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Synthesis and initial screening 
of lactate dehydrogenase inhibitor 
activity of 1,3‑benzodioxole 
derivatives
Dicky Annas1,4, Se‑Yun Cheon2,4, Mohammad Yusuf1, Sung‑Jin Bae3, Ki‑Tae Ha3* & 
Kang Hyun Park1*

Cancer is one of the main causes of mortality in the world. Many cancer cells produce ATP through 
high-level lactic acid fermentation catalyzed by lactate dehydrogenase (LDH), which converts pyruvic 
acid to lactic acid. LDH plays a dominant role in the Warburg effect, wherein aerobic glycolysis is 
favored over oxidative phosphorylation. Due to the high lactic acid production level in cancer cells, 
LDH-targeting could be a potential cancer treatment strategy. A few approaches, such as drug 
treatment, reportedly inhibited LDH activity. In this study, we describe new 1,3-benzodioxole 
derivatives that might be potential small molecule candidates for LDHA inhibition. The synthesis 
was carried out by trans-esterification between aryl ester and alcohol groups from piperonyl alcohol. 
Compounds 2 and 10 exhibited a selective LDHA IC50 value of 13.63 µM and 47.2 µM, respectively. 
Whereas only compound 10 showed significant cytotoxicity in several lines of cancer cells, especially 
in human pancreatic cancer PANC-1 cells. These synthesized compounds possess 2 aromatic rings 
and –CF3 moiety, which expectedly contributes to LDHA inhibition. The presented products have the 
potential to become a promising LDHA inhibitor drug candidate.

Cancer is one of the biggest health concerns for humans, which takes place at a tissue level1–3. Cancer develops 
through a series of genetic mutations that result in a change in cell fate. The Warburg effect is a phenomenon 
wherein cancer cells consume more glucose than healthy cells do to ensure ATP supply for energy production 
and its catabolites as building blocks simultaneously. In particular, ATP and the precursors of lipid, protein, and 
nucleotide synthesis are produced through glucose conversion during aerobic glycolysis in cancer cells with 
lactic acid as the primary end product4.

Lactate dehydrogenase (LDH) is an enzyme with a tetrameric structure that catalyzes pyruvate conversion to 
lactate and vice versa. LDH has two known isoforms. LDHA mainly converts pyruvic acid to lactic acid, while 
LDHB catalyzes the reverse reaction5. Several studies have reported that LDHB is constitutively expressed in 
various cancer cell types, while LDHA is proposedly important for tumor initiation as it is often overexpressed 
in cancer. Reduced LDHA levels were related to less cellular transformation and delayed tumor formation6,7.

Chemical approaches are among the common strategies to inhibit LDHA activity in cancer cells. The 1,3-ben-
zodioxole ring was described as a component of many natural compounds with various biological activities. 
These compounds and their derivatives are widely-used pesticides and herbicides8. Certain studies reported 
that the 1,3-benzodioxole ring possesses antitumor, antiparasitic, antifungal, antioxidant, and antibacterial 
bioactivities9–13, such as the antioxidant sesamol (Fig. 1)14. In addition, 1,3-benzodioxole derivatives could act 
as carcinogenesis-associated histone deacetylase inhibitors during cancer treatment15.

Several 1,3-benzodioxole ring-containing chemical compounds have been developed with the aim to inhibit 
LDHA activity. These compounds include 1,3-benzodioxole derivatives, such as Machilin A (Fig. 1), which are 
efficient competitive inhibitors that function by blocking the nicotinamide adenine dinucleotide (NAD) bind-
ing site of LDHA, suppressing lactate production and cancer cell growth16. Furthermore, benzodioxole ring-
containing thiazolyl-pyrazoline derivatives were tested against MCF-7 and B16-F10 tumor cells and showed 
significant antiproliferative activity in vitro17. In addition, we previously reported that a selenobenzene compound 
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harboring trifluoromethyl group, 1-(phenylseleno)-4-(trifluoromethyl) benzene, showed an anti-tumor effect 
thorough suppressing LDHA activity18. Based on the aforementioned results, we developed new 1,3-benzodioxole 
and trifluoromethyl derivatives through trans-esterification and evaluated the in vitro LDHA inhibitor activity 
of the synthesized compounds through decreasing NADH intensity.

