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Deep learning-enabled breast cancer hormonal
receptor status determination from base-level
H&E stains

Nikhil Naik@® "®, Ali Madani4, Andre Esteva'?, Nitish Shirish Keskar!, Michael F. Press® 2,
Daniel Ruderman® 3, David B. Agus® & Richard Socher!

For newly diagnosed breast cancer, estrogen receptor status (ERS) is a key molecular marker
used for prognosis and treatment decisions. During clinical management, ERS is determined
by pathologists from immunohistochemistry (IHC) staining of biopsied tissue for the targeted
receptor, which highlights the presence of cellular surface antigens. This is an expensive,
time-consuming process which introduces discordance in results due to variability in IHC
preparation and pathologist subjectivity. In contrast, hematoxylin and eosin (H&E) staining—
which highlights cellular morphology—is quick, less expensive, and less variable in pre-
paration. Here we show that machine learning can determine molecular marker status, as
assessed by hormone receptors, directly from cellular morphology. We develop a multiple
instance learning-based deep neural network that determines ERS from H&E-stained whole
slide images (WSI). Our algorithm—trained strictly with WSI-level annotations—is accurate
on a varied, multi-country dataset of 3,474 patients, achieving an area under the curve (AUC)
of 0.92 for sensitivity and specificity. Our approach has the potential to augment clinicians’
capabilities in cancer prognosis and theragnosis by harnessing biological signals impercep-
tible to the human eye.
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ore than 2 million women across the world were

diagnosed with breast cancer in 2018, resulting in 0.6

million deaths. A large majority of invasive breast
cancers are hormone receptor-positive—the tumor cells grow in
the presence of estrogen (ER) and/or progesterone (PR)!->,
Patients with hormone-receptor positive tumors often clinically
benefit from receiving hormonal therapies, which target the ER
signaling pathway. The US National Comprehensive Cancer
Network guidelines mandate that hormone receptor status,
including ER receptor status, be determined for every new breast
cancer patient, as this is critical in clinical decision-making®.

In the current diagnostic workflow, a patient’s sample is thinly
sectioned onto microscope slides for staining followed by visual
diagnosis by a pathologist. Hematoxylin and eosin (H&E) stain-
ing is used for primary diagnosis, and specialized stains for
molecular markers can be used for diagnostic confirmation and
subtyping. For breast cancer, ERS is always assayed, as it is both a
prognostic marker and predictive of endocrine therapy response.
ERS is determined by visual inspection of slides stained using
molecular immunohistochemistry (IHC) with an antibody tar-
geting the ER receptor (Fig. 1a). This process has several limita-
tions. ITHC staining is expensive and time-consuming. The test
output is expressed in terms of color: stain intensity, or percen-
tage of cells that achieve a detectable stain intensity, or presence/
absence of a stain. There can be significant variation in sample
quality due to differences in tissue handling and fixation, anti-
body sources and clones, and technician skill levels!»2. Finally, the
pathologists’ decision-making process is inherently subjective and
can result in human errors3. These factors lead to discordance in
ERS determination; an estimated 20% of current IHC-based
determinations of ER and PR testing may be inaccurate®*, placing
these patients at risk for suboptimal treatment.

We find that the morphology of the tumor, captured in the
H&E stain, contains predictive signal for the molecular marker
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status of the tumor and that a machine-learning (ML) algorithm
can directly determine ERS from an H&E-stained whole slide
image (Fig. 1a). The morphology is a reflection of the biology; in
this case, the dependence on hormonal signaling and the
arrangement of the cells one would predict may be different
depending on the biology. We show that ML identifies histo-
morphological feature groups within the tissue structure captured
by an H&E stain that are predictive of molecular biomarkers (or
biology) expressed in an IHC stain.

