
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19848  | https://doi.org/10.1038/s41598-020-76860-2

www.nature.com/scientificreports

Path‑based extensions of local link 
prediction methods for complex 
networks
Furqan Aziz1,2,3,4*, Haji Gul5, Irfan Uddin6 & Georgios V. Gkoutos1,2,3,4,7,8,9

Link prediction in a complex network is a problem of fundamental interest in network science and has 
attracted increasing attention in recent years. It aims to predict missing (or future) links between two 
entities in a complex system that are not already connected. Among existing methods, local similarity 
indices are most popular that take into account the information of common neighbours to estimate 
the likelihood of existence of a connection between two nodes. In this paper, we propose global and 
quasi-local extensions of some commonly used local similarity indices. We have performed extensive 
numerical simulations on publicly available datasets from diverse domains demonstrating that the 
proposed extensions not only give superior performance, when compared to their respective local 
indices, but also outperform some of the current, state-of-the-art, local and global link-prediction 
methods.

The study of complex networks is a relatively new, but rapidly growing field of interdisciplinary scientific research 
that aims at modelling and analysing real-world complex systems1,2. The interest in network science has emerged 
from the empirical study of networks that are obtained as a result of modelling real-world complex systems3. 
Example of such networks include ecological networks4, social networks5, transportation networks6, and biologi-
cal networks7. A complex network provides a convenient way of representing a complex system where nodes of 
the network represent entities of the complex system and links represent interactions between entities. How-
ever, the process of acquiring networks from complex systems may introduce noise which can result in missing 
links in a network8. To tackle this issue, link prediction has attracted the attention of researchers from a diverse 
scientific disciplines. It aims to estimate the likelihood of the existence of a link between disconnected nodes 
based on node attributes, neighbour information, and network structures. The problem is of both theoretical 
interest and has broad applications. Some of its applications include friend recommendation in social networks 
such as Facebook9, predicting interactions between proteins10, product recommendation to users11, and drug 
target interaction prediction12.

Motivated by the practical significance of link prediction, numerous link prediction algorithms have been 
proposed for unweighted networks. Among the various categories of link prediction algorithms, the most popular 
ones are the structural based similarity indices that are based solely on the structural properties of the under-
lying complex network. One of the most commonly used structural based similarity indices is the common 
neighbour13, which measures the similarity between two nodes by counting the number of common neighbour-
ing nodes. This method, however, does not take into account the degree information of the two nodes or their 
common neighbours. To overcome this problem, many variations of common neighbours have been proposed. 
For example, Adamic-Adar14 and resource allocation15, that penalise the high-degree common neighbour and 
perform better than common neighbour in most practical situations. Other local indices include preferential 
attachment16 Jaccard coefficient17, Sørensen index18, and Salton index19. Cannistraci et al.20 have combined a 
local link prediction algorithm with a local community structure to define a new set of link prediction indices, 
namely the CAR-based indices, demonstrating the application of CAR-based indices in predicting links in brain 
connectomes. However, these similarity indices are defined for an unweighted and undirected network. In order 
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to predict links in weighted networks, Zhao et. al.21 have extended the unweighted similarity indices to weighted 
ones that can, not only, predict the missing link in a network but also estimate the weight of the missing link. 
Furthermore, Ghorbanzadeh et al.22 have defined a measure, based on common neighbour, that can be applied 
to directed networks.

The structure-based similarity indices discussed so far are also called local similarity indices (or node depend-
ent similarity indices) as they are based on the information of the immediate neighbours of the two query nodes. 
An alternative approach to link prediction is to consider the overall structure of the network. Such type of 
similarity indices are called global similarity indices. Global methods are also sometimes called path-dependent 
similarity indices since they are generally based on path information between nodes. One example is the Katz 
index23 which considers the set of all paths between the two query nodes. Recently, Yant et al.24 and Ahmad 
et al.25 have proposed methods that take advantages of both the local and the global properties of a network by 
combining common neighbour and distance information to estimate the likelihood of the formation of link 
between two nodes. Other global similarity indices include hitting (or commute) time26, Matrix-Forest Index27, 
Linear Optimization28, SimRank29, and similarity-popularity based methods30.

