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Xu et al. report that surfactant-laden liquid crystal (LC) films can detect ssRNA of
SARS-CoV-2 with high selectivity and sensitivity. Combing polarized light
microscopy work principle and machine learning technology, a LC-based
diagnostic kit and a smartphone-based application (app) are developed to enable
automatic detection of SARS-CoV-2 ssRNA.
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of SARS-CoV-2 Using Thermotropic Liquid
Crystals and Image-Based Machine Learning

Yang Xu,"” Adil M. Rather,"” Shuang Song,?’ Jen-Chun Fang," Robert L. Dupont,’ Ufuoma I. Kara,’
Yun Chang,® Joel A. Paulson,’* Rongjun Qin,?>%* Xiaoping Bao,*>* and Xiaoguang Wang'#8*

SUMMARY

Rapid, robust virus-detection techniques with ultrahigh sensitivity
and selectivity are required for the outbreak of the pandemic coro-
navirus disease 2019 (COVID-19) caused by the severe acute respi-
ratory syndrome-coronavirus-2 (SARS-CoV-2). Here, we report that
the femtomolar concentrations of single-stranded ribonucleic acid
(ssRNA) of SARS-CoV-2 trigger ordering transitions in liquid crystal
(LC) films decorated with cationic surfactant and complementary 15-
mer single-stranded deoxyribonucleic acid (ssDNA) probe. More
importantly, the sensitivity of the LC to the SARS ssRNA, with a 3-
bp mismatch compared to the SARS-CoV-2 ssRNA, is measured to
decrease by seven orders of magnitude, suggesting that the LC
ordering transitions depend strongly on the targeted oligonucleo-
tide sequence. Finally, we design a LC-based diagnostic kit and a
smartphone-based application (app) to enable automatic detection
of SARS-CoV-2 ssRNA, which could be used for reliable self-test of
SARS-CoV-2 at home without the need for complex equipment or
procedures.

INTRODUCTION

The outbreak of the coronavirus disease 2019 (COVID-19), caused by the novel se-
vere acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus, has spread
rapidly and evolved into a global pandemic."® SARS-CoV-2 has an incubation
period of 2-7 days, during which infected individuals present no obvious symp-
toms,”” and the transmission of the SARS-CoV-2 virus has been shown to peak on
or before symptom onset.®’ To efficiently control such pre-symptomatic transmis-
sion, rapid, robust, and inexpensive tests should be performed on a large fraction
of the population.®® Nucleic acid tests on the viral RNAs swabbed from a patient's
throat or nasal passage, typically in the form of a reverse-transcription polymerase
chain reaction (RT-PCR) test, are effective for the detection of the SARS-CoV-2 virus.
This RT-PCR test is considered to be the “gold standard” for clinical diagnosis.”'° A
promising alternative approach to RT-PCR is the isothermal amplification method,
which mainly contains two techniques: loop-mediated isothermal amplification
(LAMP)"" and recombinase polymerase amplification (RPA)."? However, these
methods require both long characterization time and specialized equipment.

Very recently, Cas12 and Cas13,"” gold nanoparticles,'* field-effect transistors
(FETs)," the plasmonic photothermal (PPT) effect,’®
test (CAT) technologies'’ have emerged as diagnostic tools for the detection of
SARS-CoV-2. Although these diagnostic techniques are promising, each has its
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own limitations. For example, the gold-nanoparticle-based technique is cost prohib-
itive for large-scale testing and requires improvements in its detection limit in order
to reduce the required input amount of virus samples. Moreover, the FETs and PPT-
effect-based diagnostic approaches require specialized analytical equipment for
virus detection, and the CAT approach requires blood sample collection and centri-
fugation that depends on an established testing laboratory. Thus, the development
of a low-cost, rapid, reliable, and simple diagnostic method for the self-detection of
the SARS-CoV-2 virus remains elusive.

