrostro@harvard.edu).

Materials Availability—All unique/stable reagents generated in this study are available 

from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability—Gene Expression Omnibus: SHARE-seq data are deposited 

under accession number GEO: GSE140203, https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE140203

The R Shiny-based web application for data visualization is accessible here: https://

buenrostrolab.shinyapps.io/skinnetwork/

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—GM12878 cells were cultured in RPMI 1640 medium (11875–093, 

ThermoFisher) supplemented with 15% FBS (16000044, ThermoFisher) and 1% penicillin-

streptomycin (15140122, ThermoFisher). NIH/3T3 and RAW 264.7 cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM, 11965092, ThermoFisher) with the addition 

of 10% FBS and 1% of penicillin-streptomycin. Cells were incubated at 37°C in 5% CO2 

and maintained at the exponential phase. NIH/3T3 and RAW 264.7 cells were digested with 

accutase for preparing single-cell suspension.

Mice—Mice were maintained in an Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC) approved animal facility at Harvard University and 

MIT. Procedures were approved by the Institutional Animal Care and Use Committee of all 

institutions (institutional animal welfare assurance no. A-3125–01, 14–03-194 and 14–

07-209). Normal lung, skin and brain were collected from wild-type mice from C57BL/6 

mice aged to 6–8 weeks. Mice of both sexes were used for experiments.

Mouse skin—Female C57BL/6J mouse dorsal skins were collected at late anagen (P32). 

The hair cycle stages were confirmed using cryosectioning. To generate whole skin a single 

cell suspension, skin samples were incubated in 0.25% collagenase in HBSS at 37°C for 35–

45 minutes on an orbital shaker. Samples were gently scraped from the dermal side and the 

single-cell suspension was collected by filtering through a 70μm filter followed by a 4μm 

filter. The epidermal portion of the skin samples were incubated in 0.25% trypsin-EDTA at 

37°C for 35–45 minutes on the shaker and cells were gently scraped from the epidermal 

side. Single-cell suspensions were combined and centrifuged for 5 minutes at 4°C, 

resuspended in 0.25% FBS in PBS, and stained with DAPI (0.05 μg/ml). Live cells were 

enriched by FACS. To enrich epidermal populations, CD140a negative populations were 

purified by FACS and combined with whole skin cells in a ratio of 1:1.
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Mouse brain—An adult mouse brain was dissected, snap-frozen on dry ice, and stored at 

−80°C. A single nucleus suspension was prepared following the OMNI-ATAC protocol 

(Corces et al., 2017). Frozen brain tissue was placed into a pre-chilled 2 mL Dounce 

homogenizer with 2 mL of 1 × homogenization buffer (320 mM sucrose, 0.1 mM EDTA, 

0.1% NP40, 5 mM CaCl2, 3 mM Mg(Ac)2, 10 mM Tris pH 7.8, 1% Protease Inhibitor 

Cocktail), and 1mM DTT). Tissue was homogenized with 10 strokes with the pestle A, 

followed by 20 strokes with the pestle B. The sample was centrifuged at 100 g for 1 min to 

remove large debris. 400 μL of the supernatant was transferred to a pre-chilled 2 mL round 

bottom tube. 400 μL of a 50% iodixanol solution (50% iodixanol in 1 × homogenization 

buffer) was added and mixed. 600 μL of a 29% iodixanol solution (29% iodixanol and 480 

mM sucrose in 1 × homogenization buffer) was layered underneath the 25% iodixanol 

mixture. 600 μL of a 35% iodixanol solution (35% iodixanol and 480 mM sucrose in 1 × 

homogenization buffer) was layered underneath the 29% iodixanol solution. In a swinging-

bucket centrifuge, nuclei were centrifuged for 20 min at 3,000 g. Nuclei were resuspended in 

PBSI (0.1U/μl Enzymatics RNase Inhibitor, Y9240L, QIAGEN; 0.05U/μl SUPERase 

inhibitor, AM2696, ThermoFisher; 0.04% Bovine Serum Albumin, BSA, 15260037, 

ThermoFisher in PBS) and proceed to fixation.

Mouse lung—Mouse lung was dissociated with fine scissors followed by proteolytic 

digestion using the Lung Dissociation kit (Miltenyi Biotech) following the manufacturer’s 

instructions. Dissociated cells were then incubated at 37°C for 20 minutes with rotation, 

then filtered using a 100 μm strainer. Red blood cells were lysed using the ACK buffer 

(A1049201, ThermoFisher).

METHOD DETAILS

Transposome preparation—Tn5 was produced in-house by following a published 

protocol with minor modifications (Picelli et al., 2014). The pTXB1-Tn5 expression vector 

was transformed into C3013 cells (NEB) following the manufacturer’s protocol. Each 

colony was incubated in a 5ml LB medium at 37°C for overnight shaking at 200rpm. That 

culture was used to start a 1L LB culture with 100μg/ml ampicillin and incubated on a 

shaker until it reached O.D. ~0.6 (~3 hours). Then the culture was chilled on ice for 30min. 

Fresh IPTG was added to 0.25mM to induce expression, and the culture was incubated at 

18°C on a shaker at 200rpm overnight. The culture was collected by centrifugation at 

6,000rpm, 4°Cfor 15min. The bacterial pellet was frozen and stored at −80°C for at least 

30min. The frozen pellet was resuspended in 40ml chilled HEGX Buffer (20mM HEPES-

KOH at pH 7.2, 0.8M NaCl, 1mM EDTA, 10% glycerol, 0.2% Triton X-100) including 1 × 

Roche Complete EDTA-free protease inhibitor tablets and 10 μL Benzonase nuclease 

(Sigma E1014). The lysate was sonicated on the Bioruptor until a large fraction of cells were 

lysed. The sonicated lysate was centrifuged at 30,000 g at 4°C for 20min. A 2ml aliquot of 

chitin slurry resin (NEB, S6651S) was packed into a disposable column (Bio-rad 7321010). 

Columns were washed with 30ml of a HEGX buffer. The soluble fraction was added to the 

chitin resin slowly, then incubated on a rotator at 4°C 8 hours or overnight. The unbound 

soluble fraction was drained, and the columns were washed thoroughly with a 40ml HEGX 

buffer. The chitin slurry was eluted with 10ml of elution buffer (10ml HEGX with 100mM 

DTT) on rotator at 4°C for ~48h. The eluate was collected and dialyzed twice in 500 ml of 
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Tn5 Dialysis Buffer (100 mM HEPES-KOH pH 7.2, 0.2M NaCl, 0.2mM EDTA, 2mM DTT, 

0.2% Triton X-100, 20%Glycerol). The dialyzed protein solution was concentrated using an 

Amicon Ultra-4 Centrifugal Filter Units 30 K (Millipore UFC803024), and sterile glycerol 

was added to make a final 50% glycerol stock of the purified protein. If an extra lower 

weight band was observed when running the product on a protein gel, the product was 

further purified using a gel filtration column.

