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External error attribution dampens 
efferent‑based predictions 
but not proprioceptive changes 
in hand localization
Raphael Q. Gastrock1,2*, Shanaathanan Modchalingam1,3, Bernard Marius ’t Hart1 & 
Denise Y. P. Henriques1,2,3

In learning and adapting movements in changing conditions, people attribute the errors they 
experience to a combined weighting of internal or external sources. As such, error attribution that 
places more weight on external sources should lead to decreased updates in our internal models for 
movement of the limb or estimating the position of the effector, i.e. there should be reduced implicit 
learning. However, measures of implicit learning are the same whether or not we induce explicit 
adaptation with instructions about the nature of the perturbation. Here we evoke clearly external 
errors by either demonstrating the rotation on every trial, or showing the hand itself throughout 
training. Implicit reach aftereffects persist, but are reduced in both groups. Only for the group viewing 
the hand, changes in hand position estimates suggest that predicted sensory consequences are not 
updated, but only rely on recalibrated proprioception. Our results show that estimating the position of 
the hand incorporates source attribution during motor learning, but recalibrated proprioception is an 
implicit process unaffected by external error attribution.

Knowing our limbs’ positions is crucial for our ability to move competently. Moreover, changing circumstances 
may cause movement errors, which require us to adapt our motor control to restore performance1–5. When 
errors are not caused by our own motor system, but are instead externally caused, the way in which movements 
are adapted to counter them should change6–10. Externally caused errors should also affect our estimate of the 
position of our limb, but this has not been directly investigated yet. Here, we introduce two types of movement 
feedback to investigate how our limb position estimates may be affected when errors are clearly not caused by 
the individual.

In reaching movements, adaptive changes that result from small or gradually introduced visual or mechani-
cal perturbations are traditionally considered as largely implicit2,11. Implicit adaptation is manifested by reach 
aftereffects, persistent deviations in hand movements after perturbation removal, suggesting an internal rep-
resentational remapping has occurred in the brain5,11,12. Reach aftereffects also occur with larger and abruptly 
introduced perturbations, as well as when participants are made aware of the nature of the perturbation. In these 
cases, explicit processes account for a part of the resulting adaptive change13–18. Thus, both explicit and implicit 
processes contribute to adaptation19–22. Here, we first quantify implicit and explicit contributions to learning 
with responses to different visual manipulations. These manipulations differentially demonstrate the nature and 
source of errors experienced, thereby varying the extent of external error attribution.

Motor adaptation leads not only to changes in motor performance, but previous research has also found 
that adapting reach movements to visual or mechanical perturbations leads to changes in proprioceptive esti-
mates of hand location23–25, even if the two perturbations likely have different underlying mechanisms26,27. 
This proprioceptive recalibration emerges quickly28,29 and reflects about 20% of the visual misalignment of 
the hand23,24. Recalibrated proprioception is also preserved in aging30 and in different perturbations (rotations 
and translations23, force fields31, gains32, split-belt walking33,34). In visuomotor rotations, it seems that a visuo-
proprioceptive discrepancy is sufficient to drive proprioceptive recalibration, and leads to reach aftereffects that 
mimic this proprioceptive shift29,35–37. Thus, proprioceptive recalibration is ubiquitous, and seems to contribute 
to motor performance.
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Apart from afferent proprioceptive information, hand localization is also based on predicted sensory con-
sequences of the movement, calculated by internal forward models that use an efference copy of the outgoing 
motor command38,39. These efferent-based updates are considered a pre-requisite for implicit adaptation3,40, 
and seem to contribute to reach aftereffects separately from recalibrated proprioception29,35,41. Efferents and 
non-visual afferents should both be present when estimating hand location after self-generated ‘active’ move-
ments, while robot-generated ‘passive’ movements should only allow afferent-based proprioceptive signals. Thus, 
active and passive movements assess the relative contributions of afferent and efferent signals to hand position 
estimates18,32,41, which should both be implicit.

Since both contributions to hand location estimates should be implicit, they should be reduced or not occur 
when errors are attributed externally, as implicit learning is engaged less or not at all. In other words, given that 
the cursor in a visuomotor rotation task is considered a representation of the hand42, it would be intuitive for 
people to not update estimates of their hand location, when it is clear that the error is being caused by an external 
source. However, modulating explicit knowledge about the nature of the perturbation, by providing instruc-
tions or increasing the perturbation size, does not affect persistent shifts in both proprioceptive recalibration 
and updating of predicted sensory consequences18. In the current study, we instead investigate the effect of the 
external attribution of errors on both afferent and efferent-based changes. To do this, we vary the extent that 
people attribute the error they experience to a cursor representing their hand position, while holding a robot 
manipulandum and training in a visuomotor rotation task (Fig. 1a–d). The experiment consists of two sessions: 
a baseline, aligned session, where visual feedback of the cursor matched the actual hand position, and a rotated 
session where participants adapt to a 30° rotated hand-cursor (Fig. 2). In two groups that either receive instruc-
tions about the nature of the rotation and a strategy to counter for it, or not (Instructed and Control groups; 
Fig. 1a), we expect external error attribution to be minimal, as only explicit knowledge is modulated. In addition, 
we test two other groups that also do not receive instructions but either have visual feedback of the hand-cursor 
jump to the imposed rotation mid-reach on every training trial (Cursor Jump group; Fig. 1b) or a view of the 
actual hand of the participant is present along with the rotated cursor (Hand View group; Fig. 1c). We expect 
that these manipulations should make clear to participants that the cursor errors are caused externally. We 
interleave a localization task (Fig. 1e) and no-cursor reaches (Fig. 1f) across blocks of cursor training in both 
aligned and rotated sessions, to investigate how our manipulations affect changes in hand location estimates 
and motor behaviour respectively, following adaptation (Fig. 2). We hypothesize that with increased external 

Figure 1.   Experimental apparatus and stimuli. (a–c) Top-down view displaying the different manipulations 
for the reach-training tasks, where the cursor (light blue) is rotated 30° CW. Reaches are made to one of three 
possible target locations (indicated as hollow white circles for reference), but only one target appeared on every 
trial (yellow disc). (a) In both the Instructed and Control groups, participants do not see their hand, and the 
cursor has a constant rotation throughout each trial. (b) Participants in the Cursor Jump group see the cursor 
“jump” to the 30° CW rotation mid-reach on every trial. (c) In the Hand View group, participants see both their 
actual, illuminated hand and the cursor. (d) Participants sit on an adjustable chair in a dark room and hold a 
robot manipulandum located below a touch screen (bottom surface), while viewing stimuli through a reflective 
tint (middle surface) which projects stimuli generated from a downward facing computer screen (top surface). 
(e) Active and Passive Localization trials: Participants use their visible left hand to indicate on the touch screen 
where they have crossed the arc with their unseen right hand, after voluntarily generating a right-handed 
movement (active) or after a robot-generated movement (passive). (f) No-cursor trials: Reaches are made to the 
same three targets in the absence of visual feedback of the cursor or hand.
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error attribution, both changes in motor behaviour and shifts in afferent and efferent-based estimates of hand 
localization will decrease.