Thermotropic liquid crystals (LCs) exhibit unifying characteristics and behaviors that
emerge from the long-range orientational order and mobility of their mesogenic

constituents' &7

and have been broadly utilized in fast-switching electro-optical de-
vices, such as liquid crystal displays (LCDs).?° Over the past decade, a series of work
has revealed the design of LC films and droplets that undergo orientational ordering
transitions in response to a wide range of molecules adsorbed at an interface,
21723 and polymers,”*?*> phospholipids,”*™? pep-
tides,*” proteins, streptavidin,®® bacterial toxins,?® and deoxyribonucleic acid
(DNA).?”~*" For instance, single-stranded DNA (ssDNA) and double-stranded
DNA (dsDNA) produce different orientations of LCs at cationic surfactant-laden
aqueous-LC interfaces, which leads to a change in the effect on visible light caused
by the optical birefringence of the LC film and thus enables the detection of DNA

hybridization under polarized light microscopy.’®*" Despite the great potential of

including synthetic surfactants
31-34

LC biosensor applications, their rational study and use in the detection of ribonucleic
acid (RNA), which is the core genetic material of most pathogenic viruses, have not
yet been explored.

In this study, we report the design of LC-based sensors for the reliable detection of
SARS-CoV-2 RNA. Specifically, a partially self-assembled monolayer of cationic sur-
factants is formed at an aqueous-LC interface, followed by the adsorption of a 15-
mer ssDNA probe with a complementary sequence to the SARS-CoV-2 virus at the
cationic surfactant-laden aqueous-LC interface. We demonstrate that the ordering
transition in the formed LC surface strongly depends on the targeted nucleotide
sequence. The minimum concentration of SARS-CoV-2 RNA that can drive an
ordering transition in the LC film is seven orders of magnitude lower than that of
the base-pair-mismatched SARS RNA. Furthermore, we design and fabricate a LC-
based SARS-CoV-2 RNA point-of-care detection kit, with an obtained response
that is visible to the naked eye without any additional equipment, and a smart-
phone-based application (app) to enhance the overall accuracy of the test result
readout and to avoid user error. Overall, these results unmask principles by which
LCs and RNA can be coupled at cationic surfactant-decorated aqueous interfaces
and hint at new routes by which the RNA of a pathogenic virus can be rapidly and
easily sensed using LCs with both high sensitivity and selectivity.

RESULTS AND DISCUSSION

Preparation of the Cationic Surfactant-Decorated LC Films

The initial experiments reported below employed a cationic surfactant dodecyltri-
methylammonium bromide (DTAB)-decorated interface on micrometer-thick films
of nematic E7. The thermotropic LC E7 was chosen because of the relatively broad
temperature range of its nematic mesophase (—62°C-58°C). In this phase, the rod-
shaped E7 molecules have no positional order but self-align to possess a long-range
orientational order. As described in the Experimental Procedures and in Figure 1,
films of nematic E7, with an approximately flat interface, were prepared by filling
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Figure 1. ssDNA/ssRNA Sequences and Grid-Infused LC Films

(A) Oligonucleotide sequence of ssDNA and ssRNA and the molecular structure of thermotropic LC
E7.

(B) Schematic illustration of the E7-filled specimen grid on a DMOAP-functionalized glass slide.
(C) Representative optical micrograph (crossed polarizers) of the E7-filled specimen grid on a
DMOAP-functionalized glass slide in air. Inset in (C) is a conoscopic image confirming homeotropic
alignment of E7 in the film. Scale bar, 200 pm.

the pores of a 20-um-thick copper specimen grid supported on a dimethyloctadecyl
[3-(trimethoxysilyl) propyllammonium chloride (DMOAP)-functionalized glass slide,
which induced a perpendicular ordering of the E7. Next, the E7 films were sub-
merged into an aqueous solution of 5 mM sodium chloride (NaCl) (pH ~5.5-6.0),
which was chosen to minimize the repulsive interaction of the base pairs of the
ssDNA.*°