Results and discussion
The main chemical reaction in this study was a trans-esterification reaction between the ester group of ethyl 
4-bromobenzoate (1a) and the alcohol groups of piperonyl alcohol (1b). A base was used to abstract the protons 
from the alcohol groups, creating an anion that could directly abstract the carbonyl in the ester groups, and 
release the alcohol moiety19. The reaction between ethyl 4-bromobenzoate and piperonyl alcohol was carried out 
as presented in Table 1. Initially, the study was carried out using pyridine as a base in toluene at 110 °C under 
air condition and the reaction mixture was stirred for 12 h. The yield of the product was 39% (Table 1, entry 1). 
The reaction using K2CO3 as a base resulted in a lower yield compared to that using pyridine, which yielded 32% 
(Table 1, entry 2). By increasing the degree of basicity, the product could be obtained with yields of 45% and 53% 
in the case of NaOH and KOH, respectively (Table 1, entry 3–4). The highest yield (74%) was obtained when 
Cs2CO3 was used as a base under these reaction conditions (Table 1, entry 5). Therefore, Cs2CO3 was selected 
as a reaction base for further optimization due to its higher activity, yield, and catalytic speed compared to acid 
catalysts20. The transesterification mechanism using Cs2CO3 has proposed21. The carbonyl group coordinates 
with a metal ion to make the carbon center more electrophilic, while the alcohol group is activated by carbonate 
ion to make a negative charge on the oxygen of the hydroxyl group. This anion directly abstracts the activated 
carbonyl to form the ester group and release ethanol.

We then screened for the solvent effect in this reaction. When an aprotic polar solvent, such as DMSO, was 
used, the product yield decreased to 40% (Table 1, entry 6). No reaction could be observed when DCM was 

Figure 1.   Chemical structure of natural product contained 1,3-benzodioxole rings.

Table 1.   Optimization of reaction conditions for synthesis of compound 1 to 8. Reaction conditions: ethyl 
4-bromobenzoate (1 mmol), piperonyl alcohol (1.1 mmol), Cs2CO3 (1 mmol), and toluene (5 mL). a Isolated 
yields.

Entry Base Solvent T (°C) t (h) Yielda (%)

1 Pyridine Toluene 110 12 39

2 K2CO3 Toluene 110 12 32

3 NaOH Toluene 110 12 45

4 KOH Toluene 110 12 53

5 Cs2CO3 Toluene 110 12 74

6 Cs2CO3 DMSO 110 12 40

7 Cs2CO3 DCM 40 12 Trace

8 Cs2CO3 THF 60 12 20

9 Cs2CO3 Toluene 25 12 Trace

10 Cs2CO3 Toluene 60 12 29

11 Cs2CO3 Toluene 110 18 91

12 Cs2CO3 Toluene 110 24 94
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used as a solvent (Table 1, entry 7), whereas reaction using THF was less successful (Table 1, entry 8). We could 
conclude that toluene was the best solvent for this reaction. The solvent effect plays an important role in organic 
equilibrium reactions, such as tautomerization, electron transfer reaction, isomerization, and acid–base balance22.

Furthermore, the reaction was tested at different conduction temperatures. At room temperature, no product 
was observed (Table 1, entry 9). We could only detect a yield of 29% at 60 °C (Table 1, entry 10). We also aimed 
at optimizing the reaction time. When the reaction time was increased to 18 h, an excellent yield (91%) was 
obtained (Table 1, entry 11). We observed no significant difference when the reaction time was increased to 24 h 
(Table 1, entry 12). Based on the optimization results, we selected Cs2CO3 as a base, toluene as a solvent, 110 °C 
as reaction temperature, and 18 h as the reaction time for further experiments.

Under these optimized conditions, we synthesized other 1,3-benzodioxole derivatives by changing the R 
substituent. This method can tolerant some of the substituents in good to excellent yield (Fig. 2). Aryl ester as 
a substrate with halogen substituents (p-Br, p-I, and p-F) resulted in excellent yield, between approximately 81 
and 92% (compound 1, 3, and 5). Furthermore, reactions with trifluoromethyl (p-CF3) and amine (m-NH2) as 
substituents also proceeded smoothly and resulted in the products 2 and 4, with a yield of 76% and 74%, respec-
tively. The addition of electron-donating groups, such as in the case of compounds 7 and 8, also resulted in good 
yields of 74% and 70%, respectively. However, the use of –CF3 as a substituent did not provide a favorable result 
when it was not attached to the aromatic ring (compound 5). This suggested that the aromatic ring played a role 
in the reaction efficiency as it could delocalize electrons that would result in more electrophilic carbonyl groups.