Transposome activity quantification—To evaluate the activity of the homemade Tn5, 

we compared the efficiency of homemade transposome with Nextera TDE1 transposome. 

We performed standard bulk ATAC-seq experiment (Buenrostro et al., 2013) using Nextera 

TDE1 or homemade Tn5 diluted with the dilution buffer (50mM Tris, 100mM NaCl, 0.1mM 

EDTA, 1mM DTT, 0.1% NP-40, and 50% glycerol) at different ratios. The tagmention was 

performed on 50ng purified genomic DNA instead of cells. We quantified the number of 

required cycles to reach 1/3 of the plateau fluorescence by qPCR (Buenrostro et al., 2013) 

and determined the final dilution factor of homemade Tn5 that showed the most similar 

number of cycles as Nextera TDE1.

SHARE-seq

Preparing oligonucleotides for ligations: There are three barcoding rounds of 

hybridization reactions in SHARE-seq, with a different 96-well barcoding plate for each 

round (Table S1). Hybridization oligos have a universal linker sequence that is partially 

complementary to well-specific barcode sequences. These strands were annealed prior to 

cellular barcoding to create a DNA molecule with three distinct functional domains: a 5′ 
overhang that is complementary to the 5′ overhang present on the cDNA molecule or 

transposed DNA molecules (may originate from RT primer, transposition adaptor or 

previous round of barcoding), a unique well-specific barcode sequence, and another 5′ 
overhang complementary to the overhang present on the DNA molecule to be subsequently 

ligated. Linker strands and barcode strands for the hybridization rounds were added to 

RNase-free 96-well plates to a total volume of 10 μl/well with the following concentrations: 

round 1 plates contain 9 μM round 1 linker strand and 10 μM barcodes, round 2 plates 

contain 11 μM round 2 linker strand and 12 μM barcodes, and round 3 plates contain 13 μM 

round 3 linker strand and 14 μM barcodes. The oligos are dissolved in STE buffer (10mM 

Tris pH 8.0, 50mM NaCl, and 1mM EDTA). Oligos are annealed by heating plates to 95°C 

for 2 minutes and cooling down to 20°C at a rate of −1°C per minute.

Blocking strands are complementary to the 5′ overhang present on the DNA barcodes used 

during hybridization barcoding rounds. Blocking occurs after well-specific barcodes have 

hybridized to cDNA molecules, but before all cells are pooled back together. The blocking 

step minimizes the possibility that unbound DNA barcodes mislabel cells in future 

barcoding rounds. 10 μL of each blocking strand solution was added to each of the 96 wells 

after the first, second, and third round of hybridization of DNA barcodes, respectively. 

Blocking strand solutions were prepared at a concentration of 22 μM for round 1, 26.4 μM 

for round 2, and 23 μM for round 3. Blocking strands for the first two rounds were in a 2 × 

T4 DNA Ligase buffer (NEB) while the third round was in 0.1% Triton X-100. Both ligation 
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reaction and blocking reaction were incubated with cells for 30 minutes at room temperature 

with gentle shaking (300rpm). All the oligos are thawed to room temperature before using.

Fixation—For simplicity, cells and nuclei, which were processed identically for the 

following steps, are both referred to as cells. Cells were centrifuged at 300 g for 5 minutes 

and resuspended to 1 million cells/ml in PBSI. Cells were fixed by adding formaldehyde 

(28906, ThermoFisher, final concentration of 0.1% for cell lines or 0.2% for primary tissues) 

and incubated at room temperature for 5 minutes. The amount of fixation affects both 

sequencing library complexity and ambient RNA contamination. We chose 0.1%–0.2% FA 

fixation to improve library complexity. If a significant amount of ambient RNA 

contamination is observed, more stringent fixation conditions (up to 1%) could be used. The 

fixation was stopped by adding 56.1 μL of 2.5M glycine, 50 μL of 1M Tris-HCl pH 8.0, and 

13.3 μL of 7.5% BSA on ice. The sample was incubated at room temperature for 5 minutes 

and then centrifuged at 500 g for 5 minutes to remove supernatant. All centrifugations were 

performed on a swing bucket centrifuge. The cell pellet was washed twice with 1ml of PBSI, 

and centrifuged at 500 g for 5 minutes between washings. The cells were resuspended in 

PBS with 0.1U/μl Enzymatics RNase Inhibitor and aliquoted for transposition.

Transposition: All the oligos used in this protocol can be found in Table S1. The 100 μM 

Read1 and phosphorylated Read2 oligos were annealed with an equal amount of 100 μM 

blocked ME-complement oligo by heating at 85°C for 2 minutes and slowly cooling down to 

20°C at a ramp rate of −1°C/minute. The annealed oligos were mixed with an equal volume 

of cold glycerol and stored at −80°C until use. Inhouse produced Tn510 was mixed with an 

equal volume of dilution buffer (50mM Tris, 100mM NaCl, 0.1mM EDTA, 1mM DTT, 

0.1% NP-40, and 50% glycerol). Diluted Tn5 was then mixed with an equal volume of 

annealed oligos and incubated at room temperature for 30 minutes before transposition.

For each transposition reaction, 5 μL of cells (10,000–20,000 cells in PBSI) and 42.5 μL of 

transposition buffer (38.8mM Tris-acetate, 77.6mM K-acetate, 11.8mM Mg-acetate, 18.8% 

DMF, 0.12% NP-40, 0.47% Protease Inhibitor Cocktail, and 0.8U/μl Enzymatics RNase 

Inhibitor) were mixed and incubated at room temperature for 10 minutes. 2.5 μL of 

assembled Tn5 was added to the transposition reaction. Depending on the target number of 

cells to be recovered, the number of transposition reactions can be scaled up. In general, we 

prepare 10–40 reactions, which is equivalent to 100,000–800,000 cells. The transposition 

was carried out at 37°C for 30 minutes with shaking at 500rpm. The sample was centrifuged 

at 1,000 g for 3 minutes and then washed with 1ml Nuclei Isolation Buffer (NIB) (10mM 

Tris buffer pH 7.5, 10mM NaCl, 3mM MgCl2, 0.1% NP-40, freshly added 0.1U/μl 

Enzymatics RNase Inhibitor, and 0.05U/μl SUPERase RI). The sample was then 

resuspended to 60 μL of NIB and before proceeding to reverse transcription.