Results
Before investigating how external error attribution affects changes in motor behaviour and hand localization, 
we first confirm that all groups appropriately counter the perturbation by the end of 90 training trials (Fig. 3a) 
and observe that reach trajectories are not qualitatively different (Fig. 4). We test for group differences at dif-
ferent time points during adaptation training (three blocks: trials 1–3, 4–6, 76–90) using a 3 × 4 mixed design 
ANOVA, with block (blocks 1, 2, and 3) as a within-subject factor and group (Control, Instructed, Cursor Jump, 
Hand View) as a between-subject factor. We find main effects of group (F(3,86) = 5.678, p = 0.001, generalized eta 
squared (η2

G) = 0.092, BFincl > 1 · 106) and block (F(2,172) = 78.411, p < 0.001, η2
G = 0.307, BFincl > 3 · 1014), and a group 

X block interaction (F(6,172) = 7.856, p < 0.001, η2
G = 0.118, BFincl > 4 · 105). This suggests that, as expected, group 

differences in learning rates are modulated by the block of trials. Follow-up tests comparing each group to the 
Control group, show the expected initial advantage of instructions in reducing reach direction error within block 
one (Fig. 3a,b), as only the Instructed group differs from the Control group (t(148) = 4.632, p < 0.001, eta squared 
(η2) = 0.127, BF10 > 1 · 105). In the second block (Fig. 3c), no groups differ from the Control group (Instructed: 
t(148) = 1.922, p = 0.295, η2 = 0.024, BF10 = 6.506; Cursor Jump: t(148) = 2.538, p = 0.071, η2 = 0.042, BF10 = 3.386; Hand 
View: t(148) = 0.910, p = 0.934, η2 = 0.006, BF10 = 0.381). Bayesian analysis shows moderate evidence for a difference 
between the Control group and the Instructed or Cursor Jump groups, but we note that these are calculated 
without correcting for multiplicity. For the last block (Fig. 3a,d), an ANOVA on the effect of group on angu-
lar reach deviations shows that the groups do not differ from each other (F(3,86) = 0.561, p = 0.642, η2

G = 0.019, 
BF10 = 0.115), suggesting that our manipulations do not affect the asymptotic level of adaptation. Thus, any effects 
of training on changes in motor behaviour and hand localization can’t be explained by levels of adaptation in 
the different groups. 

Implicit aftereffects persist despite external error attribution.  To investigate the effects of exter-
nal error attribution on changes in motor behaviour, we use no-cursor trials both before and after adaptation 
(Fig. 1f). After adaptation, however, we use a process dissociation procedure (PDP), a cognitive research meth-

Figure 2.   Experiment schedule. Top First session, and considered as baseline, where the cursor was aligned 
with the position of the right hand. Participants performed 45 cursor training trials followed by blocks of active 
localization (18 trials/block), passive localization (18 trials/block), and no-cursor trials (9 trials/block). Top-up 
cursor training trials (9 trials/block) were interleaved in between localization and no-cursor blocks. Bottom 
Second session where the cursor was rotated 30° CW, relative to the position of the right hand. Participants 
performed 90 cursor training trials followed by blocks of active localization (18 trials/block), passive localization 
(18 trials/block), and two variations of no-cursor trials (with- or without-strategy; 9 trials/block). Top-up cursor 
training trials (30 trials/block) were interleaved in between localization and no cursor blocks. For both aligned 
and rotated sessions, passive localization always proceeded after active localization, as endpoint locations of 
the robot-generated movements in passive localization are based on locations that participants voluntarily 
moved towards during active localization. For no-cursor trials in the rotated session, the two variations are 
counterbalanced both within and between participants. That is, with- and without-strategy trials alternate 
within one participant, and the variation that an individual starts with is also alternated between participants.
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odology adapted by Werner et al.16 for motor learning, which measures awareness by having participants either 
express or repress a learned movement (see also17,18,43). Here, we ask people to make open-loop reaches, and 
move their unseen right hand to targets, while either including any strategy they learned to counter for the per-
turbation (with-strategy reaches) or excluding it (without-strategy reaches). With explicit awareness about the 
nature of the perturbation, we expect a difference between these reaches, as the ability to consciously produce a 
strategy adds explicit contributions on top of implicit contributions to learning. Meanwhile, excluding a strategy 
reflects only implicit contributions, which are not consciously accessible. Thus, the PDP allows us to measure 
both implicit and explicit adaptation.

We first compare aligned no-cursor trials and without-strategy no-cursor reaches in the rotated session, to 
test for implicit reach aftereffects (Fig. 2, 5). We conduct a 2 × 4 mixed design ANOVA with session (aligned 
or rotated) as a within-subject factor and group as a between-subject factor. We confirm the presence of reach 
aftereffects with a main effect of session (F(1,86) = 373.023, p < 0.001, η2

G = 0.530, BFincl = inf.). Moreover, we find 
a main effect of group (F(3,86) = 16.576, p < 0.001, η2

G = 0.230, BFincl > 9 · 1013) and an interaction between ses-
sion and group (F(3,86) = 22.605, p < 0.001, η2

G = 0.170, BFincl > 4 · 108), suggesting that the effect of session is 
modulated by group. Follow-up tests show that aligned and without-strategy reach deviations differ within each 
group (Instructed: t(86) = −11.830, p < 0.001, η2 = 0.619, BF10 > 1 · 106; Control: t(86) =  −12.912, p < 0.001, η2 = 0.660, 

Figure 3.   Rate of learning during adaptation training. (a) Only the first and last 15 trials of adaptation training 
are shown. Grey dashed line at the 30° mark indicates the direction that the hand must deviate in order to fully 
and successfully counter for the perturbation. The grey dashed line at the 0° mark indicates reach directions 
similar to those in the baseline, aligned session (i.e., no compensation). The Instructed group shows an initial 
advantage in successfully countering for the perturbation as early as the first trial. There are no differences in 
reaches performed by participants from all groups for the last 15 trials. Solid lines are group means and shaded 
regions are corresponding 95% confidence intervals. (b–d) Individual participant data from each group are 
shown, separated in three blocks of trial sets during adaptation training. Orange dashed line indicates mean for 
the Control group. Solid dots and error bars correspond to the group mean and bootstrapped 95% confidence 
intervals.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19918  | https://doi.org/10.1038/s41598-020-76940-3

www.nature.com/scientificreports/

BF10 > 1 · 108; Cursor Jump: t(86) = −9.050, p < 0.001, η2 = 0.488, BF10 > 4 · 105; Hand View: t(86) = −4.037, p < 0.001, 
η2 = 0.159, BF10 = 1 · 103). This means that implicit reach aftereffects are present in each group. To address how 
the effect of session is modulated by group, follow-up tests compare implicit reach aftereffects for each group to 
those in the Control group. We find that the Instructed group doesn’t differ from the Control group (t(86) = −0.722, 
p = 0.922, η2 = 0.006, odds = 0.099), but the Hand View (t(86) = −7.538, p < 0.001, η2 = 0.398, odds > 7 · 103) group 
does, suggesting that external error attribution in the Hand View group leads to reduced implicit reach afteref-
fects, compared to the Instructed and Control groups. Frequentist analysis shows that the Cursor Jump group 
differs from the Control group (t(86) = −3.419, p = 0.004, η2 = 0.120), but this is not supported by Bayesian analysis 
(odds = 0.875). Furthermore, the reduction in aftereffects is more pronounced for the Hand View group compared 
to the Cursor Jump group (t(86) = 3.818, p = 0.001, η2 = 0.145, odds = 2.220). In short, reach aftereffects persist 
across groups, but are greatly reduced for the Hand View group.

After confirming the presence of reach aftereffects, we use the PDP to assess explicit contributions to learn-
ing, by comparing with- and without-strategy no-cursor reaches (Fig. 5). We conduct a 2 × 4 mixed design 
ANOVA with strategy use (without-strategy or with-strategy) as a within-subject factor and group as a between-
subject factor. We find main effects of strategy use (F(1,86) = 285.493, p < 0.001, η2

G = 0.592, BFincl = inf.) and group 
(F(3,86) = 6.779, p < 0.001, η2

G = 0.118, BFincl > 1 · 1013), and a strategy use and group interaction (F(3,86) = 28.678, 
p < 0.001, η2

G = 0.304, BFincl > 1 · 1013). This suggests that the effect of strategy use in at least one group is dif-
ferent from the other groups. Follow-up tests compare with- and without-strategy angular reach deviations 
for each group separately. We find no evidence for or against an effect of strategy use in the Control group 
(t(86) = −1.529, p = 0.427, η2 = 0.026, BF10 = 0.940), but do see a difference in strategy use in the other groups 
(Instructed: t(86) = −9.877, p < 0.001, η2 = 0.531, BF10 > 3 · 106; Cursor Jump: t(86) = −7.637, p < 0.001, η2 = 0.404, 
BF10 > 5 · 104; Hand View: t(86) = −16.185, p < 0.001, η2 = 0.753, BF10 > 5 · 1011). Thus, despite receiving no instruc-
tions, both Cursor Jump and Hand View groups can evoke an explicit strategy like the Instructed group.

