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Abstract
Speech represents a promising novel biomarker by providing a window into brain health, as 
shown by its disruption in various neurological and psychiatric diseases. As with many novel 
digital biomarkers, however, rigorous evaluation is currently lacking and is required for these 
measures to be used effectively and safely. This paper outlines and provides examples from 
the literature of evaluation steps for speech-based digital biomarkers, based on the recent V3 
framework (Goldsack et al., 2020). The V3 framework describes 3 components of evaluation 
for digital biomarkers: verification, analytical validation, and clinical validation. Verification 
includes assessing the quality of speech recordings and comparing the effects of hardware 
and recording conditions on the integrity of the recordings. Analytical validation includes 
checking the accuracy and reliability of data processing and computed measures, including 
understanding test-retest reliability, demographic variability, and comparing measures to ref-
erence standards. Clinical validity involves verifying the correspondence of a measure to clin-
ical outcomes which can include diagnosis, disease progression, or response to treatment. For 
each of these sections, we provide recommendations for the types of evaluation necessary 
for speech-based biomarkers and review published examples. The examples in this paper fo-
cus on speech-based biomarkers, but they can be used as a template for digital biomarker 
development more generally. © 2020 The Author(s)
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Introduction

Research into digital biomarkers is an area of rapid growth in digital medicine. Recent 
reviews have shown how digital measures will bring benefits to clinical research and practice 
[1–6]. For example, digital biomarkers are more ecologically valid measures than many 
current clinical assessments of cognition and function, allowing assessments to occur during 
everyday activities or with little instruction. They also offer a promising solution for known 
problems associated with current clinical tools, especially repeated assessment effects, inter-
rater variability, time investment, and expense. Importantly, the use of digital measures will 
facilitate remote testing, improving accessibility and reducing the risks inherent in visiting 
health care centers. The use of digital biomarkers facilitates frequent testing with its potential 
to provide richer and more detailed data. This approach holds considerable promise for 
yielding more sensitive measures of symptoms and disease, but many of these potential 
advantages must be borne out with empirical testing.

Systematic and rigorous evaluation of digital biomarkers is crucial to ensure that they are 
providing accurate measurement and can serve as suitable surrogate endpoints for detecting 
and monitoring disease. Following Strimbu and Tavel [7], we prefer to use the term “evalu-
ation” rather than “validation” to refer to the overall process of assessing a biomarker, since 
this is a continuous process and may not have a single, conclusive outcome. We approach 
biomarker evaluation as a systematic series of studies that evaluate and quantify the suit-
ability of a given biomarker and its context for use. In this paper, we review recommendations 
for digital biomarker evaluation using speech-based biomarkers as an illustrative case [2, 
7–11].

Speech offers rich insights into cognition and function and is affected by many psychiatric 
and neurodegenerative diseases [12–16]. By requiring the coordination of various cognitive 
and motor processes, even a short sample of speech may provide a sensitive snapshot of 
cognition and functioning relevant to many disease areas. Speech can encompass a broad 
range of behaviors, from the simple production of sounds or single words to spontaneous, 
natural language produced in conversation (Fig.  1). In this paper, we consider speech to 
include any task involving the oral articulation of sounds and words, but we acknowledge that 
how speech is elicited and collected can affect its relevance to disease. For example, reading 
scripted passages may be well-suited to capture changes in acoustic and motoric aspects of 
speech, but unstructured, open-ended speech tasks may be needed to capture changes in the 
organization or complexity of language. Structured speech tasks require instruction and 
active participation, while less structured speech such as interviews or conversations can be 
collected passively. Speech can be collected with widely available technology, such as smart-
phones, thereby facilitating remote and frequent monitoring, which can reduce measurement 
error. With advances in natural language-processing and machine-learning techniques, 
speech can be automatically and objectively analyzed, producing high-dimensional data.

Together, we argue that the factors discussed above make speech ideally suited for use 
as a potential biomarker, with applications in several disease areas. Speech-based biomarkers 
could facilitate more efficient clinical research and more sensitive monitoring of disease 
progression and response to treatment. Systematic evaluation of the suitability of speech-
based biomarkers is required, however, to achieve these goals. In the following sections, we 
summarize a recently proposed framework for digital biomarker evaluation, with recom-
mendations of how each aspect could be applied to speech-based measures, highlighting 
examples from the field.
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Evaluation of Speech-Based Digital Biomarkers

In recent papers, members of the Digital Medicine (DiMe) society have proposed a 
framework and common vocabulary for the evaluation of digital biomarkers [2, 9, 17, 18]. 
This rigorous framework provides an excellent resource for researchers developing digital 
health tools, and adherence to a common vocabulary will allow for more consistency across 
evaluation studies. Based on this V3 framework [9], we summarize the components of evalu-
ation of speech-based biomarkers in the subcategories: verification, analytical validation, and 
clinical validation. For each, we briefly define the evaluation step, discuss how it could be 
applied in the context of speech-based biomarkers, and review applicable examples (Fig. 2). 