Reverse transcription—Transposed cells (60 μl) were mixed with 240 μL of RT mix 

(final concentration of 1 × RT buffer, 0.4U/μl Enzymatics RNase Inhibitor, 500 μM dNTP, 

10 μM RT primer with an affinity tag, 15% PEG 6000, and 25U/μl Maxima H Minus 

Reverse Transcriptase). The RT primer contains a poly-T tail, a Unique Molecular Identifier 

(UMI), a universal ligation overhang, and a biotin molecule. The sample was heated at 50°C 

for 10 minutes, then went through 3 thermal cycles (8°C for 12 s, 15°C for 45 s, 20°C for 45 
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s, 30°C for 30 s, 42°Cfor 120 s and 50°C for 180 s), and finally incubated at 50°C for 5 

minutes. After reverse transcription, 300 μL of NIB was added and the sample was 

centrifuged at 1,000 g for 3 minutes to remove supernatant. Cell pellet was washed with 

0.5ml of NIB and centrifuged at 1,000 g for 3 minutes. Cells were resuspended in 4,608 μL 

of hybridization mix (1x T4 ligation buffer, 0.32 U/μl Enzymatics RNase Inhibitor, 0.05 U/μl 

SUPERase RI, 0.1% Triton X-100, and 0.25 × NIB).

Hybridization and ligation: Cells in ligation mix (40 μl) were added to each of the 96 wells 

in the first-round barcoding plate. Each well already contained 10 μL of the appropriate 

DNA barcodes. The round 1 barcoding plate was incubated for 30 minutes at room 

temperature with gentle shaking (300rpm) to allow hybridization to occur before adding 

blocking strands. 10 μL of round 1 blocking oligo was added and the plate was incubated for 

30 minutes at room temperature with gentle shaking (300rpm). Cells from all 96 wells were 

combined into a single multichannel basin. Subsequent steps in round 2 and round 3 were 

identical to round 1, except that 50 μL and 60 μL of pooled cells were split and added to 

barcodes in round 2 (total volume of 60 μl/well) and round 3 (total volume of 70 μl/well), 

respectively. After adding the round 3 blocking oligo, cells from all wells were combined 

and centrifuged at 1,000 g for 3 minutes to remove supernatant. The cell pellet was washed 

twice with 1ml of NIB, and centrifuged at 1,000 g for 3 minutes between washings. Cells 

were resuspended in the ligation mix (1x T4 ligation buffer, 0.32U/μl Enzymatics RNase 

Inhibitor, 20U/μl T4 DNA ligase (M0202L, NEB), 0.1% Triton X-100, 0.2 × NIB) and 

incubated for 30 minutes at room temperature with gentle shaking (300rpm). Cells were 

washed with 0.5ml NIB and resuspended in 100 μL of NIB, counted and aliquoted to 0.2ml 

PCR tubes with 1,000–20,000 cells per tube. SHARE-seq allows preparation of libraries 

from large numbers of cells and easily enables sequencing from subsets of barcoded cells 

allowing for easy QC of new samples and for reducing sequencing costs, useful features 

when performing large scale experiments.

Reverse crosslinking and affinity pull-down: NIB was added to each sample to bring the 

volume to 50 μL in total. 50 μL of 2 × reverse crosslinking buffer (100mM Tris pH 8.0, 

100mM NaCl, and 0.04% SDS), 2 μL of 20mg/ml proteinase K, and 1 μL of SUPERase RI 

were mixed with each sample and incubated at 55°C for 1 hour. 5 μL of 100mM PMSF was 

added to the reverse crosslinked sample to inactivate proteinase K and incubated at room 

temperature for 10 minutes. For each sample, 10 μL of MyOne C1 Dynabeads were washed 

twice with 1 × B&W-T buffer (5mM Tris pH 8.0, 1M NaCl, 0.5mM EDTA, and 0.05% 

Tween 20) and once with 1 × B&W-T buffer supplemented with 2U/μl SUPERase RI. After 

washing, the beads were resuspended in 100 μL of 2 × B&W buffer (10mM Tris pH 8.0, 2M 

NaCl, 1mM EDTA, and 4U/μl SUPERase RI) and mixed with the sample. The mixture was 

rotated on an end-to-end rotator at 10rpm for 60 minutes at room temperature. The lysate 

was put on a magnetic stand to separate supernatant and beads.

scATAC-seq library preparation: The supernatant that contained the transposed DNA 

fragments was purified with QIAGEN Minelute PCR clean up kit and eluted to 20 μL of Tris 

buffer (pH 8.0). Fragments were amplified in 50 μL PCR reaction (1 × NENnext, 0.5 μM 

library-specific Ad1 primer, and 0.5 μM P7 primer. The PCR reaction was carried out at the 
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following conditions: 72°C for 5 minutes, 98°C for 30 s, and then 5 cycles at 98°C for 10 s, 

65°C for 30 s and 72°C for 1 minute. After running 5 cycles of PCR, we took a 25 μL 

sample, add 10 μL of PCR cocktail with 0.6 × SYBRgreen, and ran qPCR. The qPCR 

reactions were amplified to saturation to determine the number of cycles required for the 

remaining samples on the plate. The number of extra cycles was determined as the number 

of qPCR cycles to reach 1/3 of saturated signal. The qPCR reaction was carried out at the 

following conditions: 95°C for 3 minutes, and then 20 thermal cycles at 98°C for 30 s, 65°C 

for 20 s and 72°C for 3 minutes.

cDNA library preparation—Beads were washed three times with 1 × B&W-T buffer and 

once with STE (10mM Tris pH 8.0, 50mM NaCl, and 1mM EDTA) both supplemented with 

1U/μl SUPERase inhibitor. Beads were resuspended in 50 μL of template switch mix (15% 

PEG 6000,1 × Maxima RT buffer, 4% Ficoll PM-400, 1mM dNTPs, 4U/μl NxGen RNase 

Inhibitor, 2.5 μM TSO, and 10U/μl Maxima H Minus Reverse Transcriptase). Beads were 

rotated on an end-to-end rotator at 10rpm for 30 minutes at room temperature, and then 

shaken at 300rpm for 90 minutes at 42°C. Beads were resuspended by pipetting every 30 

minutes during agitation. After template switching, 100 μL of STE were added to each tube 

to dilute the sample. The supernatant was removed by placing the sample on a magnetic 

stand. Beads were washed with 200 μL of STE without disturbing the bead pellet. Beads 

were then resuspended in 55 μL of PCR mix (1 × Kapa HiFi PCR mix, 400nM P7 primer, 

and 400nM RNA PCR primer). The PCR reaction was carried out at the following 

conditions: 95°C for 3 minutes, and then 5 cycles at 98°C for 30 s, 65°C for 45 s and 72°C 

for 3 minutes. We then took a 2.5 μL sample, added 7.5 μL of PCR cocktail with 1 × 

EvaGreen (Biotium), and ran qPCR. The qPCR reactions were amplified to saturation to 

determine the number of cycles required for the remaining samples on the plate. The number 

of extra cycles was determined as the number of qPCR cycles to reach 1/3 of saturated 

signal. The qPCR reaction was carried out at the following conditions: 95°C for 3 minutes, 

and then 20 thermal cycles at 98°C for 30 s, 65°C for 20 s and 72°C for 3 minutes. 

