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Abstract

Purpose: To develop and evaluate a deep adversarial learning-based image reconstruction 

approach for rapid and efficient MR parameter mapping.

Methods: The proposed method provides an image reconstruction framework by combining the 

end-to-end convolutional neural network (CNN) mapping, adversarial learning, and MR physical 

models. The CNN performs direct image-to-parameter mapping by transforming a series of 

undersampled images directly into MR parameter maps. Adversarial learning is used to improve 

image sharpness and enable better texture restoration during the image-to-parameter conversion. 

An additional pathway concerning the MR signal model is added between the estimated parameter 

maps and undersampled k-space data to ensure the data consistency during network training. The 

proposed framework was evaluated on T2 mapping of the brain and the knee at an acceleration rate 

R=8 and was compared with other state-of-the-art reconstruction methods. Global and regional 

quantitative assessments were performed to demonstrate the reconstruction performance of the 

proposed method.

Results: The proposed adversarial learning approach achieved accurate T2 mapping up to R=8 in 

brain and knee joint image datasets. Compared to conventional reconstruction approaches that 
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exploit image sparsity and low-rankness, the proposed method yielded lower errors and higher 

similarity to the reference and better image sharpness in the T2 estimation. The quantitative 

metrics were normalized root mean square error of 3.6% for brain and 7.3% for knee, structural 

similarity index of 85.1% for brain and 83.2% for knee, and tenengrad measures of 9.2% for brain 

and 10.1% for the knee. The adversarial approach also achieved better performance for 

maintaining greater image texture and sharpness in comparison to the CNN approach without 

adversarial learning.

Conclusion: The proposed framework by incorporating the efficient end-to-end CNN mapping, 

adversarial learning, and physical model enforced data consistency is a promising approach for 

rapid and efficient reconstruction of quantitative MR parameters.
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Deep Learning; MR Parameter Mapping; Convolutional Neural Network; Model-based 
Reconstruction; Generative Adversarial Network; Adversarial Learning

INTRODUCTION

Quantitative MR parameter mapping has been shown as valuable image biomarkers for 

assessing a variety of diseases(1). Traditional approaches for imaging MR parameters such 

as the spin-spin relaxation time (T2) usually require repeated acquisitions to capture a set of 

imaging contrast, followed by a pixel-wise curve fitting using an MR signal model. This 

leads to longer scan times compared to conventional contrast-weighted imaging and thus 

limits its widespread clinical use. As a result, the acceleration for parameter mapping has 

become a popular research direction in the MR research community.

There has been recent interest in using deep learning to accelerate MR acquisition and 

reconstruction (2–10). We have previously developed a deep learning reconstruction method, 

called Model-Augmented Neural neTwork with Incoherence Sampling (MANTIS) (11), for 

mapping T2 parameters using a rapid multi-echo spin-echo acquisition. MANTIS uses an 

efficient end-to-end CNN mapping (modified U-Net (12)) to directly convert a series of 

undersampled images into parametric maps (e.g., a T2 map and a proton density map I0 for 

T2 mapping) by exploiting the spatial-temporal information in undersampled images. In 

addition, a physical model characterizing the MR signal evolution is further incorporated 

into the learning framework to guide the image-to-parameter transform, so that the 

parameter maps can be robustly estimated directly from undersampled images.

A number of studies have also shown that when training a deep learning model for imaging 

applications, the implementation of a simple l1/l2-norm as a training loss could result in 

image blurring and loss of image details (13). This is also a potential challenge for the 

MANTIS framework. While MANTIS has demonstrated promising results for accelerated 

T2 mapping, the use of a simple training loss could limit the further acceleration of T2 

mapping, particularly at high image resolution. Our study and others have recently 

demonstrated that the Generative Adversarial Network (GAN) (14) can improve image 

sharpness and better preserve image texture through the addition of an adversarial training 

process into deep learning-based MR reconstruction (15–18). The aim of this current study 
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was thus to expand the MANTIS framework by incorporating adversarial training for 

improved reconstruction performance. The feasibility of this new framework, referred to as 

MANTIS-GAN, was evaluated for T2 mapping in simulated brain imaging datasets and real 

knee imaging datasets.