Selenide compounds reportedly exhibit various bioactivities, such as antioxidant, antibacterial, and anticancer 
effects23–25. In our study, we also developed 1,3-benzodioxole-modified selenide compounds as we expected that 
such modifications would further increase the bioactivity of the compound. The modification of the selenide 
compound and 1,3-benzodioxole was achieved by reacting aryl iodide with diphenyl diselenide via the cleavage 
of the Se–Se bond (Fig. 3). Our results showed that compound 3, the product of the trans-esterification from 
the previous reaction, acted as an aryl iodide compound that reacted with diphenyl diselenide to form an asym-
metrical diaryl chalcogenide compound. Using this method, we successfully synthesized target product 9 with 
a 48% yield.

Apart from the selenide compound modification, we also synthesized an aryl-heteroatom C–S bond, 
with a heterocyclic group in order to study its bioactivity as an LDHA inhibitor. This compound was used 
as a comparison for a 1,3-benzodioxole ring and p-CF3 moiety in the structure of compound 2. N and S het-
erocyclic compounds are well-known for their diverse biological activities and are used in several diseases 
treatments26–28. In our study, we synthesized such a compound using (trifluoromethyl)phenylboronic acid and 
2,2′-dithiobis(benzothiazole) via S–S cleavage, resulting in a C–S bond with an N and S heterocyclic ring 10, 
with a 68% yield (Fig. 4).

Figure 2.   Substrate scope. Reaction conditions: Arylethyl ester (1 mmol), piperonyl alcohol (1.1 mmol), 
Cs2CO3 (1 mmol), and toluene (5 mL). bIsolated yields.
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The in vitro evaluation of the LDHA inhibitor activities of the synthesized compounds was determined by 
the NADH intensity decrease through oxidation in a solution of HEPES-K+, NADH, and pyruvate at a pH = 7.2. 
The NADH oxidation fluorescence intensity was measured using a spectrofluorometer at 340 nm excitation and 
460 nm emission wavelengths, representing the NADH-specific fluorescence spectrum. Furthermore, the in vitro 
evaluation of the LDHB inhibitor activity was determined as a reverse reaction, which converts lactate to pyru-
vate by determining the amount of NAD+ converted to NADH using the above-mentioned spectrophotometric 
experimental setting (Table 2). Based on this analysis, the half-maximal inhibitory concentration (IC50) of the 
synthesized compounds was obtained.

We used GSK2837808A and GNE140 as standard compounds in this measurement that is a routinely used 
potential LDH inhibitor with an IC50 of 2.6 nM and 59.9 nM, respectively. Since LDHA is often overexpressed in 
cancer, LDHB was used to evaluate the LDHA-selectivity of the synthesized compounds. We tested various aryl 
esters, presented in Fig. 2, of which compound 1 (p-Br), 3 (p-I), and 8 (p-CH3) exhibited the highest LDHA IC50 
values of over 1000 µM. However, compound 1 exhibited the lowest LDHB IC50 value of 79.05 µM, indicating 
that compound 1 is a selective LDHB inhibitor compare to the other 3 compounds. Moreover, compound 7 also 
showed high LDHA IC50 value (842.6 µM) and LDHB IC50 value (over 1000 µM) values. These values were too 
high to be compared with the standards; thus, we concluded that these 4 aryl ester compounds were inactive 
LDHA inhibitors.

Furthermore, compound 5, with 2 aromatic rings and a p-F moiety, exhibited a moderate LDHA IC50 value 
of 477.5 µM and was a selective LDHA inhibitor due to its LDHB IC50 value, which was greater than 1000 µM. 
Besides compound 5, compound 6, with only one aromatic ring and a –CF3 moiety, also had a moderate LDHA 
IC50 value of 452.5 µM. However, compound 6 was not selective for LDHA based on its LDHB IC50 value, which 

Figure 3.   Synthesis of compound 9. Reaction conditions: Compound 3c (0.6 mmol), diphenyl diselenide 
(0.3 mmol), and DMF (1 mL). bIsolated yields.