To provide a tradeoff between accuracy and computational time, quasi-local indices31,32 are introduced that 
consider paths with wider horizon. To that end, Lü et al33 have defined local path (LP) index that considers local 
paths of shorter lengths between the two query nodes. They have empirically shown that the LP index performs 
better when compared to common neighbour and gives comparable performance to Katz index23. They have also 
demonstrated that LP has low computational time as compared to Katz index. Just like common neighbour, LP 
index suffers from the problem that it does not take into account the degree information of the two nodes and 
the nodes on the local paths. In this paper we propose novel global and quasi-local measures that extend the 
existing local measures and can be used to predict missing link with higher accuracy. The idea is to use the node 
information on local paths. We commence by providing vectorised implementation of several local structural 
based similarity indices. For each of those similarity indices, we propose their global and quasi-local extensions. 
In the experimental evaluation section, we compare the local indices to their global and quasi-local extensions 
and empirically demonstrate that the global (and quasi-local) indices usually give better performance (but have 
higher computational cost) as compared to their corresponding local indices. In particular, we show that the 
difference in performance is significant when the noise in the data is high. We also demonstrate that some of the 
global indices introduce in this paper outperform the Katz index.

Overview of link prediction
In this section, we introduce some of the state-of-the-art local link prediction indices. We also present the local 
path index33 and the Katz index23, considered as the corresponding quasi-local and global extensions of the com-
mon neighbour index13. A network G = (V ,E) is defined as a set V of nodes and a set E of links, where E ⊆ V × V . 
A network is directed, if the links it contains are directed, and undirected if the links it contains have no direction. 
A network is termed weighted, if the links it contained are assigned different weights. Otherwise, it is termed 
unweighted. A simple network is a network where multiple links between nodes as well as links between same 
nodes (self-loops) are not allowed. In this work, we considered simple, undirected and unweighted networks. 
The degree of a node v ∈ V  , represents the number of connections that a node has with other network nodes. 
We denote the degree of the node v by |Ŵ(v)| , where Ŵ(v) represents the set of all neighbours of v. A walk w in a 
network G = (V ,E) is defined as a sequence of alternating nodes and edges v0, e1, v1, e2, v2, ..., ek , vk where vi ∈ V  
and ei = (vi−1, vi) . This walk has length k, where k is the number of links in the walk. An adjacency matrix pro-
vides a compact way of representing a network G = (V ,E) . It is a square matrix of size |V | × |V | , whose (u, v)
th entry is 1 if u and v are linked and 0 otherwise. The (u, v)th entry of the kth power of the adjacency matrix , 
(Ak)uv , represents the number of walks of length k from u to v.

We now present some of the commonly used local similarity indices. In the next section we present their 
global and quasi-local extensions. 

Common Neighbour (CN)13	� A common neighbour is a simple but effective measure based on the number 
of shared neighbours between two nodes. In other words, two nodes are more 
likely to have a link if they share many common neighbours.

Adamic Adar (AA)14	� AA is a variant of the CN that assigns more weight to neighbours with lower 
degrees. It captures the notion that neighbours with fewer links are more 
influential in facilitating the formation of future interactions.

Resource Allocation (RA)15	� RA is defined in a similar way to AA. However, compared to AA, it assigns a 
lower score to the node pairs whose common neighbours have a high node 
degree. The only difference in the mathematical representation of RA and AA 
indices is that the later takes the logarithm of the denominator.

Sørensen (SO)18	� Sørensen Index was proposed to establish equal amplitude groups in plant 
sociology based on the similarity of species. It is also used to calculate similari-
ties of nodes in complex networks. It is determined by common neighbours 
of node pairs relative to their sum of individual degrees.

Salton (SA)19	� This measure, proposed by Salton and McGill, is based on cosine angle between 
rows of adjacency matrix having query nodes u and v. This index is also called 
Salton Cosine Index.

Leicht Holme Newman (LHN)34	� This measure gives higher score for node pairs having more common neigh-
bours in proportion to their expected number of neighbours.
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Hub Promoted(HP)35	� This index is proposed for quantifying the topological overlap of pairs of 
substrates in metabolic networks. Here, node pairs adjacent to hub nodes are 
assigned higher scores.

Hub Depressed(HD)15	� This measure is similar to HP measure but it is affected by higher degree nodes. 
Any node which has high degree is penalised by this measure.