THEORY

This section describes the extension of MANTIS to MANTIS-GAN tailored for T2 mapping 

based on a single exponential decay model. This new framework could also be applied for 

mapping other MR parameters with corresponding MR signal models.

MANTIS: Deep Learning-based Parameter Mapping with Model-Consistency

In the setup for T2 mapping, the jth echo image can be reconstructed from a subset of k-
space measurements as:

dj = Eij + ε [1]

where the dj is the undersampled k-space data, ij is the to-be-reconstructed image with an 

image size of nx×ny, ε represents the complex Gaussian noise (19). E is the encoding matrix, 

which can be further expanded as:

E = MF [2]

Here, F is an encoding operator for fast Fourier Transform and M is an undersampling mask 

to selectively acquire k-space locations. The signal evolution for T2 mapping follows the 

exponential decay at the jth echo (TEj) as:

ij = Sj I0, T2 = I0 ⋅ e−TEj/T2 [3]

where I0 and T2 is the proton density and spin-spin relaxation time, respectively. A model-

based reconstruction scheme, by incorporating Eq [3] into Eq. [1], can be formulated as:

I0, T2 = arg min
I0, T2

∑
j = 1

t
ESj I0, T2 − dj 2

2
[4]

where ‖·‖2 denotes the l2 norm and t is the number of acquired echoes.

Inspired by the model-based reconstruction, the original MANTIS framework reformulates 

the Eq[4] into a network training loss. As shown in Figure 1, an end-to-end mapping CNN 

G iu ∣ θ : iu I0, T2  with network parameters θ is designated to directly convert 

undersampled images into the parameter maps through domain transform learning. This first 

loss term (loss 1 in the figure) ensures the fact that the mapping CNN can output parameter 

maps that, by following the MR physics, can produce undersampled k-space data consistent 

with the acquired k-space measurements. In addition, the standard supervised learning can 

be treated as a strong regularizer, where the second loss term (loss 2 in the figure) provides 

that the mapping CNN generates similar parametric maps to the reference parameter maps in 
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the sense of l2 norm. Overall, this optimization problem is then reformulated to minimize a 

training loss as:

Lcyc(G) = λ1Eiu − P iu ∑
j = 1

t
ESj G iu ∣ θ − dj 2

2

+ λ2Eiu P iu G iu ∣ θ − I0, T2 2

[5]

Where λ1 and λ2 are weight factors to balance two loss terms, respectively, assuming that 

there are training image datasets including reference parameter maps (I0, T2) and the 

corresponding undersampled images iu which can be obtained by using zero-filling 

reconstruction with a pre-defined undersampling mask M on the fully-sampled images 

i . Eiu P iu [ ⋅ ] is an expectation operator given the training sample iu belongs to the data 

distribution P i(u) of the undersampled image datasets.

Adversarial Loss

While these two l2 norm loss terms can ensure favorable reconstruction by removing noise 

and artifacts, recent studies have found that sole use of pixel-wise loss terms such as l1 or l2 

norm can result in image blurring and loss of image texture (11,15–18). To alleviate this 

problem, GAN has been recently introduced to enforce image sharpness and texture 

preservation, as shown in several image restoration applications(15–18). More specifically, 

GAN uses a CNN discriminator to assess the similarity between the output of CNN mapping 

and the references. An adversarial loss can then be implemented into the training framework 

as a third loss term in Figure 1. The adversarial loss can capture multiple-level local and 

global features so it can better represent image texture and pattern than the simple loss does. 