Changes in afferent‑based estimates of hand localization persist.  We then investigate the effects 
of external error attribution on afferent and efferent-based shifts in hand location estimates. We use localization 

Figure 4.   Individual and average reach trajectories. The trajectory of reaches across all participants within 
their respective groups are shown with light coloured lines. Each participant’s trajectory combines reaches 
during the last three trials of the first block of cursor training in the aligned session (top), as well as the first 
(middle) and last three (bottom) trials of the first block of cursor training in the rotated session. Light solid 
lines indicate the trajectory of the hand-cursor and light dashed lines indicate the trajectory of the hand. Only 
solid lines are shown in the aligned session, as both hand and hand-cursor trajectories are similar. Group means 
for the hand trajectories are indicated with the dark dashed line, and dark solid lines indicate the mean hand-
cursor trajectory. All groups seem to produce similar reach trajectories, across the different time points in the 
experiment, regardless of condition. Moreover, despite curved reaches during early adaptation training, reach 
trajectories are straight towards the end of adaptation training.
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trials (Figs. 1e, 2), where participants indicate with their visible left hand, the position of their unseen right hand. 
Hand localization is either based on both afferent and efferent contributions (active localization) or based mainly 
on afferent contributions (passive localization). All groups appear to show shifts in hand localization, despite 
external error attribution (Fig. 6). Moreover, these shifts seem larger in active than passive localization for each 
group, except for the Hand View group (Fig. 6a,b,d,e). To test if training affected hand location estimates, we 
conduct a 2 × 2 × 4 mixed design ANOVA on localization error with session (aligned or rotated) and movement 
type (active or passive) as within-subject factors and group as a between-subject factor. We find a main effect 
of session (F(1,86) = 82.972, p < 0.001, η2

G = 0.199, BFincl = inf.) and group (F(3,86) = 10.214, p < 0.001, η2
G = 0.195, 

BFincl > 1 · 105), an interaction between session and group (F(3,86) = 2.895, p = 0.040, η2
G = 0.025, BFincl = 354.651) 

and between session and movement type (F(1,86) = 16.802, p < 0.001, η2
G = 0.004, BFincl = 0.169). This suggests that 

estimates of hand position do shift despite external error attribution, but these shifts are modulated by group 
and movement type. Bayesian analysis suggests that including the session and movement type interaction does 
not lead to the best model (BF10 best model > 1 · 1034). Nonetheless, as planned, we consider movement type in 
the following frequentist test. We analyze the effects of group and movement type using a 2 × 4 mixed design 
ANOVA on localization shifts (i.e. difference in localization error between rotated and aligned sessions), with 
movement type as a within-subject factor and group as a between-subject factor. We find a main effect of move-
ment type (F(1,86) = 16.802, p < 0.001, η2

G = 0.016, BFincl = 62.496) and group (F(3,86) = 2.895, p = 0.040, η2
G = 0.085, 

BFincl = 2.540), but no interaction (F(3,86) = 2.425, p = 0.071, η2
G = 0.007, BFincl = 1.849), which is supported by 

Bayesian analysis showing that the best model does not include this interaction (BF10 best model = 131.040). The 
main effect of movement type is expected because active movements contain afferent and efferent contributions 
to hand localization, while passive movements only have afferent contributions. For follow-up tests on the group 
effect, we compare the localization shifts of each group to the other groups regardless of movement type, and find 
that the Hand View group differs from the Instructed group (t(86) = 2.901, p = 0.028, η2 = 0.089, odds = 14.120). 
Regardless, given the persistent shifts in hand position estimates, we investigate the afferent and efferent contri-
butions for each group separately.

Passive localization should rely mainly on updated afferents, or recalibrated proprioception. We confirm the 
persistence of passive localization shifts across all groups with one-tailed t-tests that compare the mean passive 
localization shift of each group to zero (Instructed: t(20) = −4.614, p < 0.001, d = 1.007, BF10 = 348.746; Control: 
t(19) = −4.869, p < 0.001, d = 1.089, BF10 = 525.747; Cursor Jump: t(19) = −4.832, p < 0.001, d = 1.080, BF10 = 488.283; 
Hand View: t(28) = −2.372, p = 0.012, d = 0.440, BF10 = 4.201). These tests show that the attribution of error to 

Figure 5.   No cursor reaches and strategy use. Angular reach deviations of the hand per group, while either 
excluding (without-strategy) or including (with-strategy) any strategies developed during adaptation training. 
Grey dashed line at the 30° mark indicates angular reach deviations equivalent to full compensation for the 
perturbation, and grey dashed line at the 0° mark indicates reaches that did not correct for the perturbation. 
Only the Control group was unable to switch between excluding and including a strategy to counter for the 
perturbation. Implicit reach aftereffects, indicated by without-strategy angular reach deviations, are reduced 
for the Cursor Jump group and are further reduced in the Hand View group. Solid lines are group means and 
shaded regions are corresponding 95% confidence intervals. Individual participant data from each group are 
shown for both types of strategy use.
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external sources surprisingly does not reduce proprioceptive recalibration. Given that passive localization shifts 
reflect proprioceptive recalibration, a difference between active and passive localization shifts is likely due to 
efferent-based contributions. Thus, we measure efferent-based contributions or updates in predicted sensory 
consequences by removing afferent-based contributions (active minus passive; Fig. 6c,f). We confirm the presence 
of updates in predictions for all groups with one-tailed t-tests comparing the mean shifts for each group to zero. 
We find that updates in predictions differ from zero for three groups (Instructed: t(20) = −2.411, p = 0.013, d = 0.526, 
BF10 = 4.570; Control: t(19) = −2.101, p = 0.025, d = 0.470, BF10 = 2.729; Cursor Jump: t(19) = −2.751, p = 0.006, 
d = 0.615, BF10 = 8.327), but not for the Hand View group (t(28) = −0.037, p = 0.485, d = 0.007, BF10 = 0.203). How-
ever, a Bayesian t-test comparing updates in predictions between the Control and Hand View groups provides 
little evidence for a difference between the two (BF10 = 1.225). On the other hand, reduced or absent updates in 
prediction could explain that active and passive localization shifts are not much different in the Hand View group. 
These results show that external error attribution might decrease or even eliminate efferent-based contributions 
to hand localization, but clearly does not affect afferent contributions to hand localization.