Table 1 (first column) gives mathematical formulation for each of these local similarity indices. Although 
local similarity measures can be computed efficiently and perform relatively well, their accuracy cannot generally 
reach to methods which are based on global information. One typical example of global similarity index is the 
Katz index which is defined as follows:

Katz Index ( Katzβ)23 This index computes the similarity scores, based on the set of paths of different lengths, 
between two query nodes. The paths are exponentially damped by the length of the path so to assign more weight 
to shorter paths. Mathematically, this index is defined as follows:

where 0 < β < 1 is the parameter that controls the weight of the paths of different lengths. The similarity matrix 
S, whose (u, v)th entry equals Katzuv , can also be computed as (I − βA)−1 − I , where I represents the identity 
matrix of size |V|.

Since this method is based on the topology of the whole network, therefore it generally outperforms local 
similarity indices such as CN. The difference is significant when the network is sparse, or when the network has 
many missing links. However, global indices generally have higher computational time when compared to local 
indices. In order to provide a good trade-off between accuracy and Complexity, Lü et al.33 have introduced path 
index, which is defined as follows:

Local Paths (LP)33 This index considers locals paths of shorter length and is generally computed as A2 + βA3 , 
where A is the adjacency matrix of the network. As with Katz index, β < 1 is set to a small value so that shorter 
paths get more weights.

Lü et al.33 have empirically demonstrated that LP index performs remarkably better than the simple CN index. 
They have also demonstrated that both Katz and LP indices generally give comparable performances, while the 
computation time of LP is considerably low than Katz index. Note that CN index, LP index, and Katz index 
have unified form as all the three indices can be expressed using Eq. (1), where for CN l = 2 , for LP l = 2, 3 , 
and for Katz l = 1, 2, ...,∞ . Therefore, both LP and Katz indices can be considered as extensions of Common 
neighbours to local paths.

Methods
In this section, we define the global and the quasi-local extensions of some of the most widely used local simi-
larity indices. For each local similarity index, we first give its vectorised implementation. Our goal is to define 
global indices similar to Katz index that reduce to local indices for smaller values. Additionally, we also propose 
quasi-local measures of these indices. In the experimental evaluation section of this paper, we demonstrate that 
the global and quasi-local indices of RA and AA indices generally outperform all the other indices on most of 
the datasets. However, for the sake of completeness and experiments, we also define the global and the quasi-
local extensions for the remaining local similarity indices. These similarity indices are summarised in Table 1, 
where the first column gives the mathematical definition of the local similarity index and the second column 
provides a matrix representation of the local index. The global and the quasi-local extension of the respective 

(1)Katzuv =

∞
∑

l=1

β l ·

[

path�l�uv

]

,

Table 1.   Local, Quasi-local, and Global Similarity indices. Here A represents the adjacency matrix of the 
network, I is the identity matrix with size equal to the size of the matrix A, and D represents the diagonal 
degree matrix whose ith diagonal element is the degree of the ith node of the graph. Furthermore, A−1 
represents the inverse of the matrix A, while A−1

ij  represents the element-wise inverse operation.
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local similarity index are also given in the third and fourth column of the table respectively. In the remaining of 
this section, we briefly discuss how the global and quasi-local extensions are obtained.

We commence by defining the global and quasi-local extensions of RA index. This index assigns more weight 
to the less connected neighbour. It can be shown that the RA index can be expressed in the form of matrix mul-
tiplication as AD−1A , where D is the diagonal degree matrix whose ith diagonal element is the degree of the ith 
node. In order to define a global extension of the RA index, we not only consider the local paths between two 
nodes, but also consider the degrees of the nodes along the local paths. The global RA index is then defined as 
follows:

The global RA index, defined above, can be interpreted as follows: To predict the existence of a link between two 
nodes u and v, the global RA index considers all simple paths from u to v. Moreover, all the nodes on the paths 
contribute to the computation of the similarity index, where less connected nodes are assigned higher scores. 
As with Katz index, a damping parameter β is used that assigns more weights to shorter paths. We also define a 
quasi-local extension of RA index that considers only the first two terms of the global RA index. Mathematically, 
this can be expressed as RAQL(u, v) = AD−1A+ βAD−1AD−1A.