A monolayer of DTAB was subsequently deposited at the aqueous-E7 interface by
adding an aqueous solution of DTAB to the aqueous phase above the E7 film. The
DTAB was then allowed to adsorb onto the surface for 10 min. The optical images
of DTAB-decorated E7 films were obtained by using an Olympus BX53 polarized
light microscope equipped with crossed polarizers and set to the transmission
mode. After adsorption of DTAB at the aqueous-E7 interface, we observed the op-
tical appearance of the E7 films to be uniformly dark, which is consistent with the ho-
meotropic anchoring of the nematic E7 at the DTAB-decorated aqueous interface of
the E7 films (Figure 2A). Previous studies have established that steric interactions
between the acyl tails of synthetic surfactants and mesogens cause LCs to adopt a
homeotropic orientation.”’*” We comment here that, under the experimental con-
dition of a 0.5 mM solution of DTAB, where the surface coverage of DTAB was near
the minimum required for homeotropic orientation, we calculated only ~36% of the
aqueous interface to be covered by DTAB (see Notes S1 and S2). These results sug-
gest that a substantial open LC surface area exists at the interface and thus a LC re-
orientation is allowed upon the adsorption of ssRNA and/or ssDNA at the interface.
We also comment here that such low surface coverage of DTAB plays a critical role in
the ultrasensitive detection of SARS-CoV-2, which will be discussed later.

Adsorption of the Probe ssDNA

Next, we deposited a 15-mer probe ssDNA (ssDNAyope) (5'-GCATCTCCTGAT-
GAG-3'), which can hybridize with our target 15-mer SARS-CoV-2 ssRNA (ssRNAc.v)
(5'-CUCAUCAGGAGAUGC-3'), at the DTAB-decorated aqueous-E7 interface. The
negatively charged ssDNA is attracted to the cationic DTAB at the aqueous-E7

Cell Reports Physical Science 1, 100276, December 23, 2020 3
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Figure 2. Adsorption of the Probe DNA at the Cationic Surfactant-Decorated Aqueous-LC
Interface

(A and B) Optical micrographs (crossed polarizers) of the E7 film after the adsorption of (A) DTAB
and the subsequent adsorption of (B) the ssDNAj ope. Scale bars, 100 um.

(C) Schematic illustration of the optical response of the DTAB-decorated LC film to the adsorption
of the ssDNAgobe.

interface via electrostatic interactions. The temperature of the system was kept at
the melting temperature (Ty,,) of the ssDNA ke, at which 50% of the nucleotide
was annealed. Figure 2B shows the dynamic optical response of the DTAB-deco-
rated nematic E7 film to the adsorption of ssDNAope. After addition of 100 nM
sSDNAgobe, Micrometer-sized domains with a bright optical appearance (corre-
sponding to the regions of E7 with a tilted or planar alignment) nucleated at the
interface. Subsequently, these domains grew over a period of 10 min, resulting in
a bright optical appearance across the entire aqueous-E7 interface. These results
indicate that, as the ssDNA .. adsorbs to the interface, the flexible ssSDNAy ope
chains (with typical persistence length of ~6 A)*? tend to spread at the surface
and the hydrophobic bases of the ssDNA b interact with the DTAB to decrease
the effective surface coverage of DTAB below what is required for a homeotropic
orientation, resulting in a reorientation of the LC from homeotropic to either tilted
or planar, as illustrated in Figure 2C. This phenomenon is consistent with previous
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studies.>”*! The concentration of the ssDNAyope Was fixed at 100 nM for the rest of
the experiments performed in this work. We emphasize here that the addition of
100 nM ssDNAobe to E7 films incubated in a 6 mM DTAB solution (>90% of the
aqueous-E7 interface is covered by DTAB; Figure S1) triggers no measurable change
in the optical appearance of the E7 films, revealing that the surface coverage of
DTAB plays a key role in driving the reorientation of the LC surface anchoring
upon adsorption of the ssDNAope.

Detection of the SARS-CoV-2 ssRNA

In this set of experiments, we investigated the effect of the adsorption of ssRNAcoy
on the optical response of the ssSDNAyope/DTAB-decorated aqueous-E7 interfaces
(Video S1). As shown in Figure 3A, after addition of the ssRNAc.y to the aqueous
phase, black domains were observed to nucleate and grow on the E7 surface over
a period of 20 min, resulting in a uniformly dark optical appearance that corresponds
to the homeotropic anchoring of the nematic E7 across the entire aqueous-E7 inter-
face. Furthermore, quantification of the optical appearance of the E7 films revealed a
clear threshold concentration in a plot of normalized grayscale of E7 films versus
ssRNAc,y concentration (Figures 3B and S2). Inspection of Figure 3D shows that
remarkably low concentrations of ssRNAc.y (~30 fM of target ssRNA) are able to
trigger the ordering transition of the E7 (see Note S3 and Figure S3). In addition,
the response time of the E7 film from a bright to dark optical appearance decreased
with an increase in the concentration of ssRNAc.y, as shown in Figure 3E.