Our algorithm is trained with clinical ERS readily available
from patient records and requires no additional pixel-level
annotations. Recent studies®”>8 have shown promising perfor-
mance for ERS determination from morphological stains, but are
based on single-center datasets of tissue microarrays (TMAs).
Creating TMAs is a manual process that requires pathologists to
select regions of interest (ROIs) from the whole specimen®10. In
contrast, our method automatically selects ROIs from the total
tissue field and demonstrates accurate results on a large, multi-
country dataset of WSIs, which would make it feasible for
pathologists to augment their standard clinical workflows with no
additional manual steps. Other studies using TCGA and whole
slide images have reported results on molecular biomarkers such
as lung cancer!l.

Working with H&E has several advantages—it is significantly
cheaper than THC, it exhibits less variability across centers, and it
is ubiquitously used in histopathology workflows globally. An
automated ERS estimation method has the potential to reduce
errors in breast cancer treatment and improve outcomes, and
importantly reduce time to treatment decisions. Moreover, an
algorithm that identifies discriminative morphological features
for molecular markers has the potential to provide biological
insights into how hormones drive tumor growth.

ML-driven histopathology methods have primarily relied on
expensive, time-consuming, pixel-level pathologist annotations of
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Fig. 1 Estrogen receptor status (ERS) estimation from H&E stained whole slide images (WSI). a In clinical practice, pathologists diagnose breast cancer
from H&E stain, followed by estrogen receptor estimation from IHC stain. We show that a deep learning algorithm can accurately predict ERS directly from
H&E stain. b Our algorithm, which we call ReceptorNet, is trained and evaluated on a diverse, multicenter dataset of 3474 patients with large variation in
sample quality. ¢ ReceptorNet is trained using patches directly sampled from WSI, with no pixel-level annotations. It automatically learns to pay attention

to regions of the WSI important for ERS estimation.
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whole slide images for training!!-1°. Since pathologists are not
clinically trained to determine ERS from H&E images, they
cannot provide manual annotations for this particular stain.
However, if a tumor has been determined to be ER-negative
(ER—) from an IHC stain, we can assume that their H&E WSI
contains almost no discriminative features for ER-positivity.
Conversely, if the patient has been determined to be ER-positive
(ER+), we can assume that at least some regions of their H&E
WSI contain discriminative features for ER-positivity. Thus, we
can train models using H&E stains as input data, and THC
annotations as input data labels. This problem setup works well
with multiple instance learning (MIL)!®. MIL has been recently
utilized for ML-driven histopathological diagnosis!” and
prognosis!8.

The goal of MIL is to learn from a training set consisting of
labeled bags of unlabeled instances. A positively labeled bag
contains at least one positive instance, while a negatively labeled
bag contains only negative instances. A trained MIL algorithm is
able to predict the positive/negative label for unseen bags. We
utilize MIL to estimate ERS from a bag of tiles randomly selected
from a WSI.

In addition to being accurate, an ML algorithm for ERS esti-
mation should be interpretable—it should enable users to identify
regions of the image that are important for decision-making.
From a clinical perspective, interpretability is important for
gaining physicians’ trust, for building a robust decision-making
system, and to help overcome regulatory concerns. From a sci-
entific perspective, an interpretable model can help locate dis-
criminative tiles in H&E images and identify histomorphological
features that are correlated with hormone-driven cell growth. To
achieve interpretability, we design an attention-based deep neural
network that performs MILI?, which we call ReceptorNet
(Fig. 1c). ReceptorNet learns to assign high attention weights to
tiles in the H&E image that have maximum discriminative
capacity, and to assign low attention weights to tiles that are
insignificant for this task. Analyzing attention weights assigned to
different tiles allows us to determine which tiles were utilized to
make ERS estimation.

