Skip to main content
. 2020 Nov 16;10:19848. doi: 10.1038/s41598-020-76860-2

Table 1.

Local, Quasi-local, and Global Similarity indices.

Local index Matrix form Global extension Quasi-local extension
CN(u,v)=Γ(u)Γ(v) A2 I-βA-1-I A2+βA3
RA(u,v)=w{Γ(u)Γ(v)}1Γ(w) AD-1A AI-βD-1A-1-A AD-1A+βAD-1AD-1A
AA(u,v)=w{Γ(u)Γ(v)}1logΓ(w) AlogD-1A AI-β(logD)-1A-1-A AlogD-1A+βAlogD-1AlogD-1A
SO(u,v)=2Γ(u)Γ(v)|Γ(u)|+|Γ(v)| 2DA2ij-1+A2ij-1Dij-1 2DI-βA-1-Iij-1+I-βA-1-Iij-1Dij-1 2DA2+βA3ij-1+A2+βA3ij-1Dij-1
SA(u,v)=Γ(u)Γ(v)|Γ(u)|×|Γ(v)| D-12A2D-12 D-12I-βA-1-ID-12 D-12A2D-12+βD-12A3D-12
LHN(u,v)=Γ(u)Γ(v)|Γ(u)|×|Γ(v)| D-1A2D-1 D-1I-βA-1-ID-1 D-1A2D-1+βD-1A3D-1
HP(u,v)=Γ(u)Γ(v)min(|Γ(u)|,|Γ(v)|) minDA2ij-1,A2ij-1Dij-1 minDI-βA-1-Iij-1,I-βA-1-Iij-1Dij-1 minDA2+βA3ij-1,A2+βA3ij-1Dij-1
HD(u,v)=Γ(u)Γ(v)max(|Γ(u)|,|Γ(v)|) maxDA2ij-1,A2ij-1Dij-1 maxDI-βA-1-Iij-1,I-βA-1-Iij-1Dij-1 maxDA2+βA3ij-1,A2+βA3ij-1Dij-1

Here A represents the adjacency matrix of the network, I is the identity matrix with size equal to the size of the matrix A, and D represents the diagonal degree matrix whose ith diagonal element is the degree of the ith node of the graph. Furthermore, A-1 represents the inverse of the matrix A, while Aij-1 represents the element-wise inverse operation.