We then investigate whether the processes underlying afferent and efferent-based estimates of hand localiza-
tion may independently be contributing to motor behaviour. Sensory prediction-error based learning should 
lead to updated predictions of hand location and contribute to reach aftereffects3,4,13,44–46, and aftereffects have 
been shown to emerge in the absence of updates to efferent-based predictions29,35–37, showing that recalibrated 
proprioception may be associated with both changes in hand location estimates and changes in behaviour47. 
When considering either passive localization shifts or updates in predictions and their respective relationships 

Figure 6.   Afferent and efferent-based changes in hand location estimates. During localization trials, the arc 
stimulus is presented and participants either move, or are moved, towards different points on the arc. Shifts 
in localizing the unseen right hand following adaptation training after (a) self-generated movements (active 
localization), (b) robot-generated movements (passive localization), and (c) the difference between active and 
passive localization as a measure of updates in efferent-based estimates (predicted sensory consequences). 
Grey dashed line at the 0° mark indicates the absence of shifts, while positive and negative values indicate the 
direction of shifts. Solid lines correspond to group means at each of three hand positions on the arc, which 
mark the position in polar coordinates of where the arc stimuli are centred on during these trials. These 
positions closely match the target locations during adaptation training and no-cursor reaches. Shaded regions 
are corresponding 95% confidence intervals. (d–f) Individual participant data for shifts in hand localization are 
shown in transparent dots, separated according to group and movement type. Solid dots and error bars to the 
side of individual data correspond to group means and bootstrapped 95% confidence intervals.
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with angular reach deviations in without-strategy no-cursor trials (Fig. 7a,b), we find that both share a small 
relationship with implicit aftereffects (passive-aftereffects: p < 0.001, r2

adj = 0.111, BF10 = 34.473; prediction-after-
effects: p = 0.004, r2

adj = 0.079, BF10 = 7.309). Moreover, a multiple regression with both variables as predictors and 
angular reach deviations in without-strategy no-cursor trials as the dependent variable, shows that both passive 
localization shifts (β = −0.430, p < 0.001, sr2 = 0.204) and updates in predicted sensory consequences (β = −0.694, 
p < 0.001, sr2 = 0.171) are significantly associated with reach aftereffects (r2

adj = 0.276, BF10 > 5 · 104). Importantly, 
both hand localization components are still related to implicit reach aftereffects after accounting for a group effect, 
showing that these relationships are not spurious (data and analysis available on OSF48). Furthermore, given that 
we calculate afferent and efferent contributions to hand localization as additive (see "Methods"), the two hand 
localization components are independent from each other (confirmed by a low collinearity: vif = 1.087). Finally, 
we validate our regression model by comparing predicted and observed values of reach aftereffects (Fig. 7c). We 
find that model predictions are not perfect, but relatively close to observed values (r2

adj = 0.285, BF10 > 3 · 105). 
The model is likely incomplete, which would explain this disparity, but we don’t investigate this further. In con-
trast, explicit learning (i.e., with-strategy minus without-strategy reach deviations) has a weak anti-correlation 
with efferent components of hand localization, and no relation with afferent components of hand localization 
shifts (Fig. 7d–f; predicted and observed explicit learning: p = 0.038, r2

adj = 0.037, BF10 = 0.911). Thus, afferent and 
efferent-based components of hand localization shifts are weakly, but independently related with implicit reach 
aftereffects, hinting that at least two separate processes underlie implicit visuomotor adaptation.

Discussion
We test if manipulating the extent of external error attribution affects both changes in motor behaviour and hand 
location estimates after visuomotor adaptation training. Particularly, the visual feedback of the hand-cursor either 
jumps to the imposed rotation mid-reach on every training trial, or is present along with a view of the actual 
hand of the participant. Given the mismatch between cursor and hand positions, errors should be attributed 
externally and not lead to changes in hand location estimates. In the Hand View group, despite the error source 

Figure 7.   Contributions of afferent and efferent-based hand localization changes to implicit aftereffects and 
explicit learning. Relationships of afferent and efferent-based changes in hand location estimates with reach 
deviations when no visual feedback of the cursor is presented, while either excluding any strategies used during 
adaptation training (implicit aftereffects; a–b), or taking the difference of including and excluding such strategies 
(explicit learning, d–e). Individual data points from all participants are colour-coded according to their 
respective groups. Solid line corresponds to a regression line, while the grey shaded region corresponds to 95% 
confidence intervals. We then validate the multiple regression model using both shifts in afferent and efferent-
based hand localization as predictors, and show the predicted values for reach aftereffects plotted over observed 
values for reach aftereffects (c), as well as the predicted values for explicit learning plotted over observed values 
for explicit learning (f). The diagonal represents perfect prediction. Individual data points are colour-coded 
according to group, and lines represent residual errors.
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being clearly external, afferent-based (proprioceptive) hand location estimates still shift to the same extent as in 
other groups where external error attribution should be minimal. With both afferent and efferent-based estimates 
(active localization), shifts are not much different in the Hand View group compared to passive localization 
shifts. Furthermore, we find evidence that the Instructed, Cursor Jump, and Hand View groups developed an 
explicit strategy. However, the persistent but reduced implicit reach aftereffects in the Cursor Jump and Hand 
View groups, suggest that the feedback in these groups leads to less implicit learning. The reduction of aftereffects 
is more profound in the Hand View group, as could be expected with more external error attribution. Finally, 
we find that both afferent and efferent-based changes in hand localization share a relationship with implicit 
aftereffects. The persistent implicit motor changes and afferent-based changes in hand position estimates sug-
gest that these are robust against external error attribution, while updating of efferent-based predicted sensory 
consequences is not.

In visuomotor adaptation, visual feedback of the hand is consistently shifted, which eventually updates esti-
mates of the unseen hand after a movement23,24,28,30–32,44,45. These updates rely on at least two components: an 
efferent-based component, where the expected outcome of a motor command is updated to reflect the experi-
enced, altered visual outcome of the movement, and an afferent component, where a proprioceptive signal is 
recalibrated to the experienced visual outcome29,35,41. People should not update either hand location estimate 
when the rotated cursor does not represent their true hand location. Yet, our previous results suggest that when 
explicit adaptation increases, due to instructions or increased rotation size, there is no concomitant decrease in 
updates of afferent and efferent-based estimates18,49. In the current study, despite the error source being clearly 
external in the Hand View group, we surprisingly find shifts in afferent-based hand location estimates across all 
groups. We also find evidence of efferent-based contributions to hand localization in the other three groups, while 
this is not so clearly present in the Hand View group. This could mean that heightened external error attribution 
in the Hand View group decreases efferent contributions to hand location estimates. Nevertheless, proprioceptive 
recalibration seems to be robust against varying degrees of explicit adaptation and external error attribution.

Changes in afferent-based hand location estimates seem to be a robust form of sensory plasticity, given its 
relatively quick emergence28,29, persistence despite explicit adaptation18, and its preservation despite aging30,49 
and within other forms of perturbations23,31–34. Furthermore, recalibrated proprioception is intact in people with 
mild cerebellar ataxia50, despite the cerebellum’s crucial role in adaptation1,3,14,44–46,51,52. This implies that proprio-
ceptive recalibration relies on a signal different from efferent-based contributions to hand localization, such as 
a visuo-proprioceptive discrepancy29,35,41. Although there should be no visuo-proprioceptive discrepancy in the 
Hand View group, as they see and feel their hand, our findings suggest otherwise. Since the task is completed 
by bringing the cursor to the target, the cursor could be acting as a visual placeholder for the actual hand, while 
proprioceptive feedback is still veridical. This could create a sensory discrepancy, between seen cursor and felt 
hand, leading to sensory recalibration. Thus, the Hand View group does not show decreased shifts in afferent-
based hand localization, despite external error attribution. It also seems that in only the Hand View group, there 
might not be an efferent-based contribution to hand localization, or one that is hard to detect. While this will have 
to be replicated, it is in line with previous findings35, 41 that also indicate that efferent and afferent contributions 
to hand localization rely on different error signals.

Aside from sensory recalibration, visuomotor adaptation also leads to implicit motor behaviour changes. 
Implicit learning is rather stable, but awareness of the perturbation’s nature increases explicit contributions 
during adaptation15,16,18–22,53,54. Here, participants make open-loop reaches with (implicit and explicit) or with-
out (implicit) the strategy they learned. This process dissociation procedure (PDP16) is consistent with similar 
tasks53,55, has been used in previous studies17,18,43,56, and doesn’t seem to evoke additional explicit learning unlike 
other methods56–58. While explicit learning does not necessarily correspond to external error attribution, it is 
likely that external error attribution is accompanied by more explicit adaptation. Despite no elaborate instruc-
tions, the Cursor Jump and Hand View groups exhibit explicit learning like the Instructed group. Furthermore, 
it seems advantageous to suppress implicit learning with external and likely transient perturbations6–10, making 
adaptation largely explicit or strategy-based59,60. Here, although implicit learning persists, we observe a small 
decrease in implicit adaptation in the Cursor Jump group, which is much more pronounced in the Hand View 
group. Although we expect increased external error attribution in the Cursor Jump and Hand View groups, this 
effect seems to be less clear for the Cursor Jump group. Nonetheless, we are certain that the Hand View group 
attributes the source of the error more externally than other groups.