ReceptorNet is trained to predict ER+ status from a bag of tiles
randomly selected from a WSI at a resolution of 0.5 um/pixel. The
WHI is divided into 256 x 256 pixel-size nonoverlapping tiles.
ReceptorNet consists of three interconnected neural networks
which are trained together: (1) A feature extractor which converts
each 256 x 256 pixel-size tile in a bag into a 512-dimensional
feature vector, (2) an attention module that creates a 512-
dimensional aggregate of feature vectors from all the tiles in the
bag, attention-weighted based on discriminative power, and (3) a
decision layer that computes the probability of this bag being
positive from the aggregate feature vector. We improve on the
existing attention-based MIL!? algorithm by using cutout reg-
ularization?0, hard-negative mining?!, and a novel mean pixel
regularization (see “Methods”). We train ReceptorNet to predict
the probability of ER+ status through an iterative learning pro-
cess. During testing, we sample multiple bags from a WSI and
aggregate their probabilities to improve prediction accuracy.

Results

Quantitative evaluation. To train and test ReceptorNet, we uti-
lize two diverse datasets: the Australian Breast Cancer Tissue
Bank (ABCTB) dataset containing 2535 H&E images from 2535
patients and The Cancer Genome Atlas (TCGA) dataset con-
taining 1014 H&E images from 939 patients (Fig. 1b). TCGA
images are obtained from 42 different tissue source sites from the
USA, Poland, and Germany. Both datasets report the hormone
receptor status determined by pathologists from IHC stains. Our

combined dataset has large variation in sample preparation,
staining, and scanning quality (Supplementary Fig. 1). After
removing images with excessive pen markings, we divide the
combined dataset into a train set (2728 patients) and a test set
(671 patients). After performing fivefold cross-validation on the
train set, we train ReceptorNet using all slides from the train set
and evaluate it on the test set slides. (See “Methods” for details on
data preparation, training, and evaluation)

We report results using the area under the curve (AUC) for
ER+/ER— binary classification, along with its 95% confidence
interval (CI) computed using bootstrapping. ReceptorNet obtains
an AUC of 0.899 (95% CI: 0.884-0.913) on the cross-validation of
the train set and an AUC of 0.92 (95% CI: 0.892-0.946) on the
test set (Fig. 2a). On the test set, our method obtains a positive
predictive value (PPV) of 0.932 and an negative predictive value
(NPV) of 0.741 at a threshold of 0.25. Since we do not have access
to the original tissue material, it is not possible to perform an
exact comparison between pathologists and our approach. We
note that the results from the International Breast Cancer Study
Group>* dataset from a separate study, translate to a PPV of 0.92
and an NPV of 0.683 for concordance between primary
institution and central testing on the combined dataset of
premenopausal and postmenopausal patients. Validation against
gold-standard data using central testing remains an important
future direction.

To determine the importance of algorithm choice, we
compared ReceptorNet with Meanpool and Maxpool, two
traditional, widely used MIL algorithms!®. Their performance is
inferior to ReceptorNet on the test set (p < 1 x 10~ for Meanpool
and p <0.01 for Maxpool, DeLong test). Meanpool obtains an
AUC of 0.827 (95% CI: 0.786-0.866) and Maxpool obtains an
AUC of 0.880 (95% CI: 0.846-0.912). To evaluate if ERS can be
determined from individual patches alone, we created a model
with the same basic architecture as ReceptorNet after removing
the attention module and trained it on individual patches using
binary cross-entropy. This model obtains an AUC of 0.760 (95%
CL: 0.726-0.794), with evaluation averaged on 50 patches,
indicating that aggregating information from multiple patches
using an attention module leads to better performance. We also
build a logistic regression model using pathologist-provided
histological type and tumor grade, which are clinically deter-
mined from H&E. This model obtains an AUC of 0.809 (95% CI:
0.766-0.848), significantly lower than ReceptorNet (p <1 x 1074,
DeLong test) (see Fig. 2b).