Amplified cDNA was purified by 0.8 × (for cell line) or 0.6 × (for primary tissue) AMPure 

beads and eluted to 10 μL of Tris pH 8.0 buffer. The amount of cDNA was quantified by 

Qubit (ThermoFisher).

Tagmentation and scRNA-seq library preparation: 100 μM Read1 oligo was annealed 

with an equal amount of 100 μM blocked ME-complement oligo and assembled with Tn5 as 

described above. For each sample, 50ng cDNA was fragmented in a 50 μL tagmentation mix 

(1 × TD buffer from Illumina Nextera kit (10mM Tris HCl pH 7.5, 5mM MgCl2,10% DMF 

final concentration), and 5 μL assembled Tn5) at 55°C for 5 minutes. Fragmented cDNA 

was purified with the DNA Clean and Concentrator kit (Zymo) and eluted to 10 μL of Tris 

pH 8.0 buffer. Purified cDNA was then mixed with tagmentation PCR mix (25 μL of 

NEBNext High-Fidelity 2 × PCR Master Mix, 1 μL of 25 μM P7 primer and 1 μL of 25 μM 

Ad1 primer with sample barcodes). PCR was carried out at the following conditions: 72°C 

for 5 minutes, 98°C for 30 s, and then 7 cycles at 98°C for 10 s, 65°C for 30 s and 72°C for 

1 minute. The amplified library was purified by 0.7 × AMpure beads and eluted to 10 μL of 

Tris buffer (pH 8.0).
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Quantification and sequencing: Both scATAC-seq and scRNA-seq libraries were 

quantified with the KAPA Library Quantification Kit and pooled for sequencing. Libraries 

were sequenced on the Next-seq platform (Illumina) using a 150-cycle High-Output Kit 

(Read 1: 30 cycles, Index 1: 99 cycles, Index 2: 8 cycles, Read 2: 30 cycles) or the Nova-seq 

platform (Illumina) using a 200-cycle S1 kit (Read 1: 50 cycles, Index 1: 99 cycles, Index 2: 

8 cycles, Read 2: 50 cycles).

SHARE-ATAC-seq pre-processing—Raw sequencing reads were trimmed with a 

custom python script. Reads were aligned to the hg19 or mm10 genome using bowtie2 

(Langmead and Salzberg, 2012) with (-X2000) option. For each read, there are four sets of 

barcodes (eight bases each) in the indexing reads. The data were demultiplexed, tolerating 

one mismatched base in each 8-base barcode. Reads with alignment quality < Q30, 

improperly paired, mapped to the unmapped contigs, chrY, and mitochondria, were 

discarded. Duplicates were removed using Picard tools (http://broadinstitute.github.io/

picard/). Open chromatin region peaks were called on individual samples using MACS2 

peak caller (Zhang et al., 2008) with the following parameters:–nomodel –nolambda –keep-

dup -call-summits. Peaks from all samples were merged and peaks overlapping with 

ENCODE blacklisted regions (https://sites.google.com/site/anshulkundaje/projects/

blacklists) were filtered out. Peak summits were extended by 150bp on each side and defined 

as accessible regions. Peaks were annotated to genes using Homer (Heinz et al., 2010). The 

fragment counts in peaks and TF scores were calculated using chromVAR (Schep et al., 

2017).

SHARE-RNA-seq pre-processing—Base calls were converted to the fastq format using 

bcl2fastq. Reads were trimmed with a custom python script. We removed reads that do not 

have TTTTTT at the 11–16 bases of Read 2 allowing one mismatch. Reads were aligned to 

the mouse genome (version mm10) using STAR (Dobin et al., 2013) (STAR–chimOutType 

WithinBAM–outFilterMultimapNmax 20–outFilterMismatchNoverLmax 0.06–

limitOutSJcollapsed 2000000). For species mixing experiments, reads were aligned to a 

combined human (hg19) and mouse (mm10) genome and only primary alignments were 

considered. Data were demultiplexed, tolerating one mismatched base in each 8-base 

barcode. Aligned reads were annotated to both exons and introns using featurecounts (Liao 

et al., 2014). To speed up processing, only barcode combinations with > 100 reads were 

retained. UMI-Tools (Smith et al., 2017) was used to collapse UMIs of aligned reads that 

were within 1nt mismatch of another UMI. UMIs that were only associated with one read 

were removed as potential ambient RNA contamination. A matrix of gene counts by cell was 

created with UMI-Tools. For cell line data, cells that expressed > 7,500 genes, < 300 genes, 

or > 1% mitochondrial reads were removed. For tissue data, cells that expressed > 10,000 

genes, < 100 genes, or > 2% mitochondrial reads were removed. Expression counts (number 

of transcripts) for a given gene in a given cell were determined by counting unique UMIs 

and compiling a Digital Gene Expression (DGE) matrix. Mitochondrial genes are removed. 

Seurat V3 (Stuart et al., 2019) was used to scale the DGE matrix by total UMI counts, 

multiplied by the mean number of transcripts, and values were log transformed. To visualize 

data, the top 3,000 variable genes were projected into 2D space by UMAP (McInnes et al., 

2018).
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Peak-gene cis-association and DORC identification—To calculate peak-gene 

associations in cis, we considered all ATAC peaks that are located in the ± 50 kb or ± 500 kb 

window around each annotated TSS. We used peak counts and gene expression values to 

calculate the observed Spearman correlation (obs) of each peak-gene pair. To estimate the 

background, we used chromVAR to generate 100 background peaks for each peak by 

matching accessibility and GC content, and calculated the Spearman correlation coefficient 

between those background peaks and the gene, resulting in a null peak-gene Spearman 

correlation distribution that is independent of peak-gene proximity. We calculated the 

expected population mean (pop.mean) and expected population standard deviation (pop.sd) 

from expected Spearman correlations. The Z score is calculated by z = (obs-pop.mean)/

pop.sd. We observed a small portion of peaks are negatively correlated with gene expression 

(1.2% of total peaks). For simplicity, we used a one-sided z-test to determine p-values. For 

peaks associated with multiple genes, we only kept peak-gene associations with the smallest 

p-value. Of note, when background peak correction is not performed, the peak-gene 

associations show strong bias toward higher accessibility regions resulting in a strong bias 

toward promoter associated interactions.