We define the global and quasi-local extensions of the AA in a similar way that we defined for the RA index. 
Note that, as mentioned earlier, the only difference between the AA and RA indices is that AA produces higher 
score values than RA for node pairs whose common neighbours have high node degree. This is achieved by taking 
the log of degrees of the common neighbours. The AA index can be expressed in the matrix form as A(logD)−1A , 
where logD is the diagonal degree matrix whose ith diagonal element is the log of the degree of the ith node.

Next, we define the global and quasi-local extensions of the remaining five similarity indices, i.e., SO, SA, 
LHN, HP, and HD. Note that all these five indices can be considered as modified versions of the CN index, that 
not only consider the the degrees of the common neighbours of the nodes u and v, but also take into account 
the degrees of the nodes u and v in one way or the other. Here we discuss the global and quasi-local extensions 
of SO index. The remaining indices can be extended in a similar way. By applications of simple matrix algebra, 
it can be shown that SO can be expressed in matrix form as follows:

where (A)−1
i,j  represents the element-wise inverse of the matrix A. Using matrix representation, we provide a 

straightforward global extension of SO by considering all the local paths between the nodes u and v, instead of 
only common neighbours. Therefore, we define the global extension of the SO as follows:

For the quasi-local extension of SO, we only consider paths up to length two. This index is defined as follows:

. The global and quasi-local indices of the remaining four local similarity indices (i.e., SA, LHN, HP and HD) can 
be defined in a similar way as we defined for the SO index. This is because the only difference between the SO 
index and each of these indices is the denominator has a different form. These extensions are reported in Table 1.

We conclude this section by discussing the time complexities of the global and quasi-local extensions of 
the the similarity indices discussed in this paper. We note that the key operations performed, when computing 
the global and the quasi-local extensions, are the two matrix operations, namely matrix multiplication and the 
matrix inversion. Both of these operations require cubic time in N, the number of nodes in the network. There-
fore, the running time of both the quasi-local, as well as the global index, is bounded by O(N3) . However, in 
practice, quasi-local index can be performed much faster as it takes into account only the information about the 
neighbours and the neighbours of the neighbours. Lü et al33 have demonstrated that the quasi-local extension 
provides a comparable performance to Katz index and it also requires less CPU time and memory space than 
Katz index. Furthermore, the computation of the global index requires a matrix inversion that is computation-
ally very expensive (and can be unstable for large networks). In our experimental evaluation, we demonstrate 
that the quasi-local extensions of other local indices also result in a competitive performance, when compared 
to respective global extensions. Therefore, although the global extensions are effective for small and average-size 
networks, the quasi-local extensions are strong candidates for potential practical applications for large networks.

Results and discussion
In this section we present the experimental evaluation results of the proposed methods on real-world datasets 
and compare the performance of local similarity indices with their global and quasi-local extensions.

Datasets.  To evaluate the performance of proposed and alternate methods, we have used various publicly 
available datasets from diverse domains, most of which are downloaded from KONECT36. A brief introduction 
of each of these datasets is given below. A summary of their topological properties is also presented in Table 2. 
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Karate37	� A dataset (also known as the Zachary karate club) consisted of a karate 
club members, collected in 1977. The nodes of this network represent 
club members while the links represent ties between two members.

US Roads6	� This network consists of 49 nodes and 107 links. The nodes represent the 
48 contiguous states and the District of Columbia (Washington D.C.) of 
the USA and the links represent drivable roads between two nodes. This 
network includes all the states except the states of Alaska and Hawaii, 
which are not connected by land with the other states.

Dolphins38	� A social network of bottlenose dolphins. The dataset consists of a set of 
links, each link representing frequent associations between dolphins.

Train bombing39	� A dataset containing a list of 64 suspected terrorists who were believed to 
be involved in the Madrid train bombing on March 11, 2004. The nodes 
of the network represent the suspected terrorists, while the links between 
terrorists are established if the are friends or have co-participated in 
training camps.

Caenorhabditis elegans (neurons)40	� This dataset consists of 279 neurons and 2990 links, including 1584 uni-
directed and 1406 bidirected links. In our experiments, the direction was 
ignored resulting in a total of 2287 links.