In addition to ER, the PR— and human epidermal growth
factor receptor 2 (HER2)-status may affect tumor growth and
thereby may affect the histomorphological structure of the H&E
stained tissue. Since HER2 overexpression is a dominant
transformation mechanism in tumors?2, discriminative morpho-
logical patterns for ERS estimation may be harder to identify in
HER2+ samples. Indeed, we find that ReceptorNet performs
significantly better (p<1x 1074, F-test) on HER2— samples
(AUC=0.927, 95% CI: 0.912-0.943) as compared to HER2+
samples (AUC = 0.768, 95% CI: 0.719-0.813). Moreover, Recep-
torNet performs significantly better (p < 1 x 10~4, F-test) on PR+
samples (AUC =0.906, 95% CI: 0.869-0.940) as compared to
PR— samples (AUC=0.827, 95% CI: 0.795-0.855), which is
reflective of the high correlation between ER and PR statuses (see
Fig. 2c). For completeness, we also trained and evaluated
ReceptorNet on PR and HER2 labels using the same cross-
validation and test split as ERS estimation. ReceptorNet obtains
an AUC of 0.810 (95% CI: 0.769-0.846) on PR and an AUC of
0.778 (95% CI: 0.730-0.825) on HER2.

We also find that AUC varies significantly with tumor grade
(p<1x1073, F-test), 0.949 for grade 1 (95% CI: 0.925-0.973),
0.810 for grade 2 (95% CI: 0.716-0.888), and 0.865 for grade
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Fig. 2 ReceptorNet obtains high performance on estrogen receptor status estimation. a ReceptorNet obtains an AUC of 0.90 on the cross-validation of
the train set (N =2728) and an AUC of 0.92 on the test set (N =671). b ReceptorNet also beats multiple instance learning baselines on the test set (N =
671). On the cross-validation of the train set, ReceptorNet performance is significantly affected by the presence or absence of other hormonal receptors
(HER2—: N =2205, HER2+: N = 407; PR—: N =852, PR+: N =1871) (c), and tumor grade (Grade 1: N =297, Grade 2: N =788, Grade 3: N = 888), but
not by histological type (IDC: N=2073, ILC: N=371) (d). There is no statistically significant difference in ReceptorNet performance across datasets
(TCGA: N=700, ABCTB: N =2028), tissue source sites (University of Pittsburgh: N =106, Walter Reed: N =79, Roswell Park: N=71) (e) or
demographic splits (premenopausal: N = 250, postmenopausal: N =450, Not African-American: N =583, African-American: N =117) (f). Error bars
represent 95% confidence interval for the true AUC calculated by bootstrapping the cross-validation set. Statistical tests for differences in AUC were
performed using an upper tail F-test. Comparisons between different ERS prediction methods’ AUCs on the same data set were performed using the

Delong method.

3 (95% CI: 0.84-0.887). In contrast, we do not find a statistically
significant difference in prediction performance based on whether
the tumor was ductal or lobular in origin (see Fig. 2d).

There is no statistically significant difference (p > 0.05, F-test)
in ReceptorNet performance across data from Australia, Ger-
many, Poland, and USA. On the cross-validation of the train set,
the AUC on TCGA is 0.861 (95% CI: 0.828-0.893); AUC on
ABCTB is 0.905 (95% CI: 0.889-0.921). Moreover, ReceptorNet
performance across 42 TCGA tissue source sites is similar and is
not dependent on the proportion of training samples collected
from a given site (R>=0.16, p > 0.1) (see Fig. 2e).

As additional validation, we trained ReceptorNet only using
data from ABCTB and evaluated it on the entire TCGA dataset.
ReceptorNet obtains an AUC of 0.850 (95% CI: 0.830-0.868) on
TCGA for ERS estimation, a reasonable drop in performance as
compared to the combined dataset. TCGA is a harder dataset for
prediction as compared to ABCTB, as TCGA has much larger

variation in staining and patient demographics. The ABCTB data
is obtained from 6 tissue source sites from one state in Australia,
while the TCGA data is obtained from 42 different tissue source
sites from the USA, Poland, and Germany. Finally, we removed
the data from only the University of Pittsburgh from the training
set, which is the largest cohort in TCGA (N = 134), and tested
ReceptorNet on the data from this site. ReceptorNet obtains an
AUC of 0.910 (95% CI: 0.836-0.969) on this cohort, comparable
to the AUC obtained on the entire test set (0.920).