Our polarized light microscopy imaging revealed that the adsorption of ssRNAcov
caused a LC reorientation from tilted/planar to homeotropic at the DTAB-decorated
aqueous-E7 interface. We notice here that our results shown in Figure 3C are strik-
ingly similar to past studies of the DNA hybridization at an aqueous-LC interface,
where hybridization between a ssDNA o1 and a complementary targeted ssDNA
caused a transition from a tilted/planar to a perpendicular orientation of the LCs
at the cationic surfactant-decorated aqueous-LC interface.’’“>*' Building from
the previous studies of the DNA hybridization at LC surfaces, we hypothesize that,
upon adsorption of complementary ssRNAc.y to the aqueous-E7 interface, the nu-
cleobases of ssSRNAcy will bind to its complementary base of the ssDNA o rather
than remaining intercalated between the surfactant molecules due to the strong
forces from hydrogen bonding and hydrophobic interactions involved in the process
of hybridization. Once hybridized, the rigidity of the ssDNA-ssRNA complexes in-
crease (e.g., the persistence length of the dsDNA increases by two orders of magni-
tude).”**? Such an increase in the rigidity compacts the double strands of the ssSRNA-
ssDNA, and the hydrophobic bases are no longer exposed. Therefore, the rigid
ssDNA-ssRNA complexes allow for a more efficient packing at the DTAB-decorated
aqueous-E7 interface and thus reorganize the DTAB to the original surface coverage
prior to the ssDNAyope adsorption. This increase in effective surface coverage of
DTAB gives rise to the transition from the planar/tilted orientation to the homeo-
tropic orientation that is observed in our experiments.

Next, we performed two additional experiments to provide insight into the role of
the target ssRNA on the ordering transition in LC films. First, we adsorbed pre-hy-
bridized ssSDNAgope-sSRNAcoy to the DTAB-decorated E7 films that were prepared
as described earlier (see Note S4). At concentrations up to 100 nM, the presence of
pre-hybridized ssDNAj obe-sSRNAcoy had no measurable impact on the
optical appearance of the E7 film (Figure S4). Second, we adsorbed complementary
15-mer SARS-CoV-2 ssDNA (ssDNAcoy) (5-CTCATCAGGAGATGC-3) to the
ssDNAgobe/DTAB-decorated aqueous-E7 interface. Similar to the ssSRNAcqy, we
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Figure 3. Adsorption of the SARS-CoV-2 RNA at the Aqueous-LC Interface

(A) Optical micrographs (crossed polarizers) of the dynamic response of the DTAB/ssDNAon-decorated E7 film to the adsorption of ssRNAc.y. Scale
bars, 100 pm.

(B) Normalized grayscale of the E7 films upon adsorption of ssRNAc.y as a function of time.
(C) Schematic illustration of the optical response of the DTAB/ssDNA ope-decorated LC film to the adsorption of ssRNAc.y.

(D and E) Normalized grayscale and response time of the DTAB/ssDNAp.-decorated E7 films as a function of the concentration of ssRNAc.y and
ssDNAc,y. The error bars are represented as mean of three separate measurements.

observed the ssDNAc,y was able to trigger the ordering transition of the DTAB-
decorated E7 film at remarkably low concentrations (<10? fM). We note here that
the sensitivity of our DTAB-decorated E7 film (30 fM) is around three orders of
magnitude higher than previous study on the detection of a ssDNA using a DTAB-
decorated nematic LC film (50 pM).41 The ultrasensitivity of our LC films can be
attributed to the minimum surface coverage of DTAB at the aqueous-E7 interface

(0.5 mM) compared with the concentration of DTAB (several mM) in the previous
study.*’
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Figure 4. Adsorption of the SARS RNA at the Aqueous-LC Interface

(A) Optical micrographs (crossed polarizers) of the dynamic response of the DTAB/ssDNA,ope-decorated E7 film to the adsorption of ssRNAgags. Scale
bars, 100 um.

(B) Normalized grayscale of the E7 films upon adsorption of ssRNAgars and ssDNAsars as a function of time.