E. coli41	� A protein-protein interaction network of Escherichia coli that originally 
consisted of 424 nodes and 519 connections. We have considered the 
largest connected component (LCC) of the network having 329 nodes 
and 456 links.

Network Science42	� A network of 1461 scientists working on network theory. In this network, 
the nodes represent scientists and a link is established between two sci-
entists, if they are co-authors on the same paper. Similarly to the E.Coli 
dataset, we have only considered the LCC with 379 nodes and 914 links.

Infectious43	� A network of 410 individuals who have attended exhibition, “infectious: 
stay away” in 2009 in Dublin. Here node represent individuals and a link 
represent face-to-face contact that was active for at least 20 seconds.

Caenorhabditis elegans (metabolic)44	� This is the undirected metabolic network of the roundworm Caenorhab-
ditis elegans, where nodes represent metabolites (e.g., proteins), and links 
represent the physical interactions between them.

US Air45	� A network of direct flights among 500 US airports. The nodes represent 
airports and two nodes are connected if there is a direct flight between 
the corresponding airports.

Email46	� An email communication network between individuals at the University 
Rovira i Virgili in Tarragona in the south of Catalonia in Spain. Here 
the nodes represent individuals and a link is established between two 
individuals, if one of the two users has sent at least one email to the other 
user. The direction and the frequency of the emails are ignored.

Yeast47	� A yeast protein-protein interaction network, where each protein is a node 
and the interaction between them is represented by a link.

 

Table 2.   Topological properties of the networks used in experiments. |V| and |E| are the number of nodes and 
links respectively. C is the clustering coefficient. 〈k〉 and 〈d〉 are average degree and average path length. Finally 
ρ denotes the density of the network while H is the heterogeneity defined as H =

�k2�
�k�2

.

Datasets |V | |E| C 〈k〉 〈d〉 ρ H

Karate37 34 78 0.588 4.588 1.204 0.139 7.769

US Roads6 49 107 0.507 4.367 2.082 0.091 4.935

Dolphin38 62 159 0.303 5.129 1.678 0.084 6.805

Train Bombing39 64 243 0.711 7.594 1.345 0.121 12.597

Neurons40 279 2287 0.337 16.394 1.218 0.059 25.916

E. coli41 329 456 0.222 2.772 2.421 0.008 12.314

Netscience42 379 914 0.798 4.823 3.021 0.013 8.021

Infectious43 410 17298 0.467 84.38 1.815 0.206 2.992

Metabolic44 453 4596 0.782 20.291 1.332 0.045 17.903

US Air45 500 2980 0.726 11.92 1.496 0.024 53.785

Email46 1133 5451 0.254 9.622 1.803 0.009 18.688

Yeast47 2375 11693 0.388 9.847 2.548 0.004 34.223
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Evaluation metric.  In order to assess and compare the performances of the local similarity indices and 
their corresponding global and quasi local extensions, we computed their accuracies using the area under the 
receiver operating characteristic metric AUC​48. Consider a simple network G = (V ,E) . Her we refer to the set 
E as the set of observed links. Let E′ represents the set of nonexistent links in the network. In other words, 
E′ = {(u, v) : u, v ∈ V , (u, v) /∈ E} . We note that, if U represents the set of all possible |V |(|V |−1)

2  edges that G can 
have, then E′ = U \ E . In order to evaluate the prediction algorithm’s performance, the set of observed links, 
E, is randomly divided into two disjoint sets, namely, a training set ET and a probe set EP . Since ET and EP are 
disjoint, the two sets form a partition of the set E, i.e., E = ET ∪ EP , and ET ∩ EP = φ . The information in ET is 
used to predict missing links while the information in EP is used to evaluate the performance of the prediction 
algorithm. To estimate the accuracy of the prediction algorithm, we compute their AUC values. In our case the 
metric AUC can be interpreted as the probability that a randomly chosen link in EP gets higher score than a 
randomly chosen link in E′ . If among n independent comparisons, n′ is the number of times a missing link has 
higher score than a non-existent link, and n′′ is the number of times a missing link and a nonexistent link having 
the same score, then the AUC​ is defined as

We note that the value of AUC should be about 0.5, if all the link scores are randomly generated according to an 
independent identical distribution. Therefore, a value greater than 0.5 indicates how well the prediction algorithm 
performs when compared to pure chance.