We also do not find significant differences in prediction
performance based on menopausal status or race (p > 0.05, F-test)
on the TCGA data (demographic information was not available
for ABCTB). AUC for postmenopausal women is 0.872 (95% CI:
0.832-0.908). AUC for premenopausal women is 0.838 (95% CI:
0.779-0.893). AUC for African-American patients is 0.859 (95%
CI: 0.785-0.921). AUC for the rest of the patients is 0.858 (95%
CI: 0.817-0.896) (see Fig. 2f). Trends on test set are similar for
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baseline methods.

Algorithm (data split) AUC (95% CI)

Algorithm (data split)

Table 1 ReceptorNet performs well across different splits of the data based on other patient characteristics and also outperforms

AUC (95% CI)

ReceptorNet (cross-validation set)
Baselines

Meanpool (test set) 0.827 (0.786-0.866)
Individual patch (test set) 0.760 (0.726-0.794)
Data splits based on other hormone receptors and grade

ReceptorNet (HER2+, test set) 0.768 (0.719-0.813)
ReceptorNet (PR+, test set) 0.906 (0.869-0.940)
ReceptorNet (Grade 1, test set) 0.949 (0.925-0.973)
ReceptorNet (Grade 3, test set) 0.865 (0.840, 0.887)
Data splits based on data source
ReceptorNet (TCGA,
cross-validation set)
ReceptorNet (ABCTB,
cross-validation set)

Data splits based on demographics
ReceptorNet (postmenopausal
women, TCGA)

ReceptorNet (African-American
patients, TCGA)

0.899 (0.884-0.913)

0.861 (0.828-0.893)

0.905 (0.889-0.921)

0.872 (0.832-0.908)

0.859 (0.785-0.921)

ReceptorNet (test set)

Maxpool (test set)
Logit on type and grade (test set)

ReceptorNet (HER2—, test set)
ReceptorNet (PR-, test set)
ReceptorNet (Grade 2, test set)

ReceptorNet (TCGA,

trained on ABCTB alone)

ReceptorNet (University of Pittsburgh, trained
on rest)

ReceptorNet (premenopausal women, TCGA)

ReceptorNet (Non-African-American
patients, TCGA)

0.920 (0.892-0.946)

0.880 (0.846-0.912)
0.809 (0.766-0.848)

0.927 (0.912-0.943)
0.827 (0.795-0.855)
0.810 (0.716-0.888)
0.850 (0.830-0.868)

0.910 (0.836-0.969)

0.838 (0.779-0.893)

0.858 (0.817-0.896)

cohort splits based on hormonal receptors, tumor origin location,
demographic variables, and data source (Supplementary Fig. 2).
All experimental results are summarized in Table 1.

Qualitative evaluation. Next, we evaluate which histomorpho-
logical patterns are important to ReceptorNet for ERS estimation.
An expert breast cancer pathologist manually reviewed groups of
high-attention tiles clustered based on their image features and
sorted by their ER+ percentage (see “Methods”).