Mathematically, a multiple-layer CNN discriminator D((I0,T2) |δ) : (I0,T2) →1 with network 

parameters δ is designed to distinguish reconstructed parameter maps versus reference 

parameter maps from the data distribution P(I0,T2) of the reference map datasets. This 

discriminator D outputs a probability value to measure how likely the estimated I0, T2
comes from the reference map datasets. The adversarial loss can be formatted as:

Lgan(G, D) = E I0, T2 P I0, T2 logD I0, T2 ∣ δ
+ Eiu P iu log 1 − D G iu ∣ θ ∣ δ [6]

MANTIS-GAN: MANTIS with Adversarial Network

By combining all three loss terms, a full loss function can be written as:

Lfull = Lcyc + Lgan = λ1Eiu P iu ∑
j = 1

t
ESj G iu ∣ θ − dj 2

2

+ λ2Eiu P iu G iu ∣ θ − I0, T2 2 + λ3
E I0, T2 P I0, T2 logD I0, T2 ∣ δ + Eiu P iu log 1 − D G iu ∣ θ ∣ δ

[7]

Here λ3 is a weight factor in balancing the GAN effect on the overall reconstruction. The 

full loss function can then be optimized in the training step using a two-player minimax 

game(14) as:
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G, D = argmin
G

max
D

Lfull(G, D) [8]

where G aims to minimize this loss function against the adversary D that seeks to maximize 

it. With successful training, the GAN theory ensures that this competing scheme can result 

in an optimal G iu ∣ θ : iu I0, T2  to generate parameter maps indistinguishable from the 

real reference maps based on the judgment of the discriminator D. Once the training is 

completed and satisfied, the CNN mapping can be fixed and directly applied to convert 

newly undersampled images into parameter maps for the reconstruction.

METHODS

Image Datasets

Simulated Brain Data—Twenty digital brain models made from 20 healthy adults with 

intersubject anatomical variabilities were obtained from the BrainWeb project (https://

brainweb.bic.mni.mcgill.ca/). Each brain model was acquired by registering and averaging 

four whole-head high-resolution isotropic (1 mm3) T1-, T2-, and I0-weighted MRI scans 

from each subject. A 3D tissue mask covering the whole head for eleven tissue types 

including gray matter, white matter, cerebrospinal fluid was created by classifying the voxel 

intensities from all MR images using a fuzzy minimum distance classification algorithm(20). 

These models provided realistic brain structural features that were ideal for generating image 

datasets with brain anatomical information. Different tissue relaxation parameters, including 

T1,T2 and I0, were assigned to each tissue type based on previous literature values (21,22). 

The synthetic image data were generated using our MRiLab (23) simulation system on the 

brain models. The MRiLab (https://leoliuf.github.io/MRiLab/) is an open-source Bloch-

simulation system, which is capable of simulating MR formulation for various pulse 

sequences given radiofrequency (RF) pulses, gradient waveforms, and acquisition schemes. 

After loading the digital model, a virtual MRI scan was configured to specify the pulse 

sequence, which defines time-varying RF pulses and imaging gradients to obtain the desired 

image contrast, resolution, and acquisition trajectory. The simulation was performed through 

a discrete-time solution of the Bloch-equation by mean of rotation and exponential scaling 

matrices at each time throughout the prescribed sequence (23–25). The acquired signal from 

all voxels in the digital model at the prescribed acquisition windows was then collected to 

fill the k-space. Upon completion, a fully-sampled image was generated by performing a fast 

Fourier transform on the k-space data. A schematic description of the simulation workflow 

is shown in Figure 2. A multi-echo spin-echo T2 mapping sequence was used to simulate 

axial brain MR images using the following imaging parameters: 16 linear echo times/ 

repetition time (TEs/TR) = [10, 20, 30, …, 160]/2500 ms, flip angle = 90°, slice thickness = 

3mm, pixel bandwidth = 488Hz/pixel, number of slices = 40, field of view = 22×22cm2, and 

acquired image matrix = 256×256. There was a total of 800 image slices for all subjects.