Figure 4.   Synthesis of compound 10. Reaction conditions: phenyl boronic acid (1.3 mmol), 
2,2-dithiobis(benzothiazole) (0.6 mmol), and DMSO:water (2:1). bIsolated yields.

Table 2.   Bioactivity of synthesized compounds in inhibits LDHA and LDHB. ND not determined.

Entry Compounds LDHA IC50 LDHB IC50 LDHB/LDHA

1 1 > 1000 µM 79.05 µM ND

2 2 13.63 µM 395.3 µM 29.00

3 3 > 1000 µM 150.8 µM ND

4 4 182.5 µM 7.87 µM 0.043

5 5 477.5 µM > 1000 µM 2.094

6 6 452.5 µM 129.8 µM 0.29

7 7 842.6 µM > 1000 µM > 1.18

8 8 > 1000 µM 248 µM ND

9 9 > 1000 µM 151.1 µM ND

10 10 47.20 µM > 1000 µM > 21.18

11 GSK2837808A 2.6 nM 130.3 nM 50.12

12 GNE140 59.9 nM 151.1 nM 2.52
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was lower than its LDHA IC50 value. In addition, compound 4, containing an m-NH2 moiety, was not selective 
for LDHA either, as we measured the lowest LDHB IC50 value (7.87 µM) in the case of this compound. The lowest 
and selective LDHA inhibitor was compound 2 (13.63 µM) with 2 aromatic rings and p-CF3 moiety. This com-
pound was selective as LDHA inhibitor compares to its LDHB inhibitor activity (LDHB IC50 value of 395.3 µM). 
These values were still higher compared to the IC50 values of the GSK2837808A and GNE140 standards but 
lower compared to other established LDHA inhibitors, such as galloflavin, which was also used as a reference 
compound since it is routinely used in enzymatic LDH assays, with an IC50 value of approximately 110 µM29. This 
result suggested that it could potentially become LDHA inhibitor drug candidate. Moreover, we also synthesized 
selenide compounds, containing 1,3-benzodioxole (9) and benzothiazole (10) groups. Compound 9 was not 
efficient with LDHA and LDHB IC50 values of 1000 µM, while compound 10 exhibited a favorable selectivity as 
an LDHA inhibitor with an LDHA IC50 value of 47.20 µM and an LDHB IC50 value of over 1000 µM.

To assess the anticancer potency of these compounds in several cancer cells, we determined the cell toxicities 
of these compounds using an MTT assay. As shown in Table 3, the compound 2 showed was too weak. It was over 
1000 µM of the concentration of half-maximal growth inhibition (GI50) value. On the other hand, compound 
10 has higher cytotoxicity compared to other compounds in various cancer cell lines. Among these cell lines, 
compound 10 is most effective in reducing the cell viability in human pancreatic cancer PANC-1 cells (GI50 
value of 12.19 µM). In addition, we analyzed the cytotoxicity of two standard compounds, GSK2837808A and 
GNE140. The calculated GI50 values of GSK2837808A and GNE140 were 11.31 µM and 11.59 µM, respectively. 
There is a small difference between standard compounds and compound 10 in growth inhibition of PANC-1 cells.

In addition to intracellular anticancer activity, to provide the basic in vitro drug-like data of compound 10, we 
performed basically in vitro assays, such as human liver microsomal stability, plasma stability, and CYP inhibi-
tion (Table 4). The compound 10 was rapidly metabolized by human and rat microsomes; only 9.5% and 5.2% of 

Table 3.   The 50% growth inhibition concentration (GI50) of compounds on various human cancer cell lines. 
ND not determined.