Verification
Verification describes the process of validating the hardware and sensors involved in 

recording a digital measurement [9]. This form of evaluation, sometimes referred to as bench-
testing, is often performed without collecting human data. For speech-based measures, veri-
fication primarily involves evaluating the recording devices and determining the conditions 
required for adequate recording quality. This includes environmental conditions like setting, 
background noise, and microphone placement, and the properties of the recording tech-

Narrative recall
Single word recall Picture description Conversation

Sustained phonation Scripted reading Structured interview

Spontaneous speech
Naming tasks Phonemic fluency

Diadochokinetic speech Semantic fluency Prompted narrative

Structured speech Semi-structured
speech

Unstructured speech

Verification

Comparing acoustic quality
of recording devices

Determining effects of
ambient noise on
recording quality

Analytical validation

Verifying accuracy of
speech sample processing

Checking speech features
against reference
standards

Clinical validation

Demonstrating speech
differences based on
clinical diagnosis

Quantifying changes in
speech with time or
treatment

Fig. 1. Example of speech tasks ranging from short, structured speech, to unstructured, naturalistic conver-
sation.

Fig. 2. Recommended steps of evaluation of a speech biomarker, based on the V3 framework (Goldsack et al. 
[9]).
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nology like sampling rate, audio format, and upload and storage parameters, which can vary 
across devices. It is therefore necessary to define the acceptable devices (e.g., smartphones, 
tablets, and computer microphones) and conditions (e.g., in the clinic, at home, and real-
world environments) for recording speech in the context of a speech biomarker, and to 
perform quantitative comparisons of the quality of recordings across recording conditions 
and devices. In addition, the design of the user interface could also affect the quality of 
recordings, e.g., by including empty periods in the recordings to estimate ambient noise, or 
by providing feedback to the participant in the form of beeps, text, or voice prompts to 
improve task compliance.

Several recent papers have examined the comparability of audio recordings made across 
different devices, including smartphones [19–23]. While several studies found that smart-
phones yield recordings of acceptable quality compared to standard microphones [20, 22, 
24], others reported mixed findings with the differences relating to the particular audio 
outcome measures used [19, 21, 23]. A few studies have examined the effects of ambient noise 
on voice recordings, with one recommending a threshold of 50 dBA as an acceptable level for 
their particular speech tasks and outcome measures [21, 25]. Thus, depending on the type of 
recording device used and the outcome measures, research is needed to establish which 
devices and recording parameters are acceptable for speech-based biomarkers. Ideally, these 
conditions should be able to be identified by the user of the biomarker, e.g., via an audio cali-
bration task, to ensure that recordings are of acceptable quality and will yield reliable results.

Analytical Validation
Analytical validation involves checking that the measurements obtained via a digital 

biomarker are accurately measuring the intended phenomena [9]. For speech-based 
biomarkers, this requires verifying that any property or metric extracted from a speech 
sample, which we refer to as a feature, measures the associated aspects of speech accurately. 
The features that can be extracted from speech are numerous and diverse, and they vary 
according to the task and the processing procedures. Common features include acoustic 
parameters that reflect mathematical properties of the sound wave, such as fundamental 
frequency, shimmer, jitter, and Mel-frequency cepstral coefficients (MFCCs). Linguistic 
features, reflecting parts of speech, vocabulary diversity, syntactic structures, sentiment, and 
higher-level organization of language, can be obtained using natural language-processing 
tools or manual coding methods. The type of features used to create a speech-based biomarker 
will therefore depend on the speech task, processing method, and disease area in question. 
For example, assessing a motor speech impairment may be best accomplished by examining 
acoustic features in the context of a structured speech task, like sustained phonation. In 
contrast, assessing irregularities in the organization and content of speech, reflective of 
cognitive impairment, may require analyzing the linguistic features derived from a less struc-
tured speech task, like picture description (Fig. 1). 