In-Vivo Knee Data—This retrospective study was performed using T2 mapping images of 

the knee acquired in 110 symptomatic patients using a 3T GE scanner (Signa Excite Hdx, 

GE Healthcare, Waukesha, Wisconsin) and an eight-channel phased-array extremity coil 

(InVivo, Orlando, Florida). The study was approved by the Institutional Review Board and 
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had a waiver of written informed consent. The imaging parameter for the applied multi-echo 

spin-echo T2 mapping sequence includes: 8 echo times/repetition time (TEs/TR) = [7, 16, 

25, 34, 43, 52, 62, 71]/1500 ms, flip angle = 90°, slice thickness = 3–3.2mm, pixel 

bandwidth = 122Hz/pixel, number of slices = 18–20, field of view = 16×16cm2, acquired 

image matrix = 320×256, and total scan time = 9min. The images were all acquired in the 

sagittal plane and were reconstructed on the MR scanner using the vendor-provided method 

(CartiGram, GE Healthcare, Waukesha, Wisconsin). The reconstructed images were saved as 

DICOM files after the coil combination and had a mean signal-to-noise ratio (SNR) of ~150 

at the first echo image. There was a total of 2107 image slices for all subjects.

Retrospective undersampling was performed to generate the undersampled multi-echo 

images by multiplying the reference fully sampled k-space data with the undersampling 

masks using a zero-filling reconstruction. An acceleration rate (R)=8 was evaluated for both 

brain and knee image datasets with an undersampling mask generated using one-

dimensional variable-density Cartesian random undersampling patterns (26). The mask had 

a fully sampled 5% central k-space, and the sampling pattern varied for each echo to create 

temporal incoherence following the compressed sensing strategy. The reference T2 and I0 

maps were generated by fitting the fully-sampled multi-echo images into the exponential 

decay model in Eq. [3] using a pixel-wise standard nonlinear least-squares algorithm.

Implementation and Training of the Neural Network

For the end-to-end CNN mapping, a U-Net architecture (12) was adapted from a previous 

image-to-image translation study (27) into MANTIS and MANTIS-GAN. For the 

adversarial configuration, a PatchGAN (27) architecture was used for the discriminator 

network, which aims to differentiate real versus artificial maps using image patch-based 

assessment in the adversarial process. The choice of such combination is supported by the 

promising performance of our recent GAN-based architecture in image reconstruction (15). 

An illustration of the applied U-Net and PatchGAN is shown in Figure 3. The network was 

coded in Python (Python Software Foundation, Wilmington, Delaware) and used the Keras 

package (28) running Tensorflow computing backend (29) on a 64-bit Ubuntu Linux system.

The subjects were randomly split into 80%, 10%, and 10% for training, validation, and 

testing. During the training step, the undersampled images are concatenated from all the 

echoes together as the input of U-Net. The initialization of network parameters followed the 

strategy as shown in Ref (30), and an adaptive gradient descent optimization (ADAM) 

algorithm (31) at a fixed learning rate of 0.0002 was used to update the network parameters. 

A mini-batch training was performed with each batch consisting of 3 image slices for one 

iteration. Total iteration steps corresponding to 200 epochs were carried out to ensure 

convergence of the training (Figure 4), and the best model was determined as the one that 

had the lowest combined loss 1 + loss 2 value on the validation datasets. A grid search was 

performed to find the optimal weight factors in the loss function (Eq. [7]). They were 

λ1=0.2, λ2 =1 and λ3=0.1 for brain images and λ1=0.1, λ2 =1 and λ3=0.01 for knee images 

in training MANTIS-GAN. MANTIS used the same sets of λ1 and λ2 weights to make a 

fair comparison. All training and evaluation were conducted on a personal computer hosting 
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an Intel Xeon W3520 CPU, 32 GB global RAM, and one NVidia GTX 1080Ti graphic card 

which has 3584 CUDA cores and 11GB GPU RAM.