The first group of ER+ discriminative tiles consisted of
uniform cells with small nuclei, negligible to modest nuclear
pleomorphism with little variation in chromatin pattern, and
low mitotic rate, all of which are characteristic features for low
grade tumors (Fig. 3a). In contrast, a group of ER-—
discriminative tiles consisted of nuclei with moderate to
substantial nuclear pleomorphism, a relative lack of gland
formation, and rapidly growing tumor, which are characteristic
of high grade tumors (Fig. 3e). The second group of ER+
discriminative tiles consisted of cells arranged in linear arrays
surrounded by stroma, with variation in nuclear size and shape,
and no duct formation (Fig. 3b). These are characteristic
features for invasive lobular carcinoma (ILC), which validates
prospective studies reporting?3-2> ILC to be predominantly
ER+. In contrast, none of the tiles with high ER— discrimi-
native ability displayed characteristic patterns for ILC. In the
third ER+ discriminative group, tiles were located within
ductal/lobular carcinoma in situ lesions composed of small,
uniform tumor cells having modest pleomorphism and without
intervening stroma (Fig. 3d).

Other groups of ER+ discriminative tiles captured motifs such
as invasive tumor cells with intervening reactive stroma
(consisting of cancer-associated fibroblasts and myofibroblasts),
and a variable number of inflammatory cells. These invasive
carcinoma cells had mild to moderate nuclear pleomorphism
with interspersed connective tissue, composed predominantly of
collagen (Fig. 3c). A group of ER— discriminative tiles contained
necrotic debris with reactive lymphoid cells and macrophages
removing the debris (Fig. 3f).

In sum, ReceptorNet discovers that histomorphological
patterns that identify low grade tumors, ILC, and in situ

carcinoma are predictive of ER-positivity. These features have
been found to be statistically associated?6-30 with ER+ breast
cancers rather than ER—, thus providing validation of some
features assessed by the network in determining ERS.

ReceptorNet assigned low attention weights to tiles with fat
tissue; tiles with connective tissue with no/few tumor cells; tiles
with few tumor cells and reactive stroma trapped in-between fat
cells; and tiles with macrophages laden with debris and fat
(Fig. 3g). The model automatically learnt to ignore these
morphological patterns while making ERS decisions, without
any manual pixel-level annotations used for training (Fig. 3h,
Supplementary Fig. 3).

We also visualize the learned feature space of the aggregated
feature vectors of bags of tiles using t-SNE3!, which shows that
ReceptorNet learns to separate WSI based on the degree of ER-
positivity (Supplementary Fig. 4).

Discussion

In conclusion, we demonstrate accurate ER receptor status esti-
mation from H&E stains using a deep neural network trained on
a substantial, multi-country dataset of H&E and IHC-labeled
image pairs. We test the robustness of our algorithm by varying
the presence of other hormonal receptors (PR, human epidermal
growth factor), tumor grade, tumor origin location (ductal, lob-
ular), as well as demographic variables (menopause, race), and
find that other receptors and tumor grade can significantly
influence classifier predictions, while the location of cancer origin
and demographic variables considered do not. The ability to
determine IHC-derived molecular marker status from H&E stains
has the potential to reduce variability in predictions and decrease
the cost of pathology workflows. In addition, the time to treat-
ment initiation would be expedited by using a digital workflow,
which may affect clinical outcomes3>33. In this work, we lay a
foundation for future studies to compare the clinical workflow of
a pathologist with and without this type of ML. More broadly, our
study represents an enhancement of standard physician skill sets
and demonstrates ML’s potential to improve cancer prognosis
and theragnosis by harnessing biological markers currently
imperceptible to clinicians.
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Fig. 3 ReceptorNet discovers histomorphological patterns important for estrogen receptor status estimation. ReceptorNet automatically learns that
a low grade tumors, b invasive lobular carcinoma, ¢ reactive stroma, and d in situ carcinoma are predictive of ER-positivity; and e high grade tumor and
f necrotic debris are predictive of ER-negativity. g ReceptorNet also learns to ignore fat tissue; connective tissue with no/few tumor cells; and macrophages
laden with debris and fat. h Attention weights allow us to identify the regions of whole-slide images important for decision-making. Regions bounded by the

blue outline were used for ERS estimation, while other regions were ignored.