The elements of analytical validation will therefore vary based on the relevant features 
and methods used to compute a specific speech biomarker. As a first step, any speech 
processing, including segmenting audio based on speaker identity and transcription of the 
audio into text (via automated or manual methods), needs to be verified for accuracy. This 
can be accomplished by comparing multiple raters in the case of manual transcription, or by 
comparing automated to manual methods in the case of automated transcription. Speech 
processing must also be evaluated to determine how the properties of the recording affect its 
accuracy. Factors such as a speaker’s age, education, diagnosis, or accent should all be tested 
to determine if and how they affect the accuracy of speech processing and the subsequent 
extraction of features. Examples of this type of analytical validation can be found in 2 recent 
studies comparing automatic speech recognition (ASR) to human transcription [26, 27]. 
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While neither study found ASR to be equivalent to human transcription in terms of accuracy, 
they both determined the accuracy of ASR in different clinical groups and compared algo-
rithms to select the most accurate processing procedure.

Features extracted from speech vary in terms of the demands for analytical validation. 
Many acoustic features, such as MFCCs, are computed via mathematical transformations of 
the sound wave, and can therefore be validated using mathematical models of speech 
production. As an example of analytical validation of an acoustic feature, one study compared 
several pitch detection algorithms in terms of accuracy and robustness to background noise 
for analyzing the voice recordings of patients with Parkinson’s disease, comparing against a 
gold standard calculation method [28]. This approach to analytical validation is, however, 
difficult to apply in cases in which gold standard referents do not exist.

Analytical validation can be less straightforward for higher level linguistic features such 
as the type and characteristics of the words used, the grammatical complexity, or markers of 
sentiment. Evaluation of such features often involves a comparison with judgments made by 
human raters or standard linguistic corpora [29, 30], but this can be expensive and time-
consuming. In cases in which validation against such standards is impossible or impractical, 
concurrent validation may be performed by comparing speech measures to metrics obtained 
from other sensors, like comparing a vocal measure of fatigue to electrophysiological measure-
ments [31], if available.

Finally, composite measures or machine-learning models based on multiple features 
present an even more challenging target for validation since there may not be any existing 
reference measures (i.e., a score reflecting word-finding difficulty could comprise features 
reflecting speech rate, pauses, errors, etc., and a classification model could be based on the 
weighted combination of hundreds of variables). In these cases, analytical validation can be 
carried out on the component features of the composite or model, if possible, with additional 
clinical validation of the overall outcome score. Analytical validation of models can be achieved 
by cross-validation, independent replication of results, testing the generalizability of complex 
speech models to new datasets, and ensuring that confounding factors do not bias the datasets. 
For example, analytical validation of a classification model for dementia based on speech 
could involve testing the model on an independent data set, ensuring that factors such as age, 
sex, education level, and accent were not unevenly distributed in training or testing data sets, 
leading to a bias in the model.

Another important aspect of analytical validation is determining the mathematical prop-
erties of values derived from a measurement. For example, examining the distribution of a 
measure across a population to determine if it is normally distributed, bimodal, or has signif-
icant skew will affect how this measure is interpreted. It is important to determine if there 
are floor or ceiling effects, and in what situations a measure may not be computed or yield 
missing data. Other important components of analytical validation include determining if a 
given measure demonstrates learning effects with repeated testing (and at what intervals), 
and how it may vary according to demographics such as age, sex, education level, or accent. 
An example of this type of analytical validation was provided in a study of language measures 
derived from a picture description task, which reported normative data for each language 
measure and the respective effects of age, sex, and education [32]. 

Clinical Validation
Clinical validation is the process of evaluating if a digital biomarker provides meaningful 

clinical information [9, 33]. For example, a digital biomarker could be used for disease diag-
nosis, measuring disease or symptom severity, monitoring change in disease/symptoms over 
time, predicting disease onset, or measuring the response to treatment or therapy [8, 9, 11]. 
An ideal biomarker might serve all of these functions, but some measures may be limited to 
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only one or two of these contexts and still offer significant clinical utility. To determine these 
types of clinical validity, a suitable clinical reference standard is necessary to define, and 
novel digital biomarkers should be compared against this standard using appropriate tech-
niques, depending on whether the measures in question are binary, categorical, or continuous.