A reduction of sensory prediction error-based learning may explain the reduced reach aftereffects and effer-
ent-based hand localization shifts in the Hand View group. Implicit adaptation is based on sensory prediction 
errors3,4,13,44–46, that both healthy individuals and people with cerebellar damage involuntarily engage in1,3,14,46,52. 
In the Hand View group, the balance between sensory prediction error-based learning and explicit strategy 
contributions to behaviour is changed. Consistent with previous studies using a similar condition as the Hand 
View group46,59,60, our data suggest that increased external error attribution leads to reduced sensory prediction 
error-based visuomotor adaptation. Furthermore, efferent-based updates in predicted sensory consequences 
contribute to hand location estimates. The decreased sensory prediction error-based learning should result in 
little to no shift in efferent-based hand position estimates. Thus, while afferent-based contributions to hand 
localization rely on visuo-proprioceptive discrepancy signals, changes in efferent-based contributions depend 
on sensory prediction error-based learning. Consequently, it seems that external error attribution only reduces 
sensory prediction error-based learning.

Reach aftereffects are evidence that people have updated their internal model, and hence efferent-based 
predictions, to adapt movements5,11,12. Recalibrated proprioception also informs movements29,35–37,47,50,61. First, 
preventing updates of internal models while allowing for proprioceptive recalibration, leads to reach aftereffects 
that follow the proprioceptive shift29,32,35–37,47,50. Second, recalibrated proprioception is at maximum within six 
trials or faster28,29. Both these findings make it unlikely that proprioceptive recalibration arises due to repeated 
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hand movements performed during adaptation. One likely interpretation is that both changes in efferent-based 
predictions and recalibrated proprioception separately contribute to changes in motor behaviour (reach afteref-
fects). Here, we show with a multiple regression that both afferent and efferent changes are independently related 
to reach aftereffects in without-strategy no-cursor reaches. Given that, for now, we consider afferent and efferent 
contributions as additive in hand localization (see "Methods"), these contributions are necessarily statistically 
independent from each other. Moreover, our behavioural evidence shows that suppressed efferent-based changes 
in the Hand View group are tied to reduced implicit reach aftereffects. Based on these results, we speculate that 
the remaining reach aftereffects for the Hand View group are solely based on afferent changes. Regardless, our 
data show that changes in motor behaviour after learning take into account updates to our multi-modal internal 
estimates of hand location.

The changes in both afferent and efferent-based hand location estimates that rely on different error signals, 
and are independently related with changes in motor behaviour, are likely processed in different regions of the 
brain. While the relationship between implicit adaptation and sensory prediction error-based learning has been 
linked to the cerebellum3,4,13,44–46, the visuo-proprioceptive discrepancy leading to recalibrated proprioception 
has been linked to parietal areas25,31,62,63. Particularly, parietal lesions that disrupt the angular gyrus in the pos-
terior parietal cortex (PPC) affect the relationship between the weighting of visuo-proprioceptive information 
and corresponding realignment62, which in turn affects corresponding activity in somatosensory and motor 
areas25,63. In the current study, the greatly reduced efferent-based changes and persistent afferent-based changes 
in hand location estimates, due to external error attribution in the Hand View group, show that processing for 
these two signals is dissociated to some degree in the brain. However, although afferent and efferent-based signals 
seem to be independently processed in brain, both the PPC and cerebellum have connections with premotor and 
motor cortical areas25,63. Here, we do find that afferent and efferent-based hand location estimates share small 
but significant relationships with implicit reach aftereffects. Thus, our data are consistent with the interpretation 
that the independent signals used in updating our hand location estimates are likely integrated within premotor 
and motor areas, and consequently affect our motor behaviours.

In summary, external error attribution affects changes in our internal estimates of hand location and motor 
behaviour. Particularly, changes in afferent-based (proprioceptive) estimates of hand location are so robust, that 
the resulting recalibration is unaffected by external error attribution. However, external error attribution can 
be manipulated to change efferent-based, sensory prediction error-based learning. As adaptation becomes less 
reliant on sensory prediction error-based learning, implicit motor behaviour changes (reach aftereffects) are 
consequently reduced. We also find behavioural evidence that these afferent and efferent-based estimates con-
tribute independently to motor behaviour changes. Taken together, it seems that proprioceptive plasticity plays 
an important role when updating our hand location estimates after experiencing movement errors, as sensory 
prediction error-based processes are reduced with increased external error attribution, but visuo-proprioceptive 
recalibration is impervious to this.

Methods
Participants.  Ninety right-handed university students (64 female, MAge = 20.8, SDAge = 3.88) were assigned 
to one of four groups: Control (n = 20, 14 females), Instructed (n = 21, 13 females), Cursor Jump (n = 20, 14 
females), and Hand View (n = 29, 23 females). Data for the Instructed and Control groups have been used in our 
earlier work and are publicly available on OSF18. In those two data sets, the samples (~ 20 participants per group) 
were large enough to detect differences between active and passive localization shifts (see also41, n = 19). For the 
Cursor Jump group, the sample size matched these reference groups. Since, to our knowledge, no previous study 
has compared active and passive hand localization shifts after training with a full view of the hand, we ensured 
sufficient power to detect subtler effects by adding more participants to the Hand View group. All participants 
gave written informed consent prior to participating. All procedures were in accordance with institutional and 
international guidelines. All procedures were approved by York University’s Human Participants Review Com-
mittee.

Experimental set‑up.  Apparatus.  Participants held the handle of a 2-joint robot manipulandum (Inter-
active Motion Technologies Inc., Cambridge, MA, USA) with their right hand, while placing their thumb on top 
of the handle. A downward facing monitor (Samsung 510 N, 60 Hz) 28 cm above the manipulandum projected 
visual stimuli on a reflective tint (14 cm above the manipulandum), making the stimuli appear on the same 
horizontal plane as the participant’s hand (Fig. 1a–c). The reflective tint is applied to plexiglass and achieves 
the same result as a half-silvered mirror. Participants responded using their visible left hand in some tasks on a 
touchscreen 2 cm above the manipulandum (Fig. 1d). The right hand was occluded from the participant’s view 
and a black cloth was draped over their right arm and shoulder. For the Hand View group, the right hand was 
illuminated in some tasks, making it visible to the participant.

Stimuli.  Participants made smooth and straight 12 cm out-and-back reaching movements from the “home 
position” to one of three targets (or arcs). Targets and arcs were presented once in a shuffled order before being 
presented again, such that reach directions were evenly distributed across trial types (Fig. 2).

Cursor training trials.  Participants kept a green cursor (circle, 1 cm diameter), representing their right thumb, 
at the home position for 300 ms. A yellow target (circle, 1 cm diameter) then appeared at one of three possible 
locations: 45°, 90°, 135° in polar coordinates. Once the target was acquired, they held the cursor for 300 ms 
within 0.5 cm of the target’s centre. Afterwards, both stimuli disappeared, and participants returned their hand 
to the home position via a robot-constrained path (perpendicular resistance force: 2 N/(mm/s); viscous damp-
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ing: 5 N/(mm/s)). Participants in the Hand View group saw their right hand along with the cursor throughout 
these trials. For these trials, we calculated the angular difference between the hand position at the peak of move-
ment velocity and the target, relative to the home position. Thus, once the rotation is introduced, full adaptation 
should then result in angular reach deviations of 30°.