(C) Schematic illustration of the optical response of the DTAB/ssDNA,onc-decorated LC film to the adsorption of ssRNAgars. The error bars are
represented as mean of three separate measurements.

Selectivity of LC Films

To examine the selectivity of the obtained ssDNAyope/DTAB-decorated E7 films,
15-mer ssRNAs or ssDNAs with different degrees of base pair mismatch were tested.
The first oligonucleotide sequence tested was the SARS virus, a close member of the
coronavirus family that emerged in 2003, with a nucleotide sequence 5-AUC
AUCCGGUGAUGC-3' (ssRNAgags), which contains a 3-bp mismatch compared
with the ssDNA ope. As shown in Figure 4A, for concentrations up to 30 nM, we
measured no change in the optical appearance of the ssDNAyope/DTAB-decorated
E7 films for 90 min upon adsorption of ssRNAgags (Video S2). When the concentra-
tion of ssRNAgars reached 100 nM, the E7 film underwent an optical change from
bright to dark after 90 min, corresponding to an ordering transition of E7 from
planar/tilted to perpendicular at the aqueous-E7 interface. Moreover, we observed
similar results using ssDNAsags (Figure 4B). This pronounced difference in threshold
concentration of ssRNAcoy (30 fM) and ssRNAsars (100 nM) required to trigger
ordering transitions within E7 films (seven orders of magnitude) leads us to hypoth-
esis that lack of hybridization between the ssDNAgope and ssRNAgags, due to the 3-
bp mismatch, caused no increase in the effective surface coverage of DTAB to
trigger the E7 ordering transition at the aqueous-E7 interface (Figure 4C). We notice
here that 10 pL of 30 fM ssRNAc.y corresponds to ~1.8 X 10° copies, which is com-
parable with the SARS-CoV-2 virus RNA copy number in real patient swab sample.’

To further test this hypothesis, we performed measurements with two additional 15-
mer ssDNA sequences with different degrees of base pair mismatch: 7-bp mismatch

Cell Reports Physical Science 1, 100276, December 23, 2020 7
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ssDNA (ssDNA7ppm) (5-AGCGTCCGGTGACGT-3') and 15-bp mismatch ssDNA
(ssDNA15ppm)  (5-AGACGACTTCTCGTA-3). When the ssDNA concentration
reached 100 nM, the ssDNA7y,m triggered the optical change of the ssDNAgope/
DTAB-decorated E7 films after a period of 90 min, which is similar to the behavior
of both ssDNAsars and ssRNAgars. Additionally, the ssDNA;spor, failed to cause
any measurable difference in the optical appearance of the E7 films over a wide
concentration range (3 fM-100 nM) after 90 min. Overall, these results support our
hypothesis that the response of the ssDNAgoe/DTAB-decorated LC film strongly
depends on the targeted oligonucleotide sequence, which gives rise to an ultrahigh
selectivity to complementary ssRNAc.y.

Design of SARS-CoV-2 Detection Kit

In the final set of experiments for this study, we sought to design a point-of-care
detection kit for SARS-CoV-2 that is visible to the human eye. We fabricated a
2.5 x 2.5 cm optical cell-based detection kit by pairing one bare glass slide and
one DMOAP-functionalized glass slide each with a polarizer sheet. The two surfaces
were then spaced apart with a 2-mm-thick poly(dimethylsiloxane) (PDMS) spacer, as
shown in Figures 5A and 5B. An opening was conserved in the center and at one side
of the PDMS spacer to allow for the analysis and the injection of the test samples,
respectively. A copper specimen grid (transmission electron microscopy [TEM]
grid) was placed on the surface of the DMOAP-functionalized glass slide and was
subsequently filled with E7. The optical cell was then filled with a 5 mM NaCl
aqueous solution containing the ssDNAyope at a concentration of 100 nM. We
notice here that TEM grid can stabilize LC film against dewetting by water, and
our LC sensors exhibit good stability under water for at least 10 days. We also
comment here that this LC detection kit is not reusable. The bright optical appear-
ance was visible to the human eye. Subsequently, 2 uL of ssRNAcoy or ssRNAgars
was added to the detection kit. When viewed with natural (sunlight) or artificial
(lamp) light, a significant decrease in the brightness of the specimen grid was
observed upon the addition of a 30-fM ssRNAc,y solution (Figure 5C) and no
measurable difference in the optical appearance in the case of a 30-fM ssRNAsars
aqueous solution (Figure 5D).