To define DORCs (a set of nearby peaks per gene), we rank genes by the number of 

significantly associated peaks (± 50kb around TSSs, p < 0.05). We used 10 and 5 peaks per 

gene as cutoffs for skin data and GM12878 data, respectively. We then re-calculate peak-

gene association by expanding the window to ± 500kb around TSSs. Prior to calculating 

DORC scores, we first normalized peak counts by the total number of unique fragments in 

peaks per cell. Following normalization, we defined the DORC score for a gene as the sum 

of counts in all significantly correlated peaks per gene to obtain a cell x DORC score matrix. 

To calculate the DORC score per cell type, we simply compute the average across all cells 

per cell type.

TF regulatory network—To define the TFs that regulate DORCs, we set two criteria. 

First, we calculated the −log10(p value) of the Spearman correlation between mean 

normalized DORC gene expression and DORC score. Second, we calculated the TF motifs 

that are enriched in the DORC. To do this, we performed PCA on DORC scores and found 

the k-nearest neighbors (k-NN, k= 50) of each DORC in PC space. We then obtained a 

PWM score matrix (peak x TF motif) using matchMotifs (out = “scores,” p.cutoff = 0.05) 

function in the chromVAR package (Schep et al., 2017). The enrichment of TF motifs is 

defined by the −log10(p value) (KS test) of the PWM scores in peaks encompassed in the k-

NN of the DORCs compared to PWM scores in GC- and accessibility- matched peaks. The 

GC and accessibility matched peaks were derived using the getBackgroundPeaks function in 

chromVAR. Based on the distribution of −log10(p value) of the Spearman correlation and TF 

motif enrichment, we manually set cutoffs to select TFs that regulate DORCs.

HiChIP—Processed HiChIP fragments file was downloaded from Mumbach et al. (2017) 

and converted to bedpe using hicpropairs2bedpe function in cLoops package (Cao et al., 

2020). The loops are called per chromosome using cLoops -f bedpe.gz -o dir -w -j -s -m 4. 

To compare with peak-gene associations, we filtered HiChIP loops that have at least one end 

anchored at promoters (+2kb and −200bp of TSSs).
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Comparison to other technologies—We compared the performance of SHARE-seq to 

sci-CAR (Cao et al., 2018), SNARE-seq (Chen et al., 2019) and Paired-seq (Zhu et al., 

2019) using cell line data. We used deeply sequenced GM12878 data for SHARE-seq, 

published A549 cell line data for sci-CAR (Cao et al., 2018) and published cell line mixture 

data for SNARE-seq (Chen et al., 2019) and Paired-seq (Zhu et al., 2019). We used the 

authors’ count matrices, which were obtained on libraries that were sequenced to saturation. 

For each assay, we determine the cutoff by ranking the number of unique molecules per cell 

barcode. We set cutoff at the steep drop-off which indicates separation between the cell-

associated barcodes and the barcodes associated with debris.

To compare SHARE-seq with other high-throughput scATAC-seq methods using cell line 

data, we used the approach described in previous paper (Lareau et al., 2019), and compared 

with published datasets, including Cusanovich et al. (2015) (GSE67446), Pliner et al. (2018) 

(GSE109828), Preissl et al. (2018) (GSE1000333), Lareau et al. (2019) (GSE123581), and 

Buenrostro et al. (2015) (GSE65360).

To compare scATAC-seq technologies in primary tissue, we generated sci-ATAC, SHARE-

seq, and 10x Genomics scATAC-seq datasets on an adult mouse lung using the same sample 

processing method (above).

To compare SHARE-seq with other high-throughput scRNA-seq/snRNA-seq methods, we 

processed four adult mouse brain datasets the same way as SHARE-seq. We downloaded 

count matrix for nuclei (https://support.10xgenomics.com/single-cell-gene-expression/

datasets/2.1.0/nuclei_2k) and cells (Zeisel et al., 2018) processed by 10x Genomics (P60 

cortex, SRP135960), cells processed by Drop-seq (Saunders et al., 2018) (P60 Cortex, 

GSE116470), and nuclei processed by DroNc-seq (Habib et al., 2017) (PFC, GSE71585).

Cell cycle signature—To calculate the cell cycle signature, we used our previously 

published cell cycle gene list (Tirosh et al., 2016) and summed up the normalized cell cycle 

gene counts per cell. We did not regress out the cell cycle signature, because it is one of the 

most important signatures in TACs.

Computational pairing—To confirm if computational pairing methods correctly predict 

cell type in scATAC-seq based on a scRNA-seq profile, we used Seurat v3.0 (Stuart et al., 

2019) to calculate gene activity scores from scATAC-seq. Next, we identified anchors 

between the scATAC-seq and scRNA-seq datasets using CCA (Stuart et al., 2019) and used 

these anchors to transfer cell-type labels from scRNA-seq to scATAC-seq. We calculated the 

percent of mismatch between the predicted cell type to the actual cell type.

Brain data analysis—For the brain sample, we aggregated scATAC-seq data generated 

using SureCell (Lareau et al., 2019) as pseudo-bulk samples, then extracted a small number 

of principal components (PCs) from the normalized pseudo-bulk count matrix. We next 

projected the scATAC-seq data to the space spanned by the PCs. The projected data was then 

visualized using tSNE and UMAP. To jointly cluster on ATAC and RNA signals, we used 

Similarity NEtwork FUSION (Wang et al., 2014) to combine the distance matrix in 

chromatin space and RNA space. After generating the fused distance matrix, we then 
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calculated the k-nearest neighbor graph and found clusters using the Louvain community 

detection algorithm. The clusters were assigned based on both marker genes and scATAC-

seq signals.

Skin scATAC-seq peak count matrix—To ensure our peak set in skin includes ATAC 

peaks from rare populations, we performed two rounds of peak calling. We first called peaks 

on filtered reads from all cells and generated a 1st-round cell-peak count matrix. We then 

filtered cells based on both ATAC and RNA profiles and identified clusters based on RNA 

profiles. We next called peaks again on aggregated pseudo bulk samples from each cluster 

and merged all peak summits, to generate a 2nd-round cell-peak count matrix.

Skin scATAC-seq dimension reduction—To reduce the dimension of ATAC-seq data, 

we tested cisTopic (Bravo González-Blas et al., 2019), chromVAR motif score and Kmer 

(Schep et al., 2017), and snapATAC (Preissl et al., 2018) approaches using default 

parameters.

Pseudotime inference—To calculate pseudotime based on scATAC-seq data, we 

analyzed the cells from TACs, IRS and Hair Shaft populations. We provided 10 normalized 

topics from cisTopic (Bravo González-Blas et al., 2019) and scATAC UMAP coordinates as 

inputs to Palantir (Setty et al., 2019) to construct a diffusion map 

(palantir.utils.run_diffusion_maps(pca_projections, n_components = 10)). The pseudotime 

and branch probabilities were inferred using the following parameters in Palantir 

(num_waypoints = 1000, knn = 30). We then defined lineages by manually examining the 

distribution of branch probability and selecting cells above a certain cutoff.