No‑cursor trials.  These proceeded similarly to cursor training trials, but without visual feedback from the cur-
sor or hand (Fig. 1f). Participants kept stationary for 500 ms once they believe they had acquired the target with 
their unseen right hand, making the target disappear. They returned to the home position via the constrained 
path.

During the rotated session, participants completed two variations of no-cursor trials in succession (with- and 
without-strategy; Fig. 2). Using the process dissociation procedure from Werner et al. (PDP;16), we instructed 
participants to either include or exclude any consciously accessible strategy they developed to counter for the 
visuomotor rotation, to measure implicit and explicit adaptation. The order of these blocks was counter-balanced 
within one participant and between participants (Fig. 2). For all no-cursor trials, we calculated the angular dif-
ference between the endpoint of the participant’s hand movement and the target, relative to the home position. 
Considering reach endpoints makes this data set comparable to those from localization trials.

Localization trials.  Participants saw a white arc (0.5 cm thick) 12 cm away from the home position (Fig. 1e), 
which spanned 60°, and was centred on either the 50°, 90°, or 130° mark in polar coordinates. In self-generated 
active localization trials, participants moved their unseen right hand from the home position to any point on 
the arc, and were instructed to vary their chosen crossing points across trials. In passive localization trials, the 
robot guided the participant’s right hand towards the same points on the arc that they intersected during active 
localization trials in the preceding task. Regardless of localization type, a cushion force prevented hand move-
ments from moving beyond the arc position. Participants then voluntarily returned their right hand to the home 
position via the constrained path, and used their visible left hand to indicate on the touchscreen the point at 
which they believed their unseen right hand intersected the arc.

Procedure.  The aligned session served as baseline data, and started with aligned cursor training trials, followed 
by blocks of active localization, passive localization, and no-cursor trials respectively (Fig. 2). Localization and 
no-cursor blocks were repeated in the same order for three more times during this session. To prevent decay 
in learning, we interleaved shorter blocks of “top-up” cursor training trials between every localization and no-
cursor block. The aligned session ended upon completion of the fourth no-cursor block.

Participants were given a mandatory five-minute break. During this break, the Instructed group was informed 
about the nature of the perturbation and was given a strategy to counter it (see15,18 for details). The other groups 
were simply advised to compensate since the cursor would be “moving differently”, and to remember any strategy 
they develop as they would be asked to either use or not use it.

In the following session, the cursor was rotated 30° clockwise (CW) relative to the hand position for all cur-
sor training trials. Hence, correcting for this perturbation requires straight reaches in the 30° counterclockwise 
(CCW) direction. Regardless of instructions received during the break, both Instructed and Control groups 
simply experienced this perturbation. For the Cursor Jump group, the cursor shifted to this rotated trajectory 
after participants moved for one-third (4 cm) of the home-target distance (Fig. 1b). For the Hand View group, 
illuminating the right hand allowed participants to see the misalignment between cursor and hand, making this 
the clearest demonstration that the error was caused externally (Fig. 1c). The rotated session proceeded similarly 
to the aligned session. However, to saturate learning of the visuomotor rotation, we increased the number of 
cursor training trials in each block (Fig. 2). Moreover, each block of no-cursor trials was done twice, each in one 
variation (with-strategy or without-strategy).

Data analysis.  We compared all four groups within the different trial types. Results from frequentist tests 
are reported with an alpha level of 0.05. Greenhouse–Geisser corrections were applied when necessary. Planned 
follow-up tests used the Sidak method when it was necessary to correct for multiplicity. Degrees of freedom 
for follow-up tests are larger than expected in some cases, as it uses a model fit on all the data (R emmeans 
package64). For the figures, estimates of confidence intervals were bootstrapped to represent the individual data 
better, but confidence intervals for grouped data and the corresponding statistical tests were based on sample 
t-distributions. All data preprocessing and analyses were conducted in R version 3.6.065. Bayesian statistics are 
reported for each corresponding frequentist test and were conducted in JASP version 0.11.166. Follow-up tests 
for Bayesian ANOVAs were only conducted on main effects (odds values in Results). We conducted Bayesian 
t-tests to follow-up on interaction effects, without correcting for multiplicity.

Rate of learning during adaptation training.  We analyzed cursor training trials from both the aligned and 
rotated sessions. Trials were manually inspected for outlier reaches (0.94% of trials removed). We corrected 
for individual baseline biases by calculating the average reach deviation for each target separately within each 
participant, during the last 30 out of the first 45 aligned cursor training trials, and subtracting this from rotated 
cursor training trials. We compared angular reach deviation measures across all groups, within each one of three 
trial sets (rotated cursor training trials 1–3, 4–6, 76–90), to confirm learning and investigate any differences.

Reach aftereffects and strategy use.  We tested for group differences in reaches without cursor-feedback. Upon 
manual inspection, outlier reaches were removed (1.46% of trials). We confirmed the presence of reach afteref-
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fects by comparing angular reach deviations from aligned no-cursor trials to without-strategy no-cursor trials. 
For the PDP16,18, we implemented baseline-correction (aligned session no-cursor reaches subtracted from no-
cursor with- and without-strategy trials, respectively), before comparing angular reach deviations in with- and 
without-strategy trials.

Proprioceptive recalibration and updating predicted sensory consequences.  We investigated active and passive 
localization trials, before and after adaptation training. We calculated the angular difference between the end-
point of the participant’s right hand movement and their left hand responses on the touchscreen, relative to the 
home position. Localization response biases were accounted for using a circle fitting procedure (see35 for details). 
Trials with hand movement endpoints beyond ± 20° from the arc centre across all groups, and angular errors 
beyond ± 3 standard deviations from the mean angular error per participant were removed (1.06% of angular 
errors). We used a kernel smoothing method (gaussian kernel with bandwidth = 15°) to interpolate changes in 
hand localization at specific points (50°, 90°, 130°) for every participant. Mean values at each of these points 
estimate active and passive hand localization errors for both the aligned and rotated sessions.

We compared hand localization errors in the rotated session to those in the aligned session. The difference 
of localization errors between the two sessions represents shifts in hand localization, and were compared across 
groups and movement type (active and passive). The difference between active and passive localization shifts 
were used as a measure of efferent-based updates in predicted sensory consequences, while passive localization 
shifts measured the afferent-based recalibration of proprioception. If afferent and efferent contributions to hand 
localization are optimally integrated (e.g. Bayesian integration), then variance in active localization should be 
lower than passive localization41. However, we have failed to find this in two earlier studies35,41 as well as more 
recently, when we combined data from several studies, for a total of over 200 participants67. Thus, we take a par-
simonious approach, and treat afferent and efferent contributions as additive in hand localization. We compared 
these measures for each group against zero, and investigated how both hand location estimates may contribute 
to implicit motor changes.

Data availability
Data, analyses scripts, and preprint are available on Open Science Framework (https​://doi.org/10.17605​/osf.io/
xdgh6​48).

Received: 27 April 2020; Accepted: 4 November 2020

References
	 1.	 Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J. & Thach, W. T. Throwing while looking through prisms II: specificity 

and storage of multiple gaze-throw calibrations. Brain 119, 1199–1211 (1996).
	 2.	 Krakauer, J. W., Pine, Z. M., Ghilardi, M.-F. & Ghez, C. Learning of visuomotor transformations for vectorial planning of reaching 

trajectories. J. Neurosci. 20, 8916–8924 (2000).
	 3.	 Bastian, A. J. Understanding sensorimotor adaptation and learning for rehabilitation. Curr. Opin. Neurol. 21, 628–633 (2008).
	 4.	 Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. 