Evaluation of Reconstruction Methods

The reconstruction result of MANTIS-GAN was compared with the state-of-the-art joint x-p 

(spatial-parametric) reconstruction, including one method using locally low-rank constraint 

(LLR (32)), and another method using a combined sparsity and low-rank constraint (k-t SLR 

(33)) on the multiecho image-series. The LLR reconstruction followed the original 

implementation in Ref (32). The k-t SLR reconstruction followed the default parameter 

setting using the code in https://research.engineering.uiowa.edu/cbig/content/matlab-codes-

k-t-slr, provided by the authors. Because the LLR and k-t SLR provided reconstructed echo 

images, a T2 map was then obtained by pixel-wise fitting the reconstructed images into Eq. 

[3] using a standard nonlinear least-squares algorithm. The MANTIS-GAN was also 

compared with the original MANTIS without adversarial learning.

Three quantitative metrics focusing on different image aspects were used to assess the global 

difference between the reconstructed T2 maps and the reference T2 maps. The normalized 

Root Mean Squared Error (nRMSE) and Structural Similarity (SSIM) index were used to 

assess the overall reconstruction error and the similarity with respect to the reference, 

respectively. The relative reduction of Tenengrad measure (34,35) between the reconstructed 

maps and reference was used to assess the loss of image sharpness. Because this metric is 

sensitive to the changes of local characteristics of pronounced image edges, a higher 

Tenengrad value indicates sharper image appearance, thus lower reduction of Tenengrad in 

contrast to reference indicates better sharpness preservation of the reconstructed maps. 

Differences of these measures between methods were evaluated using a paired Wilcoxon 

signed-rank test with statistical significance defined as a p-value less than 0.05.

The regional assessment was performed in the knee images using Region-of-interest (ROI) 

analysis. The patellar, femoral and tibial cartilage subsections and meniscus of the knee joint 

were manually segmented by a senior imaging scientist under the supervision of a 

musculoskeletal radiologist for all testing knee images. The mean T2 values were then 

obtained from LLR, k-t SLR, MANTIS, and MANTIS-GAN. The agreement between the 

reconstructed and reference T2 values were evaluated using the Bland-Altman analysis(36), 

with a significance level defined as p<0.05.

RESULTS

Figure 5 shows representative T2 maps (top row) and proton density I0 maps (bottom row) 

estimated from different reconstruction methods, respectively, for testing brain datasets. The 

LLR reconstruction generated parameter maps with inferior image quality, as indicated by 

the noticeable artifacts and noises. The k-t SLR outperformed the LLR method as it restored 

some image details but remained residual artifacts. In contrast, the deep learning-based 

methods removed most of the artifacts, although the original MANTIS created apparent 

blurriness at the tissue boundaries due to the high image acceleration. The MANTIS-GAN 

provided the optimal reconstruction with well-preserved image sharpness, clarity, and tissue 

texture similar to the reference parameter maps.
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Figure 6 demonstrates the comparison of generated T2 maps from different reconstruction 

methods for a testing knee dataset. Similar to the example for the brain, there was an 

observation that MANTIS-GAN provided nearly artifact-free T2 maps while maintaining 

better image sharpness and more realistic tissue texture in comparison with the original 

MANTIS, the LLR and k-t SLR methods.

The qualitative observations in the exemplary figures were further confirmed by the group-

wise quantitative analysis, as shown in Table 1, which summarizes the averaged nRMSE, 

SSIM, and Tenengrad measures between the reference and the reconstructed T2 maps in all 

the testing datasets for brain and knee, respectively. In general, The MANTIS and MANTIS-

GAN reconstruction outperformed the sparsity and low rankness-based LLR and k-t SLR 

methods for all metrics with p<0.001. Compared with MANTIS, MANTIS-GAN yielded the 

sharper image appearance (lower Tenengrad: p<0.001 for brain, p=0.03 for knee) and the 

higher similarity (higher SSIM: p=0.01 for brain, p=0.01 for knee) to the reference. Noise 

suppression was slightly better (lower nRMSE: p=0.04 for brain, p=0.01 for knee) for 

MANTIS in contrast to MANTIS-GAN.