We calculated pseudotime based on scRNA-seq data similarly to scATAC-seq data. We 

provided 10 normalized principal components (PCs) from Seurat (Stuart et al., 2019) and 

scRNA UMAP coordinates as inputs to Palantir (Setty et al., 2019). The pseudotime and 

branch probabilities were inferred using the following parameters in Palantir 

(num_waypoints = 1000, knn = 30). We then defined lineages by manually examining the 

distribution of branch probability and selecting cells above a certain cutoff.

Residual analysis—Both DORC scores and gene expression were smoothed over 

pseudotime with local polynomial regression fitting (loess) separately, then min-max 

normalized. The residual for each gene was calculated by subtracting normalized gene 

expression from normalized DORC scores.

Chromatin potential—To calculate chromatin potential, we first smoothed DORC scores 

(chromatin space) and corresponding gene expression (RNA space) over a k-nearest 

neighbor graph (k-NN, k = 50), calculated using normalized ATAC topics from cisTopic. 

Next, we calculated another k-NN (k = 10), between the smoothed chromatin profile of a 

given cell (Catac, i), and the smoothed gene expression profile of each cell (Crna, i, j). We then 

calculated the distance (Di, j) between the Catac, i and the average of Crna, j in chromatin 

space. The arrow length is defined by normalizing Di, j. For visualization, we smoothed 

arrows with the 15 k-NNs in low dimensional space. For grid view, we divided the UMAP 

space into a 40 × 40 grid, then averaged the arrows for all the cells within each grid.
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RNA velocity—RNA velocity was calculated using Velocyto (La Manno et al., 2018) with 

default settings. For visualization, we smoothed arrows with the 15 RNA k-NNs. For grid 

view, we divided the UMAP space into a 40 × 40 grid, then averaged the arrows for all the 

cells within each grid.

Cost—SHARE-seq significantly reduces the amount of consumed enzyme by performing 

all reactions (including ligation, transposition, reverse transcription, and tagmentation) in 

bulk (about 10,000 cells per reaction), which dramatically reduces cost. The library 

preparation cost for SHARE-seq in our hands is only about $433 for 100,000 cells, including 

approximately $50 oligos, $50 enzymes (Tn5, ligase, etc.), $121 RNase inhibitors and other 

consumables. By comparison, the cost of sci-CAR scales with the number of cells to be 

recovered. For each experiment, 96 RT reactions, 96 transposition reactions, one 

tagmentation reaction per 25 nuclei and 2 PCR reactions per 25 nuclei are required. It would 

cost more than $30,000 to prepare a sequencing library for 100,000 cells for sci-CAR.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Methods—All of the statistical details for experiments can be found in the 

figure legends as well as the Method Details section. For all comparisons of independent 

observations between two groups, two-tailed t tests were performed, with p values unless 

otherwise specified. Z-tests were used to describe variance across groups.

Reads in Peaks Counts for ATAC-seq Data—To generate peak count matrices for 

scATAC-seq data, the number of reads overlapping a given peak window in the determined 

peak set was calculated for each unique cell barcode. FRIP was computed as the fraction of 

the number of sequenced reads per cell that fall in peaks and total unique nuclear reads per 

cell.

TF motif score—We used TF motif scores and gene expression values to calculate the 

observed Spearman correlation (obs) of each TF-gene pair. The TF motif scores were 

derived from chromVAR and were described under the Method Details sections and figure 

legends. TF motif scores were root-mean-square normalized and gene expression values 

were normalized using the SCtransform function in Seurat. Z scores and p-values were 

calculated in the same way in the cis-analysis.

Collision rate estimation—We estimate the collision by implementing a solution that 

was used in the birthday paradox (http://matt.might.net/articles/counting-hash-collisions/). 

In SHARE-seq, we introduce three rounds of barcoding during hybridization and ligation 

with 96 barcodes for each round. The cells are aliquoted to sub-libraries and another round 

of barcodes is added to each sub-library during the PCR step. In each sub-library, the total 

number of barcode combinations D = 96 3 96 3 96 = 884,736.

The expected number of collisions for N cells in a sub-library is

N − D + D D − 1
D

N
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Assuming we have 20,000 cells recovered per sub-library, the number of expected collisions 

is

20000 − 844736 + 844736 844736 − 1
844736

20000
= 224

The expected collision rate is 224/20000 ≈1%. The number of cells that could fit in one 

SHARE-seq run is 20,000 3 96 ≈2 million with about 1% collision rate.

Library size estimation—The number of unique molecules in scRNA and scATAC 

(library size) was estimated per cell based on the Lander-Waterman equation that is 

implemented in Picard tools.

C/X = 1 − exp( − N/X)

where X is the number of distinct molecules in the library, N is the number of read pairs, and 

C is the number of distinct fragments observed in read pairs (UMIs in the case of scRNA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cell states marked by chromatin and gene expression are correlated but 

distinct

• Lineage-determining genes are marked by domains of regulatory chromatin 

(DORCs)

• DORCs are accessible prior to gene expression, foreshadowing lineage choice

• Chromatin accessibility lineage priming predicts cell fate decisions
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Figure 1. SHARE-Seq Provides an Accurate Co-measure of Chromatin Accessibility and Gene 
Expression
(A) Workflow for measuring scATAC and scRNA from the same cell using SHARE-seq.

(B and C) Unique ATAC fragments (B) and RNA UMIs (C) aligning to the human or mouse 

genome. The experiment is performed using a mix of human (GM12878) and mouse (NIH/

3T3) cell lines.

(D) The percentage of ATAC or RNA reads aligning to the human genome relative to all 

reads mapping uniquely to the human or mouse genomes.

(E) Number of ATAC fragments in peaks or RNA UMIs for SHARE-seq (this study), sci-

CAR (Cao et al., 2018), SNARE-seq (Chen et al., 2019), or Paired-seq (Zhu et al., 2019). 

Boxplots denote the medians and the quartile ranges (25% and 75%), and the length of 

whiskers represents 1.5× interquartile ranges (IQRs).

(F) Aggregated single-cell chromatin accessibility and gene expression profiles in GM12878 

cells (top), individual cell profiles (bottom), and single-cell average (right). Single-cells are 

sorted by the normalized ATAC-seq yield of the depicted NFkB1 locus.
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Figure 2. SHARE-Seq Enables Joint Profiling of Chromatin Accessibility and Gene Expression 
in Tissues
(A) A schematic of tissues profiled with SHARE-seq, highlighting the cellular diversity 

within mouse skin.