For most real-world applications, people may visualize the result of the detection kit
either under different environmental illumination conditions or at different dis-
tances, resulting in uncertainty or even error in the test result readout. To address
this limitation/challenge, we employed machine learning strategy to develop a
smartphone app to provide a reliable readout of the test result of our LC-based
SARS-CoV-2 detection kit. The objective of this app is to provide deterministic read-
ings for non-expert users with no background knowledge in LC sensors by utilizing
the capacity of machine learning models to encode the sophisticated and non-linear
visual patterns for prediction. Specifically, we employed a support vector machine
(SVM),** which is a supervised machine learning model that is often used for statis-
tical classification wherein the goal is to identify to which category (in this case either
"positive” or “negative”) a new observation belongs. Because observations are in
the forms of images, a feature extraction method was designed to reduce the dimen-
sionality of the input space. In particular, this method involves two main steps: (1) a
template-matching algorithm45 for locating the E7-infused grid and (2) the calcula-
tion of a reduced number of descriptions in terms of the standard deviation of the
color value of each pixel (in Commission internationale de |'éclairage 1976 L*a*b*
[CIELAB] color space) in a subdivided grid of the region of interest (see Note S5
and Figures S5-510). The model was trained on a dataset of 88 images, with 29 pos-
itive examples and a variety of negative examples. The system is able to accurately
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Figure 5. LC-Based Naked-Eye Home Detection Kit for SARS-CoV-2

(A and B) Design and photograph of a LC-based detection kit for ssRNAc,y.

(C and D) Optical appearance of the LC-based detection kit when viewed under a lamp upon
addition of (C) 30 fM ssRNA¢.y and (D) 30 fM ssRNAgars. Scale bars, 1 cm. Insets show the
normalized grayscales of the TEM grids upon the adsorption of ssRNAc.y.

(E) Test result readout by smartphone app for negative (upon adsorption of <100 nM ssRNAsars)
and positive (upon adsorption of >30 fM ssRNAc.y) test results.

distinguish between the positive and negative samples given an image of the E7-
infused grid (Figure 5E; Video S3). Overall, these results unmask the ways by which
the ssDNAgope and complementary ssRNAc.y can be coupled at a cationic surfac-
tant-decorated aqueous-LC interface and hint at design principles by which the
nucleotide sequence of pathogenic virus RNA can be rapidly and reliably sensed us-
ing LCs.

In conclusion, it was observed that the LC ordering transitions can be triggered by
adsorbing ssRNAc,y at a cationic surfactant/ssDNAope aqueous-LC interface in a
manner that depends strongly on the targeted nucleotide sequence. Additionally,
when the surface coverage of DTAB was near the minimum required for a homeo-
tropic orientation of the LCs, the minimum concentration of ssRNAc,y that can drive
the ordering transitions in the E7 film are seven orders of magnitude lower than that
of ssSRNAgars. In comparison with conventional detection techniques, we find that
ssRNAcy-driven ordering transitions in LC films exhibited ultrahigh sensitivity and
selectivity. To the best of our knowledge, this is the first experimental evidence

Cell Reports Physical Science 1, 100276, December 23, 2020 9



¢? CellPress

OPEN ACCESS

that LC films can optically respond to adsorbed RNA on an interface. Our results sug-
gest new principles for the naked-eye self-detection of viruses, including SARS-CoV-
2, without requiring complex equipment or procedure.

In future work, we will investigate the selective LC detection on different SARS-CoV-2
genome sequences and similar control sequences with fewer base pair mismatches.
Additionally, the massive detection of full-length SARS-CoV-2-RNA-containing patient
samples will be performed in a biosafety level 3 (BSL-3) laboratory to validate its reli-
ability. Moreover, the influence of the target ssRNA on the ordering transition of LC
confined in droplets is being investigated. Future efforts will also seek to explore
more sophisticated deep-learning methods for image analysis, such as convolutional
neural networks (CNNs),*® which have been successfully applied in LC chemical sen-
sors,”**® semiconductors,*” and a variety of image-based medical diagnostic tests,°
including X-rays, ultrasounds, and magnetic resonance imaging (MRI). The main advan-
tage of CNNs is their inherent capability to learn more complex features directly from
raw data—mitigating the need to use expert knowledge to define specific hand-crafted
features as done as a proof of concept in this work.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information should be directed to and will be fulfilled by the lead contact,
Xiaoguang Wang (email: wang.12206@osu.edu).