The Bland-Altman plots were shown in Figures 7 to compare the reference versus 

reconstructed T2 maps in the cartilage subsections and meniscus. In contrast to LLR and k-t 

SLR, which typically overestimated T2 values, both MANTIS and MANTIS-GAN had a 

similar unbiased estimation of T2 values (p>0.05). For both cartilage subsections and 

meniscus, they achieved a more considerable agreement with the reference T2 values, as 

indicated by the narrower limits of agreement lines (i.e., the dashed lines).

DISCUSSION & CONCLUSIONS

In this study, a deep learning-based reconstruction framework called MANTIS-GAN was 

proposed for rapid and efficient MR parameter mapping and was evaluated for T2 mapping 

in the brain and the knee joint. Building on the foundation of MANTIS, the newly proposed 

MANTIS-GAN with adversarial learning not only maintained the original features of 

MANTIS but also enhanced the CNN mapping performance by enforcing a generation of 

high-quality parameter maps with image texture and sharpness preservation at a high 

acceleration rate.

Adversarial learning has proven to be effective in preserving perceptional image texture and 

sharpness in reconstructed images, as previously shown in (15,17,18) for static MR image 

reconstruction. While the pure pixel-wise losses such as l1/l2 norm and the hybrid of l1/l2 

norm have been widely applied for many imaging studies, these simple loss functions aim to 

suppress the image noise and artifacts but can sometimes inevitably sacrifice image details 

and sharpness (13). The reconstructed images may alter the underlying image texture and the 

noise spectrum thus can result in the variation of image information. The reconstructed 

images using adversarial loss is more advantageous for maintaining image textures and 

patterns that present visually favorable appearance. Mathematically, successful convergence 

of the adversarial training can guarantee that the restored images and the training references 

fall into the same data distribution in a transformed high dimensional manifold (37,38). As 

shown in this study, adversarial learning can be directly extended and applied to the domain 
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of parameter maps to enforce the accurate image-to-parameter domain transform, meanwhile 

maintaining favorable preservation to image details. In both brain and knee applications, the 

perseveration of tissue structure can be important in delineating and evaluating small lesions 

and subtle tissue abnormalities caused by early pathologies, which otherwise could be 

missed due to image blurring.

Adversarial learning is also known to be challenging to train as the competitive nature of the 

CNN mapping (G) and CNN discriminator (D) can cause the learning process to be 

unstable(39). The resulted generation of image hallucinations (i.e., pseudo image structure) 

is malignant for image diagnosis. The MANTIS-GAN alleviates this concern by 

implementing the data consistency enforcement so that data fidelity loss (loss 1) can prevent 

degradation of the adversarial process from generating hallucinated features in parameter 

maps. The combination of all loss components in MANTIS-GAN is important as it imposes 

not only the efficient and rapid image feature learning but also the information consistency 

to provide robust end-to-end CNN mapping. It should also be noted that the optimization of 

the loss weights warrants further investigation. As the weight setting differs for different 

image datasets in our study via the grid search, it is highly likely that the optimal weights are 

dependent on the aspects of the training hyperparameters, such as the network architecture 

and the training datasets. In contrast to the manual and brute-force method for tuning loss 

weights, which can be tedious, time-consuming, and less repeatable. The recent proposed 

deep hyperparameter learning may provide a convenient solution by treating the loss weights 

as extra learnable variables and dynamically adjust them during the network training(40). 