Entry Compounds

Cell lines

PANC-1 (GI50) (µM) A549 (GI50) (µM) MCF-7 (GI50) (µM)
MiaPaCa-2 (GI50) 
(µM) U87 (GI50) (µM)

1 1 > 1000 > 1000 > 1000 > 1000 > 1000

2 2 > 1000 > 1000 > 1000 > 1000 > 1000

3 3 269.3 > 1000 > 1000 > 1000 > 1000

4 4 203.4 > 1000 729 > 1000 379.5

5 5 643.9 > 1000 > 1000 > 1000 > 1000

6 6 > 1000 > 1000 > 1000 > 1000 > 1000

7 7 243.3 > 1000 > 1000 > 1000 > 1000

8 8 86.46 > 1000 > 1000 > 1000 > 1000

9 9 21.11 924.8 455.1 108 > 1000

10 10 12.19 56.46 61.38 88.88 343.4

GSK2837808A 11.31 ND ND ND ND

GNE140 11.93 ND ND ND ND

Table 4.   Summary of in vitro ADME for compound 10.

Compounds CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4

CYP isozyme activity (% of control activity)

Compound 10 36.7 97.4 12.1 95.1  > 100

Ketoconazole (reference) 99.1 97.5 > 100 99.0 25.0

Ketoconazole: CYP3A4 inhibitor (0.1 µM)

Compounds Human (%) Rat (%)

Human and rat liver microsomal stability (% remaining during 30 min)

Compound 10 9.5 5.2

Verapamil (reference) 15.3 –

Compounds

Human Rat

30 min 120 min 30 min 120 min

Human and rat plasma stability (% remaining)

Compound 10 98.1 91.6 93.8 87.5

Procaine (reference) 1.5 (5 min) 0.4 (10 min) 89.8 52.6

Enalapril (reference) 95.0 93.7 37.7 1.8
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compound 10 remained after 30 min of incubation. However, a plasma stability test showed compound 10 was 
stable in both human and rat plasma. The compound 10 is a moderate perpetrator of drug–drug interactions 
based on their inhibition of the most abundant CYP450 enzymes, such as 1A2 and 2C19.

The compound 2 exhibits a simple structure with one 1,3-benzodioxole group compared to the previously 
reported Machilin A16, containing two 1,3-benzodioxole groups. Furthermore, it has a lower LDHA IC50 value 
compared to Machilin A (84 µM). Sada et al., also presented the LDHA inhibitory activity of stiripentol analogs at 
a higher dose (500 µM)30. However, piperonyl alcohol and 1,3-benzodioxole did not exhibit an LDHA inhibitory 
activity even at concentrations up to 1 mM16. However, unlike the previously reported compounds harboring 
1,3-benzodioxole group, compound 2 did has an anti-cancer effect in several lines of cancer cells. It could be a 
result of its chemical properties including low stability or poor cellular uptake. Compound 10, a benzothiazole 
compound harboring a –CF3 moiety, could also be considered as a potential LDHA inhibitor. Although higher 
IC50 in vitro LDHA assay, the GI50 value of compound 10 is lower than that of previously reported selenobenzene 
compound, 1-(phenylseleno)-4-(trifluoromethyl) benzene18. The GI50 value of compound 10 in PANC-1 cells is 
comparable to that of standard compounds, GSK2837808A and GNE140.

From these results, compound 2 and 10 among the synthesized compounds, with the simple structure and 
comparable activity, could be potentially used as an LDHA inhibitor and should be further investigated. These 
synthesized compounds possess 2 aromatic rings and –CF3 moiety, which is expected to contribute to LDHA 
inhibition. The compounds have the potential to become a promising LDHA inhibitor for the anticancer drug 
candidate. To improve the in vitro LDHA inhibition and intracellular activity of these compounds, it is needed 
to conduct an extensive structure–activity relationship study, including substitutions in a different position, 
bioisosteres replacement, and scaffold hopping.

Conclusions
Here we described 1,3-benzodioxole derivatives, synthesized through trans-esterification between aryl ester and 
piperonyl alcohol groups. Through this approach, the substrate scope of this reaction was also investigated and 
could tolerate many substituents, with good to excellent yields. In addition, we also synthesized benzothiazole 
derivatives and 1,3-benzodioxole-modified selenide compounds. Compound 2, containing a benzodioxole ring 
and a –CF3 moiety, showed a potent inhibitory action in vitro assay, however, failed to show anticancer effect in 
human cancer cells. Compound 10, a benzothiazole harboring a –CF3 group, showed both activities of in vitro 
LDHA inhibition and intracellular cytotoxicity. These compounds could potentially be used as an LDHA inhibitor 
due to its optimal activity and selectivity based on the decrease in the NADH intensity and as it has the smallest 
IC50 among all the compounds. Thus, compound 10 could be considered a potent LDHA inhibitor for further 
in vivo evaluations.