For some diseases, there may be a clear gold standard reference measure, such as a diag-
nostic test; however, for many diseases and disorders, the existing measures are themselves 
surrogate endpoints. For example, current gold standards for a diagnosis of Alzheimer’s 
disease include the detection of amyloid pathology via the testing of cerebrospinal fluid, PET 
scan, or autopsy, all of which are invasive and expensive, and are therefore not practical for 
use in many trials [8]. As a result, a variety of neurological, cognitive, and functional assess-
ments are used as surrogate endpoints in clinical research and practice [8]. Ultimately, the 
choice of reference measure limits the clinical validation, since a measure can only be shown 
to be as good as the measure used to validate it. Especially problematic are cases in which a 
selected reference measure has limited validity for a disease or high interrater variability, 
since it may be difficult to achieve consistent validity according to this measure and irregu-
larities in the reference measure could introduce bias into the novel biomarker. Thus, it is also 
important to consider the validity of the reference measure used to assess clinical validity. In 
cases in which gold standard measures are not available, we recommend comparison with a 
number of surrogate measures, to provide corroborating validation checks and avoid the 
limitations of any single measure. 

A growing body of work is highlighting the ongoing clinical validation of speech-based 
measures in a variety of clinical contexts. Speech has been demonstrated to have diagnostic 
validity for Alzheimer’s disease (AD) and mild cognitive impairment (MCI) in studies using 
machine-learning classification models to differentiate individuals with AD/MCI from healthy 
individuals based on speech samples [34–41]. Additionally, speech analysis has been shown 
to be able to detect individuals with depression [42–45], schizophrenia [46–49], autism 
spectrum disorder [50], and Parkinson’s disease [51, 52], and can differentiate the subtypes 
of primary progressive aphasia and frontotemporal dementia [53–55]. Classification models 
provide diagnostic validity for speech measures and could be used to develop tools for disease 
screening and diagnosis. In these types of diagnostic clinical validation studies, it is important 
to report the accuracy of the classification, as well as other metrics such as sensitivity and 
specificity. It is also valuable to compare performance with current clinical standards, both 
for distinguishing the disease from healthy controls and from related diagnoses, to demon-
strate the utility of a novel measure. In addition, when possible, exploring what variables 
drive classification models can help with clinical interpretability, by providing a better under-
standing of the symptoms and changes that accompany a disease. Interpreting the variables 
that contribute to a model can help guard against “black box” models and detect artifacts in 
the data. For example, if a disease is more prevalent in women, and women tend to have 
higher-pitched voices, the finding that vocal pitch was driving a classification model may only 
reflect the higher incidence of that disease in women. For diagnostic validation, we therefore 
recommend reporting both model accuracy and the features that contribute to classification.

Other forms of clinical validation of speech-based measures include measuring disease 
severity and tracking changes over time as a measure of disease progression, prognosis, or 
the response to treatment. Various studies have shown how speech measures relate to disease 
severity by demonstrating associations between speech features and the presence of 
pathology in primary progressive aphasia [56] as well as between clinician-rated symptoms 
and speech features in depression and schizophrenia [57–59]. Several longitudinal case 
studies suggest that speech features may have prognostic validity for predicting the onset of 
Alzheimer’s disease and show changes in years prior to the diagnosis [60–65]. This research 
requires further validation in more general populations. We highlight the need for the 
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collection of longitudinal speech data in clinical populations and the comparison of these 
measures with current clinical standards. Validated measures for tracking speech changes 
over time could provide continuous measurement of disease risk, more frequent assessment 
of disease progression, and better detection of response to treatment.

Conclusion

This article summarizes recommended approaches to the evaluation of digital biomarkers 
in the context of recent research into speech-based measures in neurological diseases and 
psychiatric disorders. Speech biomarkers potentially offer many advantages for clinical 
research and practice; they are objective, naturalistic, can be collected remotely, and require 
minimal instruction and time compared to current clinical standards. Examples from the 
literature illustrate the active research in this area, offering promising results for the devel-
opment of speech-based measures as biomarkers in multiple disease areas including 
Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, depression, and schizo-
phrenia. While these findings demonstrate the potential utility of speech-based biomarkers, 
it is important to note that the particular speech features analyzed differ widely across 
studies, and no speech measure has yet been comprehensively evaluated across all 3 cate-
gories, i.e., verification, analytical validation, and clinical validation. While the measures 
under development can provide exploratory insights for clinical research, it is necessary to 
continue to rigorously evaluate speech-based digital biomarkers to achieve valid surrogate 
endpoints for use in clinical research and practice. The recommendations in this paper are 
targeted for speech-based biomarkers, but they generalize to other novel digital biomarkers 
and can be broadly applied. 
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