Moreover, the adversarial learning can be further stabilized and improved by investigating 

several recent GAN architectures such as Wasserstein GAN (WGAN) (39), WGAN with 

Gradient Penalty (WGAN-GP) (41), Least Square GAN (LS-GAN) (42), and Deep Regret 

Analytic GAN (DRAGAN) (43), all of which are proven to improve the adversarial process.

There are several limitations in the current proof-of-concept study. Firstly, the MANTIS-

GAN used the DICOM images after coil combination despite training CNN can be better 

using multi-coil k-space data. Similar to our previous deep learning reconstruction work for 

static MR images in Ref. (15), the extension of MANTIS-GAN for multi-coil data is entirely 

possible given access to the adequate multi-coil datasets and advanced GPU devices with 

more GPU memory. In addition, there are no limits for our method to reconstruct other 

undersampling trajectories. The MANTIS-GAN framework can also be extended to process 

non-Cartesian data such as spiral and radial by incorporating gridding and regridding 

operations and a density compensation function in the training process, similar to that in 

standard iterative non-Cartesian reconstruction. Secondly, the feasibility study of T2 

mapping used a mono-exponential decay model for reconstructing multi-echo spin-echo 

images. Although this simple model might be suboptimal for this sequence due to the effects 

of stimulated echoes, non-ideal slice selection (44,45), it is expected that further 

improvement can be realized by using optimized imaging protocols and more advanced 

signal models, such as using the Bloch-simulation-based model to produce more reliable T2 

parameter estimations (45). Thirdly, adversarial learning in our study was applied to the full-

scale image. While this implementation is preferable for anatomies such as white and gray 

matters in the brain with comparable size and spatial distribution, in another application such 

as knee joint, the sizeable structures, including bone and muscle, could dominate GAN 
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effort. Therefore, balanced optimization might be achieved through providing more attention 

to cartilage and meniscus in the knee to balance GAN effect in new GAN strategies. Finally, 

the research is warranted to investigate how and to what extent that MANTIS-GAN can be 

generalized to various imaging protocols and MR scanning environments for robust and 

reliable parameter mapping. For example, further studies are needed to investigate the 

generalization and robustness of the trained models at the presence of imaging protocol 

discrepancy between training and testing datasets. Future studies are also needed to validate 

the tolerance of MANTIS-GAN on image noise at a wide range of SNR levels.

In conclusion, we have demonstrated that the proposed MANTIS-GAN framework by 

synergistically incorporating the end-to-end CNN mapping, model enforced data 

consistency, and adversarial learning represents a promising deep learning approach for 

realizing efficient, rapid and high-quality MR parameter mapping.
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Figure 1: 
The schematic demonstration of the MANTIS-GAN framework. The MANTIS framework 

uses two components, including the first loss term (loss 1) to enforce data consistency 

between the synthetic undersampled data and the acquired k-space measurements; and the 

second loss term (loss 2) to ensure the similarity between the estimated parameter maps and 

the reference parameter maps. Building on the foundation of this framework, MANTIS-

GAN introduces the third adversarial loss highlighting that estimated maps resemble the 

same tissue features and image sharpness as the reference maps from fully sampled data. 

The MANTIS-GAN framework synergizes the data-driven and MR physics-informed 

knowledge and introduces adversarial training for improved detail preservation.
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Figure 2: 
The schematic demonstration for the simulated brain image datasets. (a) One of 20 McGill 

BrainWeb phantoms applied to generate realistic brain MR datasets using the MRiLab 

simulator and a multi-echo spin-echo sequence for T2 mapping at 1.5T. (b) 1D Cartesian 

variable-density undersampling masks used for 16 echoes. (c) The generated undersampled 

T2 mapping images for evaluating deep learning-based reconstruction algorithms.
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Figure 3: 
The configuration of U-Net and PatchGAN in MANTIS-GAN for end-to-end CNN mapping 

and adversarial training. The U-Net consists of a paired encoder and decoder network. 