(B and C) Comparison of library size estimates of SHARE-seq and other single-cell or 

nucleus-based approaches for scATAC-seq (B) and scRNA-seq (C) approaches. Boxplots 

denote the medians and the quartile ranges (25% and 75%), and the length of whiskers 

represents 1.5× IQRs.

(D) SHARE-seq uniform manifold approximation and projection (UMAP) visualization of 

single cells derived from mouse skin showing UMAP coordinates defined by RNA. Points 
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colored by clusters are defined by RNA clustering, and cell types are assigned to clusters on 

the basis of marker genes, TF motifs, and chromatin accessibility peaks. Computational 

pairing (Stuart et al., 2019) of scATAC-seq to scRNA-seq (right) is colored by predicted cell 

type. The IRS cluster is highlighted.

(E) SHARE-seq UMAP visualization of single cells derived from mouse skin showing 

UMAP coordinates defined by ATAC.

(F) Heatmap showing the proportion of cells in the RNA cluster that overlaps with 

chromatin-defined clusters.

(G) Marker gene expression and TF motif scores for each cluster.

(H) Aggregated scATAC-seq tracks denoting marker chromatin accessibility peaks for each 

cluster.

(I) The cluster-cluster correlation (Spearman correlation coefficient) of scATAC-seq (top 

right) and scRNA-seq (bottom left). The scATAC-seq correlation was calculated based on 

the average peak counts per cluster. The scRNA-seq correlation was calculated based on 

average gene expression per cluster.

(J) Cells colored by the activity of cell cycle genes (left panel). An RNA cluster marked by 

high expression of cell cycle genes is highlighted in scRNA UMAP (top right panel) and 

scATAC UMAP space (bottom right panel).
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Figure 3. cis Regulation Determines DORCs
(A) Schematic depicting an analytical framework for analysis of distal regulatory elements 

and expression of genes.

(B) Number of peak-gene associations after down-sampling the number of cells or reads in 

the GM12878 SHARE-seq dataset. Reads are down-sampled to match the number of reads 

recovered to match those obtained by sci-CAR (Cao et al., 2018).

(C) Loops denote the p value of chromatin accessibility of each peak and Dlx3 RNA 

expression (± 500 kb from TSSs). Loop height represents the significance of the correlation. 

H3K4me1 and H3K27ac ChIP-seq tracks and super-enhancer annotation were generated 

from an isolated TAC population (Adam et al., 2015). Grey bars denote scATAC-seq peaks. 
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Blue bars denote peaks that are significantly associated with the Dlx3 gene. The magnified 

tracks show the aggregated ATAC-seq data of each cluster.

(D and E) The number of significant peak-gene associations for all genes (D) and previously 

defined (Adam et al., 2015) super-enhancer genes (E).

(F) The number of significantly correlated peaks (p < 0.05) for each gene (± 50 kb from 

TSSs). Known super-enhancer-regulated genes are highlighted.

(G) Representative DORCs for each cluster; values are normalized by the min and max 

activity.

(H) The peak counts of all Dlx3 correlated peaks (left) and Dlx3 gene expression (right) 

colored in UMAP. The arrows point to regions with differential signals.
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Figure 4. Lineage Dynamics of Chromatin and Expression Defines Lineage Priming
(A) Pseudotime for three cell fate decisions shown on scATAC UMAP coordinates.

(B) Difference (residuals) for Wnt3 between chromatin accessibility and gene expression for 

the regenerative portion of the hair follicle.

(C) Histogram of the average difference (residuals) for each gene between chromatin 

accessibility and gene expression.

(D) Scatterplot of the Wnt3 DORC score and Wnt3 gene expression.
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(E) Dynamics of gene expression (intron and exon) and individual chromatin accessibility 

peaks for the cuticle/cortex lineage.

(F) Hierarchical clustering of chromatin accessibility, expression of DORC-regulated genes, 

and the difference between chromatin accessibility and gene expression (residuals) for the 

cuticle/cortex lineage. Cells are ordered by pseudotime.

(G) Lineage dynamics for individual DORC-regulated genes, highlighting lineage-priming 

in Wnt3 (left), Tubb6 (center), and the mean of the cuticle/cortex module (red cluster in F). 

The shaded region presents a 0.99 confidence interval.

(H) TF motif enrichment in lineage-priming DORCs plotted against Spearman correlation of 

the cuticle/cortex module DORC score and TF gene expression.

(I) Lineage dynamics of Lef1 and Hoxc13 motif scores and gene expression precede Wnt3 
DORC activation in the hair shaft lineage. A green line shows the branch probability of the 

hair shaft lineage.

(J) Pairwise correlation of DORC to expression of DORC-regulated genes and enrichment of 

the TF motif in the DORC. The red dashed lines indicate the cutoff to determine meaningful 

regulations.

(K) TF regulatory network showing the driver TF for each DORC. The width of an edge 

indicates the significance (−log10(FDR)) of correlation between TF RNA expression and 

DORC score. The magnified image shows TFs and DORCs that are directly connected to the 

Lef1 TF.

(L) Schematic of the stepwise model of Lef1, Hoxc13, and Wnt3 activation in the hair shaft 

lineage.
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Figure 5. Chromatin Potential Describes Chromatin-to-Gene Expression Dynamics during 
Differentiation
(A) Chromatin accessibility of the Notch1 DORC, highlighting the lineage-priming region.

(B) Distribution of Notch1+ and Notch1− lineage-primed cells in the scRNA UMAP.

(C) UMAP visualization of the chromatin accessibility profiles around the Tchh region in 

(D).

(D) Aggregated chromatin accessibility profiles of lineage-primed (Notch1+/−) progenitor 

cells (TACs) and differentiated cells (cuticle/cortex and medulla).

(E–G) The chromatin accessibility-primed chromatin state is reflected by the histone 

modification state. The ChIP-seq data were downloaded from Adam et al. (2015) and Lien et 

al. (2011).

(E) Schematic showing different categories of enhancers.

(F) ChIP-seq genome tracks showing lineage-priming genes that are identified by SHARE-

seq and are active in TACs. Genes expressed in differentiated cells are poised in TACs.
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(G) The ChIP-seq signal enrichment in lineage-specific genes that are defined by genes with 

higher expression in the hair shaft than in TACs. The lineage-specific genes are further 

classified by their residuals (DORC-RNA expression). Low-residual DORCs and high-

residual DORCs refer to the bottom 10 percentile and top 10 percentile of genes ranked by 

residuals, respectively.

(H) Schematic of the conceptual workflow for determining chromatin potential (left). 

Chromatin potential is visualized on the scATAC UMAP space, and arrows denote the 

extrapolated gene expression state of the cell (right).