Experimental results.  In order to assess the performance of the global and quasi-local similarity indices 
and compare it with the local similarity indices’ performance, we have randomly divided the set of observed 
links of the network, E, into two sets, namely, a training set ET and a probe set EP . In our first experiment, 90% 
of the observed links were contained in the training set while the remaining 10% were used for the probe set. The 
performance of all the similarity indices were evaluated using the same training and probe sets. For the quasi-
local and the global indices, the value of parameter β was set to 0.001. The experiment was repeated 100 times, 
and in each run an independent random sampling of the observed links was performed. The average accuracies 
(along with standard deviations) of all the 100 runs are reported in Table 3. Figure 1 presents a visual representa-
tion of these results.

It is evident from the results that both the local and the global extensions can increase the prediction accuracy 
of the corresponding local indices. These global and quasi-local extensions not only result in high accuracies, but 
the accuracies’ variations are also low when compared to the variations observed in local indices. We note that 
for some of the networks presented in Table 2, such as E.Coli network, the performance has been significantly 
increased, when longer paths are considered, whereas for other networks, the difference is not very significant. 
This improvement in performance may be attributed to the topological properties of the network, in particular, 
the average clustering coefficient and the density of the network. For a sparse network with a low clustering 
coefficient, it is unlikely that a similarity index, computed purely based on the degree statistics of immediate 
neighbour, will predict links with higher accuracy. From the statistics of networks presented in Table 2, one can 
see that the E.Coli dataset is very sparse and has the lowest clustering coefficient. Train bombing, on the other 
hand, is denser with a high clustering coefficient. Consequently, the increase in performance for the E.Coli 
dataset is around 25%, whereas for the Train bombing dataset, the performance has increased by less than 1%. 
Further information about the difference between the AUC values of global and quasi-local extension from 
their respective local index is presented in supplementary material (Table S1). In terms of comparison among 
the global and the quasi-local extensions of different indices, we observed that the path-based extensions of the 
RA index outperform all the alternative methods (including Katz index) on most of the datasets. Furthermore, 
the difference between the performances of the global and the quasi-local extensions of the RA index is also not 
very significant in most cases. Finally, it is also worth noting that the quasi-local extension of both the RA index 
and AA index always give superior performance when compared to local path index (a quasi-local extension 
of CN index). These results suggest that by incorporating the degree information of nodes on local paths, the 
prediction accuracies of local indices can be significantly improved.

To further investigate the performances of the global and quasi-local extensions and compare it to local indi-
ces, we evaluate the classification accuracy with different partitioning sizes of training and probe sets. For this 
purpose, we choose different sizes of the probe sets as 20%, 30%, 40%, 50% respectively. We have chosen eleven 
datasets in this experiment. For each split, we have computed the accuracies of the local indices, and both their 
global and quasi-local extensions. To visualise and compare those results, we have plotted the average accura-
cies of 100 independent runs of each experiment (with independent random splitting of E into EP and ET ) in 
Figure 2. For comparison purpose, we have also included the results of the previous experiment, where we have 
chosen the size of the probe set as 10%, in the plot of Fig. 2. Note that, for large networks, the time required to 
compute AUC significantly increase with increase in probe size. Therefore, we have excluded the yeast dataset 
in this experiment.

There are a number of important observations that can be made from the results plotted in Fig. 2. Firstly, the 
performance of all the methods generally decreases with the increase in training size. This is obvious, as with 
the decrease in training size, we have less information available to predict links. This reduces the performance 
of the prediction algorithm. Secondly, in most case, when the structural error is very high, the local similarity 
indices suffer from low performance, while the global extensions can still give reasonably better performance. 
This is because of the fact that when we delete more links from the network, the local topology of network is 
considerably changed. In such cases, the global similarity indices, that take into account the overall topology 

AUC =
n′ + 0.5n′′

n
.
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Table 3.   The prediction accuracy of the local, quasi-local, and the global indices for each method, measured by 
AUC. Each experiment was executed 100 times with independent random network division of the training set 
and the probe set and the average value along with standard deviations of all the 100 runs are reported. The cells 
highlighted in gray colour present the best performance obtained while the cells highlighted in light-grey colour 
present the second best performance.