Several shortcut connections were used to transfer image features directly between encoder 

and decoder to enhance the mapping performance. The configuration of the convolution 

layers is shown as image size @ the total number of 2D filters. Abbreviation includes BN: 

Batch Normalization; ReLU: Rectified Linear Unit activation; Conv: 2D convolution; 

Deconv: 2D deconvolution
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Figure 4: 
The overall losses as a function of the training process at each epoch for training MANTIS-

GAN on the brain image datasets. The image loss (loss 1 + loss 2) decreases during the 

training and converges into stable status after 180 epochs. The adversarial training 

demonstrates a competing form of adversarial loss behavior for generator (U-Net) and 

discriminator (PatchGAN) (without the logarithm for display purposes). The adversarial 

training creates a mechanism to mutually improve generator and discriminator to improve 

the final reconstruction output.
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Figure 5: 
Comparison of T2 and I0 maps reconstructed from MANTIS-GAN and MANTIS with maps 

from joint x-p reconstruction methods at an acceleration rate R=8 in one simulated axial 

brain slice. The difference maps under the reconstructed T2 and I0 maps show the absolute 

pixel-wise error at the same color scale. MANTIS removed most of the image artifact but 

resulted in image blurring at the tissue boundaries. MANTIS-GAN generated nearly artifact-

free T2 and I0 maps with well-preserved image sharpness, clarity, and tissue texture like the 

reference maps. The joint x-p reconstruction methods resulted in parameter maps at reduced 

image sharpness and remaining residual artifacts.
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Figure 6: 
Comparison of T2 maps reconstructed from MANTIS-GAN and MANTIS with maps from 

joint x-p reconstruction methods at an acceleration rate R=8 in one real sagittal knee slice. 

The difference maps under the reconstructed T2 maps show the absolute pixel-wise error at 

the same color scale. MANTIS and MANTIS-GAN removed most of the image artifact, and 

MANTIS-GAN generated better bone texture and sharper image appearance that is 

comparable to the reference maps. Other methods cannot remove the residual artifacts 

caused by the high undersampling rate.

Liu et al. Page 18

Magn Reson Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
The Bland-Altman plots for the agreement of the regional cartilage and meniscus T2 values 

in the testing knee datasets between the reference and the T2 maps reconstructed from 

different methods at an acceleration rate R=8. MANTIS and MANTIS-GAN achieved 

unbiased estimation (p>0.05) of the T2 values for cartilage and meniscus with narrower 

limits of agreements (the dashed lines), which are calculated at the ±1.96*standard deviation 

of the mean differences.
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Table 1:

The mean and standard deviation (SD) of nRMSE, SSIM, and Tenengrad measures on testing datasets for 

brain and knee joint, respectively. MANTIS-GAN achieved the reconstruction performance with the highest 

image sharpness (i.e., lowest Tenengrad measures) and best texture preservation (i.e., highest SSIM measures) 

in contrast to the reference. MANTIS achieved the greatest noise suppression (i.e., lowest nRMSE measures).

Methods

Mean ± SD at Brain Datasets Mean ± SD at Knee Datasets

nRMSE (%) SSIM (%) Tenengrad (%) nRMSE (%) SSIM (%) Tenengrad (%)

LLR 10.9 ± 4.2 50.2 ± 5.3 35.4 ± 6.3 13.7 ± 3.4 58.2 ± 3.1 41.7 ± 8.3

k-t SLR 6.8 ± 2.5 66.5 ± 3.4 20.6 ± 4.3 11.4 ± 2.5 69.8 ± 3.5 19.1 ± 2.2

MANTIS 3.4 ± 1.8 83.1 ± 1.9 15.6 ± 3.9 7.1 ± 1.9 81.1 ± 2.1 11.6 ± 3.1

MANTIS-GAN 3.6 ± 2.1 85.1 ± 2.6 9.2 ± 3.2 7.3 ± 2.2 83.2 ± 2.4 10.1 ± 2.3
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