(I) Schematic of TAC heterogeneity. Left: heterogeneous progenitor cells vertically 

differentiate to fat-committed cells. Right: TACs differentiate to IRS-TACs and HS-TACs 

first and further differentiate to HS and IRS.

(J) UMAP visualization of the ATAC portion of SHARE-seq data on different hair follicle 

stages, projected to the data in Figure 2E.

(K) The cell type compositions of different hair follicle stages.

(L) RNA velocity visualized on scRNA UMAP coordinates.

(M) The difference between the neighborhood predicted by chromatin potential and RNA 

velocity.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-CD140a eBioscience 13-1401-82

Bacterial and Virus Strains

C3013 NEB C3013I

Chemicals, Peptides, and Recombinant Proteins

RNase Inhibitor QIAGEN Enzymatics Y9240L

SUPERase·In RNase Inhibitor Thermo Fisher Scientific AM2696

NxGen RNase Inhibitor Lucigen 30281-2

16% Formaldehyde (w/v) Thermo Fisher Scientific 28906

Glycine Sigma Aldrich 50049

1M Tris HCl pH 7.5 Thermo Fisher Scientific 15567027

1M Tris HCl pH 8.0 Thermo Fisher Scientific 15568025

5M NaCl Thermo Fisher Scientific AM9760G

1M MgCl2 Sigma Aldrich 63069

10% NP-40 Surfact-Amps Thermo Fisher Scientific 28324

Buffer EB QIAGEN 19086

DNA Clean & Concentrator-5 Zymo D4014

PEG 6000 Sigma Aldrich 528877

Maxima H Minus Reverse Transcriptase (200 U/μL) Thermo Fisher Scientific EP0753

Deoxynucleotide (dNTP) Solution Mix NEB N0447L

T4 DNA ligase NEB M0202L

T4 DNA Ligase Reaction Buffer NEB B0202S

Proteinase K from Tritirachium album Sigma Aldrich P2308-100MG

Sodium Dodecyl Sulfate 20% (SDS) Solution VWR 97062-440

Phenylmethanesulfonyl fluoride (PMSF) Sigma Aldrich P7626

2-Propanol Sigma Aldrich I9516

0.5M EDTA Thermo Fisher Scientific AM9260G

TWEEN20 Sigma-Aldrich P9416-100ML

Ficoll PM-400 (20%) Sigma-Aldrich F5415-25ML

KAPA HiFi HotStart ReadyMix Fisher Scientific NC0295239

AMPure XP Beckman Coulter A63880

Ethanol Sigma-Aldrich 8.18760.2500

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Q32854

FlashGel DNA Cassettes Lonza 57031

Dithiothreitol (DTT), 0.1M Solution Thermo Fisher Scientific 707265ML

NEBNext High-Fidelity 2X PCR Master Mix NEB M0541L

Glycerol Thermo Fisher Scientific 15514011
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REAGENT or RESOURCE SOURCE IDENTIFIER

Protease Inhibitor Cocktail Sigma-Aldrich P8340

TRIS-Acetate Buffer 0.2M, pH 7.8 Bioworld 40120265-2

Potassium acetate Sigma-Aldrich 95843-100ML-F

Magnesium acetate Sigma-Aldrich 63052-100ML

SYBR Green I Nucleic Acid Gel Stain Thermo Fisher Scientific S7563

Dimethylformamide (DMF) Thermo Fisher Scientific 20673A

Quick-Load® Purple 100 bp DNA Ladder NEB N0551S

Gel Loading Dye, Purple (6X) NEB B7024S

PBS Thermo Fisher Scientific 10010049

Deposited Data

SHARE-seq data This manuscript GEO: GSE140203

Visualization of SHARE-seq skin data This manuscript https://buenrostrolab.shinyapps.io/skinnetwork/

sci-ATAC data Cusanovich et al., 2015 GEO: GSE67446

sci-ATAC data Pliner et al., 2018 GEO: GSE109828

sci-ATAC data Preissl et al., 2018 GEO: GSE1000333

SureCell scATAC data Lareau et al., 2019 GEO: GSE123581

Flugidm scATAC data Buenrostro et al., 2015 GEO: GSE65360

sci-ATAC data LaFave et al., 2020 GEO: GSE134812

10x snRNA brain data 10x genomics https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/nuclei_2k

10x scRNA brain data Zeisel et al., 2018 NCBI SRA: SRP135960

Drop-seq brain data Saunders et al., 2018 GEO: GSE116470

DroNc-seq brain data Habib et al., 2017 GEO: GSE71585

HiChIP data Mumbach et al., 2017 GEO: GSM2705041

sci-CAR A549 cell line data Cao et al., 2018 GEO: GSE117089

SNARE-seq cell line mixture data Chen et al., 2019 GEO: GSE126074

Paired-seq cell line mixture data Zhu et al., 2019 GEO: GSE130399

Skin ChIP data Adam et al., 2015 GEO: GSE61316

Skin ChIP data Lien et al., 2011 GEO: GSE31239

Experimental Models: Cell Lines

GM12878 Coriell Institute GM12878

NIH/3T3 ATCC CRL-1658

Experimental Models: Organisms/Strains

C57BL/6J Jackson Labs stock 000664

Oligonucleotides

Oligo seqeuences see Table S1 N/A

Software and Algorithms

R (v3.5.3) R Development Core Team, 2019 https://www.R-project.org

chromVAR R package (v0.2.0) Schep et al., 2017 https://github.com/GreenleafLab/chromVAR
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REAGENT or RESOURCE SOURCE IDENTIFIER

bowtie2 (v2.3.3.1) Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

MACS2 (v2.1.2) Zhang et al., 2008 https://github.com/macs3-project/MACS

samtools (v1.9) Li et al., 2009 http://samtools.sourceforge.net

Picard toolkit (2.14.1-SNAPSHOT) NA http://broadinstitute.github.io/picard

cLoops (v0.93) Cao et al., 2018 https://github.com/YaqiangCao/cLoops

STAR (v2.7.5) Dobin et al., 2012 https://github.com/alexdobin/STAR

UMI-Tools Smith et al., 2017 https://github.com/CGATOxford/UMI-tools

featurecounts Liao et al., 2014 http://subread.sourceforge.net

Seurat (v3) Stuart et al., 2019 https://satijalab.org/seurat/

Similarity NEtwork FUSION Wang et al., 2014 http://compbio.cs.toronto.edu/SNF/SNF/
Software.html

cisTopic (v2) Bravo González-Blas et al., 2019 https://github.com/aertslab/cisTopic

snapATAC Fang et al., 2019 https://github.com/r3fang/snATAC

Palantir (v0.2.6) Setty et al., 2019 https://github.com/dpeerlab/Palantir

Velocyto La Manno et al., 2018 http://velocyto.org
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