Materials Availability
This study did not generate new unique materials.

Data and Code Availability
Further requests for datasets and code should be directed to and will be fulfilled by
the Lead Contact.

Materials

Thermotropic LC E7 was purchased from Jiangsu Hecheng Advanced Materials.
DTAB, DMOAP (42 wt % in methanol), NaCl, and the 15-mer ssRNA sequences
(SARS-CoV-2 RNA 5-CUCAUCAGGAGAUGC-3'; 3-bp mismatch SARS RNA 5'-AU
CAUCCGGUGAUGC-3') and 15-mer ssDNA sequences (probe DNA 5-GCATC
TCCTGATGAG-3’, complementary SARS-CoV-2 DNA 5-CTCATCAGGAGATGC-
3’, 3-bp mismatch SARS DNA 5-ATCATCCGGTGATGC-3', 7-bp mismatch DNA
5-AGCGTCCGGTGACGT-3’, and 15-bp mismatch DNA 5-AGACGACTTCTC
GTA-3) were purchased from Sigma-Aldrich. Anhydrous ethanol was obtained
from Decon Labs. Microscope slides (25 x 75 x 1 mm) were purchased from Fisher
Scientific. Linear polarizer sheets were obtained from Thorlabs. Copper specimen
grids (GG-200Cu; 3.05 mm in diameter and 20 pm thick) were purchased from Elec-
tron Microscopy Sciences. 8-chambered cover glass system was obtained from Cell-
vis. Sylgard 184 PDMS precursor and curing agent were purchased from Dow Corn-
ing. Water used in all experiments was purified using a Milli-Q water purification
system (Simplicity C9210). Unless stated otherwise, purchased chemicals were
used as received without further modification or purification.

Preparation of DMOAP-Functionalized Glass Substrates

Glass slides were washed with water and ethanol and then dried under stream of ni-
trogen gas. The DMOAP aqueous solution was prepared by dissolving 1.5 wt % of
DMOAP in water. The washed glass slides were placed in the DMOAP aqueous
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solution and were kept at 40°C for 30 min. Afterward, the slides were rinsed with wa-
ter and ethanol three times. Finally, the DMOAP-functionalized glass slides were
dried under a stream of nitrogen gas and stored in the dark for further use.

Preparation of LC-Infused Specimen Grids

A copper specimen grid was placed on the surface of a DMOAP-functionalized glass
slide (7 X 7 mm). Next, 0.5 pL of E7 was placed on the specimen grid using a syringe
with the excess E7 being removed with a capillary tube to obtain a uniform thin film.
The obtained E7-infused specimen grid was observed under polarized light micro-
scopy to confirm the homeotropic orientation of LC mesogens within the LC film.
In this work, E7 was used due to its relatively high nematic-isotropic phase transition
temperature.

Adsorption of DTAB at Aqueous-LC Interfaces

The E7-filled specimen grid on the DMOAP-functionalized glass slide was immersed
into a 5 mM NaCl aqueous solution (pH ranged from 5.5 to 6.0) and was subse-
quently exposed to a 0.5 mM DTAB solution. The E7 mesogens adopted a perpen-
dicular anchoring at the DTAB-laden aqueous-E7 interfaces.

Optical Microscopy Characterization of LC Interfaces

The optical appearance of the E7 film during adsorption of ssRNA/ssDNA at the
aqueous-E7 interface was recorded using an Olympus BX53 polarized light micro-
scope equipped with crossed polarizers. Images were captured using a charge-
coupled device (CCD) camera.

Adsorption of Probe ssDNA

The probe ssDNA (ssDNAyobe) (15-mer-5'-GCATCTCCTGATGAG-3') was added to
the DTAB-adsorbed E7 surface, and the optical response of the E7 surface was char-
acterized with polarized light microscopy. The surface anchoring of E7 changed from
homeotropic to planar/tilted within 5 min as the concentration of the ssSDNAope
reached 100 nM, resulting in a bright optical appearance.