Neurosci. 33, 89–108 (2010).
	 5.	 Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L. & Haith, A. M. Motor learning. Compr. Physiol. 9, 613–663 (2019).
	 6.	 Berniker, M. & Körding, K. Estimating the sources of motor errors for adaptation and generalization. Nat. Neurosci. 11, 1454–1461 

(2008).
	 7.	 Berniker, M. & Körding, K. Estimating the relevance of world disturbances to explain savings, interference and long-term motor 

adaptation effects. PLoS Comput. Biol. 7, e1002210. https​://doi.org/10.1371/journ​al.pcbi.10022​10 (2011).
	 8.	 Wei, K. & Körding, K. Relevance of error: what drives motor adaptation?. J. Neurophysiol. 101, 655–664 (2009).
	 9.	 Wilke, C., Synofzik, M. & Lindner, A. Sensorimotor recalibration depends on attribution of sensory prediction errors to internal 

causes. PLoS ONE 8, e54925. https​://doi.org/10.1371/journ​al.pone.00549​25 (2013).
	10.	 Kong, G., Zhou, Z., Wang, Q., Körding, K. & Wei, K. Credit assignment between body and object probed by an object transporta-

tion task. Sci. Rep. 7, 13415. https​://doi.org/10.1038/s4159​8-017-13889​-w (2017).
	11.	 Krakauer, J. W. Motor learning and consolidation: the case of visuomotor rotation. Adv. Exp. Med. Biol. 629, 405–421 (2009).
	12.	 Krakauer, J. W. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 19, 84–90 (2006).
	13.	 Mazzoni, P. & Krakauer, J. W. An implicit plan overrides an explicit strategy during visuomotor adaptation. J. Neurosci. 26, 

3642–3645 (2006).
	14.	 Taylor, J. A., Klemfuss, N. M. & Ivry, R. B. An explicit strategy prevails when the cerebellum fails to compute movement errors. 

Cerebellum 9, 580–586 (2010).
	15.	 Benson, B. L., Anguera, J. A. & Seidler, R. D. A spatial explicit strategy reduces error but interferes with sensorimotor adaptation. 

J. Neurophysiol. 105, 2843–2851 (2011).
	16.	 Werner, S. et al. Awareness of sensorimotor adaptation to visual rotations of different size. PLoS ONE 10, e0123321. https​://doi.

org/10.1371/journ​al.pone.01233​21 (2015).
	17.	 Neville, K. M. & Cressman, E. K. The influence of awareness on explicit and implicit contributions to visuomotor adaptation over 

time. Exp. Brain Res. 236, 2047–2059 (2018).
	18.	 Modchalingam, S., Vachon, C. M., ’t Hart, B. M. & Henriques, D. Y. P. The effects of awareness of the perturbation during motor 

adaptation on hand localization. PLoS ONE 14, e0220884. https​://doi.org/10.1371/journ​al.pone.02208​84 (2019).
	19.	 Taylor, J. A. & Ivry, R. B. Flexible cognitive strategies during motor learning. PLoS Comput. Biol. 7, e1001096. https​://doi.

org/10.1371/journ​al.pcbi.10010​96 (2011).
	20.	 Taylor, J. A. & Ivry, R. B. The role of strategies in motor learning. Ann. N. Y. Acad. Sci. 1251, 1–12 (2012).
	21.	 Taylor, J. A., Krakauer, J. W. & Ivry, R. B. Explicit and implicit contributions to learning in a sensorimotor adaptation task. J. 

Neurosci. 34, 3023–3032 (2014).
	22.	 Bond, K. M. & Taylor, J. A. Flexible explicit but rigid implicit learning in a visuomotor adaptation task. J. Neurophysiol. 113, 

3836–3849 (2015).
	23.	 Cressman, E. K. & Henriques, D. Y. P. Sensory recalibration of hand position following visuomotor adaptation. J. Neurophysiol. 

102, 3505–3518 (2009).

https://doi.org/10.17605/osf.io/xdgh6
https://doi.org/10.17605/osf.io/xdgh6
https://doi.org/10.1371/journal.pcbi.1002210
https://doi.org/10.1371/journal.pone.0054925
https://doi.org/10.1038/s41598-017-13889-w
https://doi.org/10.1371/journal.pone.0123321
https://doi.org/10.1371/journal.pone.0123321
https://doi.org/10.1371/journal.pone.0220884
https://doi.org/10.1371/journal.pcbi.1001096
https://doi.org/10.1371/journal.pcbi.1001096


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19918  | https://doi.org/10.1038/s41598-020-76940-3

www.nature.com/scientificreports/

	24.	 Cressman, E. K. & Henriques, D. Y. P. Generalization patterns for reach adaptation and proprioceptive recalibration differ after 
visuomotor learning. J. Neurophysiol. 114, 354–365 (2015).

	25.	 Ostry, D. J. & Gribble, P. L. Sensory plasticity in human motor learning. Trends Neurosci. 39, 114–123 (2016).
	26.	 Haith, A., Jackson, C. P., Miall, R. C. & Vijayakumar, S. Unifying the sensory and motor components of sensorimotor adaptation. 

In: Advances in Neural Information Processing System 593–600 (2008).
	27.	 Rabe, K. et al. Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with 

cerebellar degeneration. J. Neurophysiol. 101, 1961–1971 (2009).
	28.	 Ruttle, J. E., Cressman, E. K., ’t Hart, B. M. & Henriques, D. Y. P. Time course of reach adaptation and proprioceptive recalibration 

during visuomotor learning. PLoS ONE 11, e0163695. https​://doi.org/10.1371/journ​al.pone.01636​95 (2016).
	29.	 Ruttle, J. E., ’t Hart, B. M. & Henriques, D. Y. P. The fast contribution of visual-proprioceptive discrepancy to reach aftereffects and 

proprioceptive recalibration. PLoS ONE 13, e0200621. https​://doi.org/10.1371/journ​al.pone.02006​21 (2018).
	30.	 Cressman, E. K., Salomonczyk, D. & Henriques, D. Y. P. Visuomotor adaptation and proprioceptive recalibration in older adults. 

Exp. Brain Res. 205, 533–544 (2010).
	31.	 Ostry, D. J., Darainy, M., Mattar, A. A. G., Wong, J. & Gribble, P. L. Somatosensory plasticity and motor learning. J. Neurosci. 30, 

5384–5393 (2010).
	32.	 Cameron, B. D., Franks, I. M., Inglis, J. T. & Chua, R. The adaptability of self-action perception and movement control when the 

limb is passively versus actively moved. Conscious Cogn. 21, 4–17 (2012).
	33.	 Leech, K. A., Day, K. A., Roemmich, R. T. & Bastian, A. J. Movement and perception recalibrate differently across multiple days 

of locomotor learning. J. Neurophysiol. 120, 2130–2137 (2018).
	34.	 Sombric, C., Gonzalez-Rubio, M. & Torres-Oviedo, G. Split-belt walking induces changes in active, but not passive, perception of 

step length. Sci. Rep. 9, 16442. https​://doi.org/10.1038/s4159​8-019-52860​-9 (2019).
	35.	 Mostafa, A. A., ’t Hart, B. M. & Henriques, D. Y. P. Motor learning without moving: proprioceptive and predictive hand localiza-

tion after passive visuoproprioceptive discrepancy training. PLoS ONE 14, e0221861. https​://doi.org/10.1371/journ​al.pone.02218​
61 (2019).

	36.	 Cressman, E. K. & Henriques, D. Y. P. Reach adaptation and proprioceptive recalibration following exposure to misaligned sensory 
input. J. Neurophysiol. 103, 1888–1895 (2010).

	37.	 Salomonczyk, D., Cressman, E. K. & Henriques, D. Y. P. The role of the cross-sensory error signal in visuomotor adaptation. Exp. 
Brain Res. 228, 313–325 (2013).

	38.	 Blakemore, S. J., Goodbody, S. J. & Wolpert, D. M. Predicting the consequences of our own actions: the role of sensorimotor context 
estimation. J. Neurosci. 18, 7511–7518 (1998).