Methods

Datasets. We combined hematoxylin and eosin (H&E)-stained whole slide images
from two datasets: the Australian Breast Cancer Tissue Bank (ABCTB) dataset,
which contains 2535 H&E images from 2535 patients and The Cancer Genomic
Atlas (TCGA) dataset, which contains 1014 H&E images from 939 patients. Both
datasets report ER, PR, and HER?2 status determined by pathologists from THC.
The WSI were scanned at a resolution of 20x or higher.

Data preparation. To train ReceptorNet with slide regions that only contain tissue
matter, we first performed segmentation using the Otsu’s method®* on the WSI
thumbnail and discarded the background regions. We then extracted 256 x 256
pixel image tiles from the foreground of WSI at 20x magnification, where an image
was considered to be part of the foreground if 1% of the tile was considered to be
tissue matter. The tiles were extracted without any overlap between adjacent tiles.
The average number of tiles per slide was 19,944, with the number of tiles per slide
varying between 949 and 67,368.

Model architecture. The ReceptorNet architecture consists of three interconnected
neural networks: a feature extractor module, an attention module, and a decision

module. The feature extractor is a ResNet-503° without the softmax layer, followed by
two fully connected layers with a dropout of 0.5 which convert the 1000-dimensional
feature obtained from ResNet-50 to a 512-dimensional feature vector. The ResNet-50

is initialized from ImageNet3¢-pretrained weights and the fully connected layers are
randomly initialized using He initialization?®. During one iteration of training, a bag
of N image tiles is fed to the feature extractor, which outputs a N'x 512 dimensional
feature matrix. This feature matrix is fed to the attention module for aggregation. The
first part of the attention module contains a linear layer which reduces each feature
vector to 128 dimensions and applies an element-wise hyperbolic tangent (tanh(.))
nonlinearity on the output, which scales the features to include values between —1
and 1 and facilitates learning of similarities and contrasts between tiles. The output of
this linear layer followed by tanh is multiplied by another linear layer and a softmax
function which computes an attention weight between 0 and 1 for a particular tile. So,
for a bag of N image tiles, we obtain an N-dimensional vector of attention weights.
We then perform an inner product of this attention vector with the N x 512
dimensional feature matrix to obtain an aggregate 512-dimensional feature vector.
The 512-dimensional aggregate feature vector is now fed to a decision layer consisting
of a 512-dimensional linear layer followed by a sigmoid function, which outputs a
probability between 0 and 1 for a bag of N tiles.

Training protocol. We trained ReceptorNet by feeding bags of N = 50 tiles drawn
randomly from the pre-extracted tiles from each WSI. We performed extensive

data augmentation to help the model learn invariances and to deal with variability
in staining methods. Specifically, we (i) randomly flipped the tile from left to right
with a probability of 0.5, (ii) randomly rotated the tile by {0°, 90°, 180°, 270°} with
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equal probability, (iii) performed color jittering, and (iv) performed cutout reg-
ularization!® with length 100. We trained the model to minimize cross-entropy loss
using Adam optimizer with a learning rate of 1 x 107> and weight decay of 5 x
10~ for 500 epochs, employing hard-negative mining?! during each epoch. Since
our dataset contains significant class-imbalance (the number of ER+ samples are
3.7 times the number of ER— samples), we performed balanced sampling to
maintain a rough 50-50 proportion of ER+ and ER— samples in each epoch. We
found that training the model with a bag containing all the image tiles lead to
overfitting. To reduce overfitting, we randomly replaced tiles by an image with all
pixel values set to the mean pixel value of the dataset with a probability of 0.75.
This mean pixel regularization improved performance substantially. We measured
performance using the AUC, PPV, and NPV as metrics for the binary classification
task. PPV is defined as (sensitivity x prevalence)/(sensitivity x prevalence + (1 —
specificity) x (1 — prevalence)). NPV is defined as (specificity x (1 — prevalence))/
((1 — sensitivity) x prevalence + specificity x (1 — prevalence)). The sensitivity and
specificity are calculated by binarizing the prediction probability of the network
using a specific threshold (in our case, 0.25).