Detection of the Target ssRNA/ssDNA

Here, we used SARS-CoV-2 ssRNA (ssRNAc.y) (15-mer-5-CUCAUCAGGAGAUGC-
3’) as an example. We added ssRNAc.y to the DTAB-laden E7 surface with the ad-
sorbed ssDNAobe. The temperature of the system was increased to 48.7°C, which
is the T, of the ssRNAc.y. A Linkam PE120 Peltier hot stage was used to control the
temperature of the E7 surface during these measurements. We characterized the
grayscale of the E7 film over a period of 40 min. To determine the detection limit
of the E7 surface for the target ssRNA/ssDNA, we varied the concentration of the
target ssRNA/ssDNA from nanomolar to femtomolar concentrations.

Characterization of the Surface Tension of DTAB-Adsorbed Aqueous-LC
Interfaces

A KRUSS DSA 100 goniometer was used to measure the surface tension of aqueous-
E7 interfaces using a pendant drop method. During these measurements, E7 was
pushed through a needle slowly, at 5 pL/min, to minimize the effect of the dynamic
forces on the shape of the droplet. Images of the pendant E7 droplet near departure
were captured and analyzed using a drop shape analyzer to estimate the surface
tensions.

¢? CellPress

OPEN ACCESS

Cell Reports Physical Science 1, 100276, December 23, 2020 11




¢? CellPress

OPEN ACCESS

Quantification of the Optical Appearance of the LC Films
The optical appearance (i.e., brightness) of the RNA-adsorbed E7 films was quanti-
fied from images using ImageJ software. We set the grayscale of the E7 film upon
adsorption of DTAB and the ssDNAgope to be Gprag and Gprobe, respectively.
Upon addition of the target DNA/RNA, the grayscale of the E7 films, G, was
measured and the rescaled grayscale value was calculated as

Rescaled grayscale = ————— (Equation 1)
Gprobe — Gpras

Fabrication of Detection Kit for SARS-CoV-2

A 2.5 x 2.5 cm optical cell-based detection kit was fabricated by combining one
bare glass slide and one DMOAP-functionalized glass slide each with a polarizer
sheet. These combined surfaces were then spaced apart using a 2-mm-thick
PDMS spacer. An opening was conserved in the center and on one side of PDMS
spacer to allow for the analysis and injection of test samples, respectively. A copper
specimen grid was placed on the surface of the DMOAP-functionalized glass slide
and was subsequently filled with E7.

Development of a Machine-Learning-Based, Smartphone-Based App for the
Detection Kit

This app takes smartphone pictures of the LC-based detection kits and provides a
test result about the SARS-CoV-2 virus. The algorithm first detects the LC-infused
specimen grid location from the images using a multi-scale template-matching algo-
rithm, which can be written as

arggrglm/“(p) —w(I(p)) | *dp, (Equation 2)
Qs

where Kis the full smartphone image space, I refers to a specific smartphone image,
s refers to the scale of the template to accommodate smartphone images taken at
different distance to the image, and Qs a subset of the image space, which is param-
eterized by its location and shape. Jis a template of the LC-infused specimen grid at
a normalized size, and W refers to a brightness invariant transformation to allow the
LC-infused specimen grid location algorithm to operate on image under different
lighting conditions. Here, we used the well-known Canny edge operator for W.""

In a second step, we resized the detected LC film location Q from the smartphone
images to 128 x 128 pixels and subdivided them into 4 x 4 grids, with each grid hav-
ing a size of 16 x 16 pixels (each pixel has three color channels). To allow robust
feature extraction, we converted the red-green-blue (RGB) images to a more compu-
tationally friend color space called CIELAB space,” as it separates the illumination
and chromatic components well. The variances of the pixel colors within each of the
LC film were concatenated as a 48-dimensional feature vector (4 X 4 grids X 3 color
channels), with each component normalized between 0 and 1. The support vector
machine classifier’* was trained on the 88 independent LC detection kit samples
to classify the positive and negative samples based on the extracted variance vector.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.xcrp.
2020.100276.
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