Figure 1.   Bar chart comparison of the accuracies, measured by AUC values, resulting from the application of 
different methods. The difference between the AUC values of the local indices and their respective extensions is 
significant in most cases.
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of the network, can outperform the local/quasi-local indices. As expected, when the structural error is high, 
the performance of a quasi-local index is always higher than the corresponding local index but less than the 
corresponding global index. Furthermore, the global extension of RA index usually outperforms all the other 
methods including Katz index for different partition sizes. Finally, for two datasets, namely Karate and US Air, 
we note that the prediction accuracy of some indices increases with increase in the size of probe test. This may 
be due to the fact that some link prediction algorithms, such as LHN, SA and SO, depend upon the degrees of 
query nodes. With more edges deleted from the network, such indices may predict links with higher accuracy 
for some specific datasets.

In order to assess the performance of the proposed link prediction indices, we compare their accuracies with 
some state-of-the-art link prediction algorithms. For this purpose, we have applied five alternative methods, 
namely, the MFI (Matrix-Forest Index)27, the LO (Linear Optimisation)28, the CND (Common Neighbour and 
Distance information)24, the CAR-based indices proposed by Cannistraci et al.20, and the PA (Preferential Attach-
ment)16 across all the twelve datasets we have used for performance assessment. The AUC values, obtained from 
the application of all these methods, are presented in Table 4. For the CAR-based indices, we have only reported 
the accuracies of the CAR-based extension of the RA index (CRA), as we observed that it outperforms all the 
other car-based indices. As discussed earlier, since the quasi-local extension of the RA index can be efficiently 
computed and gives comparable performance, for comparison purposes, we have also included its accuracies 
in the table. The results show that the RAQ gives best or close to best performance when compared to alternate 
methods for all the datasets that were used for performance assessment. Additionally, it can also be verified from 
the results that the RAG outperforms all the alternate methods. To investigate further, we have also computed the 
precision of prediction accuracies for all the methods. The results are presented in the supplementary material 
(Fig. S1).

In our final experiment, we investigate the performances of the global and quasi-local indices by varying 
the values of the parameter β . We have selected five different values of the parameter β , i.e., 0.001, 0.005, 0.01, 
0.05, and 0.1. The resulting accuracies for different datasets are plotted in Fig. 3. These results suggest that both 
the global and quasi-local indices perform well for small values of the parameter β . The prediction accuracy 

Figure 2.   The prediction accuracy of the proposed and the alternative methods, measured by AUC, with 
different split of training and probe set. As with the previous experiments, each value is obtained by averaging 
over 100 executions of experiments with independently random divisions of training set and probe set.

Table 4.   The prediction accuracies of our proposed method as well as of the state-of-the-art methods we bench-
marked it against, measured by AUC. Each experiment was executed 100 times with independent random 
network division of the training set and the probe set and the average value of all the 100 runs are reported.
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generally decreases when the value of the parameter β increases. This is due to the fact that for higher values of 
β , the longer paths are assigned more weights. This difference is significant for the global indices as it also con-
siders paths with lengths greater than two. Note that a sudden drop in the performances of the global indices is 
due to the convergence problem of the global indices. In such cases, the performance can be approximated by 
expanding the series and considering the first few terms.

Conclusion
In this paper, we have proposed quasi-local and global extensions of local similarity indices that are used to 
predict the likelihood of existence of a link between two nodes in a network. This was achieved by considering 
local paths of different lengths and the information of the nodes on those local paths. We have also provided 
vectorised implementation of all the local methods and their proposed extensions. Experimental results on 
publicly available datasets demonstrate that both the global and the quasi-local extensions can increase the 
prediction accuracies of local methods. The performance of the proposed similarity indices was also reviewed 
with respect to different sizes of the probe sets and varying values of the parameter β . In both these cases, our 
proposed similarity indices achieved higher performance. The proposed method was applied to various domains 
including chemical networks, biological networks and social networks. In terms of future work, we plan to 
extend the work presented here to bipartite networks such as drug-target interaction networks. Note that, the 
experiments performed in this paper were limited to only simple networks, whose edges are unweighted and 
undirected. However, the proposed similarity indices can be easily extended to more complicated cases such as 
directed networks or weighted networks.
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