Comparison to baseline methods. We compared our method with two widely used
MIL methods: Meanpool and Maxpool. In Meanpool, the feature representations of N
tiles in a bag are averaged to obtain an aggregate feature representation. In Maxpool, a
feature-wise max is obtained for each of the feature dimensions. These methods were
trained on the same model architecture as ReceptorNet, except for replacing the
Attention module by a Meanpool or Maxpool operation.

Pathologist review. We selected a set of highly discriminative tiles for ERS esti-
mation for review by a breast subspecialized pathologist (M.F.P.). We first evaluated
our trained model on bags of tiles sampled exhaustively from slides in our test set.
From each slide, we saved the 512-dimensional aggregate feature vector obtained from
the bag of tiles and performed k-means clustering on the features, with k determined
by the elbow method®’. We computed the ER+ fraction for each cluster using the
predicted ER status of the slides in each cluster. For tiles in highly ER+ or ER—
clusters (80%+ ER+, or ER—), we performed k-means clustering on features of
individual tiles in the top 1% of each slide according to attention weights. We then
sorted these tiles by their distance from cluster centers and displayed one tile each
from a different slide, displaying up to five tiles from each cluster. This exercise
ensured selection of highly discriminative tiles from slides with similar aggregate
visual representation (and hence ER+ probability) according to our trained algorithm.
The pathologist manually reviewed these tiles and recorded observations about the
cellular morphology and architecture of the tissue field.

Hardware and software. Experiments were performed on USC’s high-
performance computing cluster, consisting of Nvidia P-100 Pascal graphics pro-
cessing units (GPUs). Image tiles were extracted using the Python version of the
OpenSlide library (v3.4.1). Each model was trained on a single GPU using the
PyTorch library (v0.4.1). Performance evaluation, including AUC calculation and
CI estimation with bootstrapping, was done using scikit-learn (v0.20.0) library in
Python. Statistical tests were performed in R (v3.6.1); the DeLong test was per-
formed using the Daim R package (v1.1.0). All code was developed using open-
source tools.

Statistical methods. Statistical tests for differences in AUC were performed using an
upper tail F-test. The numerator variance was computed as the AUC variance across
comparison groups. The denominator variance was computed as the pooled variances
across comparison groups from 1000 bootstrap AUC values within each group. The
numerator degrees of freedom (dof) was taken as the number of groups minus one,
and the denominator dof was taken as infinity. The 95% CI calculations were also
performed using 1000 bootstrap AUC values within each group. Comparisons
between different ERS prediction methods’ AUCs on the same data set were per-
formed using the DeLong method38. Statistical analysis was done using the following
Python libraries: Jupyter (v4.4.0), numpy(v1.15.4), scipy (v1.0.0), and pandas
(v0.22.0).

Dataset curation. We did not curate the dataset, except removing 75 WSI con-
taining excessive pen markings. The dataset faithfully reflects the quality of WSI
encountered in real-world clinical scenarios.

Data protection. The study was approved by the Institutional Review Board at the
University of Southern California.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

TCGA dataset is publicly available at the TCGA portal (https://portal.gdc.cancer.gov).
The ABCTB dataset is available from the Australian Breast Cancer Tissue Bank subject to
ethical and scientific approvals (https://abctb.org.au/abctbNew2/ACCESSPOLICY .pdf).

Code availability

Our code and experiments can be reproduced by utilizing the details provided in the
“Methods” section on data preparation, model architecture, and training protocol, and
the following open-source libraries/codebases: Data preparation are based on py-wsi
(https://github.com/ysbecca/py-wsi). Major components of our model architecture and
training protocol can be reproduced using AttentionDeepMIL (https://github.com/
AMLab-Amsterdam/AttentionDeepMIL) and cutout regularization (https://github.com/
uoguelph-mlrg/Cutout).
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