Methods
General methods.  All chemicals and reagents were purchased from Tokyo Chemical Industry (Tokyo, 
Japan) and Sigma-Aldrich (St. Louis, MO) and used without further purification. Fourier-transform infrared 
(FT-IR) spectra were recorded on NICOLET 380. 1H (400 MHz) and 13C (100 MHz) NMR of all synthesized 
compounds were recorded on Bruker Magnet System 400′54 Ascend. Gas Chromatography–Mass Spectrometry 
spectra were performed on Shimadzu GC-1010 Plus GCMS-QP2010 SE. High-resolution Mass Spectrometry 
(HR-MS) data were performed on 6530Accurate-Mass Q-TOF LC/MS. Spectrofluorometer spectra were per-
formed on Spectramax M2; Molecular Devices, Sunnyvale, CA, USA.

Synthesis of compound 1–8.  Arylethyl ester (1 mmol) was reacted with piperonyl alcohol (1.1 mmol) in 
5 mL toluene. Cesium carbonate (1 mmol) was added to the mixture as a base. The reaction mixture was stirred 
at reflux under air condition for 18 h. The reaction was monitored by TLC and GC–MS for completion reaction. 
After the completion reaction, the mixture was cooled to room temperature. The mixture was diluted by dichlo-
romethane and evaporate the solvent. The crude product was stored in a refrigerator for 24 h to conduct white 
solid. The crude product was purified by column chromatography over silica gel.

Synthesis of compound 9.  The reactions referred to31 with modification. Compound 3 (0.6 mmol) was 
reacted with diphenyl diselenide (0.3 mmol) in 1 mL DMF. Cu2O (5 mol%), bpy (10 mol%), and Mg (0.6 mmol) 
were added to the reaction mixture. The mixture was stirred at 110 °C for 24 h. The reaction was monitored by 
TLC and GC–MS. After the completion reaction, the mixture was cooled to room temperature. Then, the crude 
product was separated by an extraction process using dichloromethane and brine solution. The organic layer was 
evaporated and the crude product was purified by column chromatography over silica gel.

Synthesis of compound 10.  The reactions referred to32 with modification. Trifluoromethyl phenyl 
boronic acid 10a (1.3 mmol) was reacted with 2,2-dithiobis(benzothiazole) 10b (0.6 mmol) in DMSO:water 
(2:1). CuI;bpy (10 mol%) was added to the reaction mixture. The mixture was stirred at 110 °C for 3 h. The 
reaction was monitored by TLC and GC–MS. After the completion reaction, the mixture was cooled to room 
temperature. Then, the crude product was separated by an extraction process using dichloromethane and brine 
solution. The organic layer was evaporated and the crude product was purified by column chromatography over 
silica gel.

In vitro evaluation on LDHA inhibitor activity. LDHA activity assay was performed in accordance with previ-
ous studies16,18. Briefly, the various concentrations of compounds were incubated with reaction buffer containing 
20 mM HEPES-K+, 20 μM NADH, 2 mM pyruvate, and 100 ng of purified recombinant human LDHA protein 
(Abcam, Cambridge, UK). The fluorescence of NADH, which has an excitation wavelength of 340 nm and an 
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emission wavelength of 460 nm, was detected using a microplate spectrofluorometer (Spectramax M2; Molecular 
Devices, Sunnyvale, CA).

In vitro LDHB Activity Assay.  In vitro analysis was determined the amount of NAD+ converted to 
NADH33. The assay mixture composed of 100 mM Tris–HCl buffer (pH 8.0), 200 mM sodium L-lactate, 2.5 mM 
NAD+, and 100 ng of purified recombinant human LDHB protein (Abcam). The fluorescence intensity of NADH 
was measured using a spectrofluorometer (Spectramax M2) at 340 nm as excitation wavelength and 460 nm as 
emission wavelength which is the specific fluorescence of NADH.