	39.	 Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998).
	40.	 Haith, A. M. & Krakauer, J. W. Model-based and model-free mechanisms of human motor learning. Adv. Exp. Med. Biol. 782, 1–21 

(2013).
	41.	 ’t Hart, B. M. & Henriques, D. Y. P. Separating predicted and perceived sensory consequences of motor learning. PLoS ONE 11, 

e0163556. https​://doi.org/10.1371/journ​al.pone.01635​56 (2016).
	42.	 Balitsky-Thompson, A. K. & Henriques, D. Y. P. Visuomotor adaptation and intermanual transfer under different viewing condi-

tions. Exp. Brain Res. 202, 543–552 (2010).
	43.	 Werner, S., Struder, H. K. & Donchin, O. Intermanual transfer of visuomotor adaptation is related to awareness. PLoS ONE 14, 

e0220748. https​://doi.org/10.1371/journ​al.pone.02207​48 (2019).
	44.	 Synofzik, M., Lindner, A. & Thier, P. The cerebellum updates predictions about the visual consequences of one’s behaviour. Curr. 

Biol. 18, 814–818 (2008).
	45.	 Izawa, J., Criscimagna-Hemminger, S. E. & Shadmehr, R. Cerebellar contributions to reach adaptation and learning sensory 

consequences of action. J. Neurosci. 32, 4230–4239 (2012).
	46.	 Wong, A. L., Marvel, C. L., Taylor, J. A. & Krakauer, J. W. Can patients with cerebellar disease switch learning mechanisms to reduce 

their adaptation deficits?. Brain 142, 662–673 (2019).
	47.	 Henriques, D. Y. P. & Cressman, E. K. Visuomotor adaptation and proprioceptive recalibration. J. Mot. Behav. 44, 435–444 (2012).
	48.	 Gastrock, R. Q., Modchalingam, S., ’t Hart, B. M. & Henriques, D. Y. P. External source attribution and adaptation while viewing 

the hand. OSF https​://doi.org/10.17605​/OSF.IO/XDGH6​ (2020).
	49.	 Vachon, C. M., Modchalingam, S., ’t Hart, B. M. & Henriques, D. Y. P. The effect of age on visuomotor learning processes. PLoS 

ONE 15, e0239032. https​://doi.org/10.1371/journ​al.pone.02390​32 (2020).
	50.	 Henriques, D. Y. P., Filippopulos, F., Straube, A. & Eggert, T. The cerebellum is not necessary for visually driven recalibration of 

hand proprioception. Neuropsychologia 64, 195–204 (2014).
	51.	 Bastian, A. J. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr. Opin. Neurobiol. 16, 

645–649 (2006).
	52.	 Tseng, Y. W., Diedrichsen, J., Krakauer, J. W., Shadmehr, R. & Bastian, A. J. Sensory prediction errors drive cerebellum-dependent 

adaptation of reaching. J. Neurophysiol. 98, 54–62 (2007).
	53.	 Heuer, H. & Hegele, M. Adaptation to visuomotor rotations in younger and older adults. Psychol. Aging. 23, 190–202 (2008).
	54.	 McDougle, S. D., Bond, K. M. & Taylor, J. A. Explicit and implicit processes constitute the fast and slow processes of sensorimotor 

learning. J. Neurosci. 35, 9568–9579 (2015).
	55.	 Hegele, M. & Heuer, H. Age-related variations of visuomotor adaptation result from both the acquisition and the application of 

explicit knowledge. Psychol. Aging 28, 333–339 (2013).
	56.	 Maresch, J., Werner, S. & Donchin, O. Methods matter: your measures of explicit and implicit processes in visuomotor adaptation 

affect your results. Preprint https​://doi.org/10.1101/70229​0 (2020).
	57.	 Leow, L., Gunn, R., Marinovic, W. & Carroll, T. J. Estimating the implicit component of visuomotor rotation learning by constrain-

ing movement preparation time. J. Neurophysiol. 118, 666–676 (2017).
	58.	 de Brouwer, A. J., Albaghdadi, M., Flanagan, J. R. & Gallivan, J. P. Using gaze behaviour to parcellate the explicit and implicit 

contributions to visuomotor learning. J. Neurophysiol. 120, 1602–1615 (2018).
	59.	 Ong, N. T. & Hodges, N. J. Absence of after-effects for observers after watching a visuomotor adaptation. Exp. Brain Res. 205, 

325–334 (2010).
	60.	 Ong, N. T., Larssen, B. C. & Hodges, N. J. In the absence of physical practice, observation and imagery do not result in updating 

of internal models for aiming. Exp. Brain Res. 218, 9–19 (2012).
	61.	 Wong, J. D., Kistemaker, D. A., Chin, A. & Gribble, P. L. Can proprioceptive training improve motor learning?. J. Neurophysiol. 

108, 3313–3321 (2012).
	62.	 Block, H., Bastian, A. & Celnik, P. Virtual lesion of angular gyrus disrupts the relationship between visuoproprioceptive weighting 

and realignment. J. Cogn. Neurosci. 25, 636–648 (2013).
	63.	 Munoz-Rubke, F., Mirdamadi, J. L., Lynch, A. K. & Block, H. J. Modality-specific changes in motor cortex excitability after visuo-

proprioceptive realignment. J. Cogn. Neurosci. 29, 2054–2067 (2017).
	64.	 Lenth, R. emmeans: estimated marginal means, aka least-squares means. R package version 1.4.3.01. https​://CRAN.R-proje​ct.org/

packa​ge=emmea​ns (2019).
	65.	 R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

https​://www.R-proje​ct.org/ (2019).

https://doi.org/10.1371/journal.pone.0163695
https://doi.org/10.1371/journal.pone.0200621
https://doi.org/10.1038/s41598-019-52860-9
https://doi.org/10.1371/journal.pone.0221861
https://doi.org/10.1371/journal.pone.0221861
https://doi.org/10.1371/journal.pone.0163556
https://doi.org/10.1371/journal.pone.0220748
https://doi.org/10.17605/OSF.IO/XDGH6
https://doi.org/10.1371/journal.pone.0239032
https://doi.org/10.1101/702290
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=emmeans
https://www.R-project.org/


14

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19918  | https://doi.org/10.1038/s41598-020-76940-3

www.nature.com/scientificreports/

	66.	 JASP Team. JASP (version 0.11.1) [Computer software] (2020).
	67.	 Ayala, M. N., ’t Hart, B. M., & Henriques, D. Y. P. Efferent and afferent estimates of hand location do not optimally integrate. 

Neuromatch 2.0, poster, https​://denis​eh.lab.yorku​.ca/files​/2020/05/Ayala​_2020_neuro​match​2_poste​r.pdf?x6437​3 (2020).

Acknowledgements
This work was supported by NSERC for DYPH; SSHRC, OGS, and VISTA for RQG; OGS, and VISTA for SM. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the 
manuscript.

Author contributions
B.M.tH. and D.Y.P.H. designed the research. R.Q.G. and SM collected the data. B.M.tH. contributed experimental 
and analytic code. RQG, S.M., and B.M.tH. analyzed the data. R.Q.G. wrote the manuscript, which was care-
fully edited by all authors. The final version of the manuscript has been approved by all authors who agree to be 
accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part 
of the work are appropriately investigated and resolved.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.Q.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://deniseh.lab.yorku.ca/files/2020/05/Ayala_2020_neuromatch2_poster.pdf?x64373
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	External error attribution dampens efferent-based predictions but not proprioceptive changes in hand localization
	Results
	Implicit aftereffects persist despite external error attribution. 
	Changes in afferent-based estimates of hand localization persist. 

	Discussion
	Methods
	Participants. 
	Experimental set-up. 
	Apparatus. 
	Stimuli. 
	Cursor training trials. 
	No-cursor trials. 
	Localization trials. 

	Procedure. 

	Data analysis. 
	Rate of learning during adaptation training. 
	Reach aftereffects and strategy use. 
	Proprioceptive recalibration and updating predicted sensory consequences. 


	References
	Acknowledgements