Cell culture.  The human pancreatic cancer cell lines, PANC-1 and MiaPaCa-2, human lung cancer A549 
cells, human breast cancer MCF-7, and human glioma U87 cells were obtained from the Korean cell line bank 
(Seoul, Korea). The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM; ThermoFisher Scientific, 
Waltham, MA) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich) and 1% penicillin/streptomy-
cin (ThermoFisher Scientific). The cells were cultured at 37 °C in an atmosphere containing 5% CO2.

Intracellular LDHA activity assay.  To observe the LDH activities from the lysates of cells, we performed 
in accordance with previous studies16,18. Briefly, Total protein from lysate (1  μg) was mixed with containing 
20 mM HEPES-K+, 20 μM NADH, 2 mM pyruvate. The fluorescence of NADH, which has an excitation wave-
length of 340 nm and an emission wavelength of 460 nm, was detected using a microplate spectrofluorometer 
(Spectramax M2).

Cell viability.  The potential cytotoxicity of compounds at different concentrations was evaluated using the 
MTT assay. Briefly, cancer cell lines were pre-incubated in 96-well plates with compounds for 48 h. Subsequently, 
MTT working solution (2 mg/mL in phosphate buffer solution) was added to each well and the plate was incu-
bated for 4 h at 37 °C in an atmosphere containing 5% CO2. Then, the conditioned media were aspirated, and the 
formed formazan crystals in living cells were quantified using the microplate reader (Spectramax M2) at 540 nm. 
The concentrations that produce 50% cell growth inhibition (GI50) were calculated by curves constructed by the 
plot of cell survival by an assistant of PRISM software (GraphPad, San Diego, CA).

LC–MS/MS analysis.  Chromatographic separation was performed on the Shimadzu Nexera XR system 
(Kyoto, Japan). Detection was performed on a Thermo TSQ Vantage triple quadrupole LC–MS/MS (MA, USA). 
The analytes were separated on a Phenomenex Kinetex C18 (2.1 × 100 mm, 2.6 µm particle size) column (Tor-
rance, USA). The mobile phase system consisted of water containing 0.1% formic acid (mobile phase A, MPA), 
and acetonitrile containing 0.1% formic acid (mobile phase B, MPB). Xcalibur 1.6.1 software (Thermo Scientific) 
was used for data acquisition and processing.

Plasma stability.  Human and rat plasma (Sigma-Aldrich) are incubated at 37  °C with test compounds. 
During the incubation, aliquots are withdrawn at 0, 30, 120 min time points and acetonitrile solution (contain-
ing chlorpropamide) is added. After vortexing, the aliquots are centrifuged and the supernatant is withdrawn 
for analysis by LC–MS/MS.

CYP isozymes activity assay.  Pooled Human liver microsomes (Sigma-Aldrich; 0.25  mg/mL), 0.1  M 
phosphate buffer solution (pH 7.4), the five most commonly used substrate cocktails, such as 50 µM phenacetin 
(CYP1A2), 10 µM diclofenac (CYP), 100 µM S-mephenytoin (CYP2C19) 5 µM dextromethorphan (CYP2D6), 
and 2.5 µM midazolam (CYP3A4), and compound 10 are pre-incubated at 37 °C for 5 min, then incubated with 
NADPH generation system solution for 15 min. To finish the enzymatic reaction, an acetonitrile solution (con-
taining terfenadine) is added. The reaction tubes are centrifuged and the supernatant is withdrawn for analysis 
by LC–MS/MS.

Microsomal stability.  The assay use liver microsomes from two species (human, rat, 0.5 mg/mL). liver 
microsomes preincubated with 0.1 M PBS (pH 7.4) and 1 µM compound 10 at 37 °C for 5 min, then incubated 
with NADPH regeneration system solution for 30 min. To finish the reaction, an acetonitrile solution (involved 
in chlorpropamide) is added. The reaction tubes are centrifuged and the supernatant is withdrawn for analysis 
by LC–MS/MS.

Statistical analysis.  Results were presented as mean ± standard deviation (SD) of triplicate experiments. 
Statistical analysis was performed using one-way ANOVA followed by Dunnett’s post hoc test, and p values of 
lesser than 0.05 were considered statistically significant.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information Files).
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