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Abstract 

Background:  Hormones are crucial to plant life and development. Being able to follow the plants hormonal 
response to various stimuli and throughout developmental processes is an important and increasingly widespread 
tool. The phytohormone cytokinin (CK) has crucial roles in the regulation of plant growth and development.

Results:  Here we describe a version of the CK sensor Two Component signaling Sensor (TCS), referred to as TCSv2. 
TCSv2 has a different arrangement of binding motifs when compared to previous TCS versions, resulting in increased 
sensitivity in some examined tissues. Here, we examine the CK responsiveness and distribution pattern of TCSv2 in 
arabidopsis and tomato.

Conclusions:  The increased sensitivity and reported expression pattern of TCSv2 make it an ideal TCS version to study 
CK response in particular hosts, such as tomato, and particular tissues, such as leaves and flowers.
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Background
Cytokinins (CKs) are a class of adenine-derived plant 
hormones that control multiple processes throughout 
the plant life cycle. They provide positional information 
for growth and patterning, and integrate biotic and abi-
otic cues from the environment. Notable examples are 
meristem maintenance in both the shoot apical meristem 
(SAM) and root apical meristem (RAM), cell division and 
cell differentiation. CK is also involved in regulating traits 
that affect yield and fruit quality. The roles of CK in plant 
growth and development have been reviewed extensively 
[1–6]. Cytokinin signalling is mediated via a two-compo-
nent multistep phosphorelay cascade. As the final step, 
type-B response regulators (RRs) activate transcription in 
response to phosphorelay signalling activity, while type-A 

response regulators are rapidly induced by CK via Type-B 
RRs, and, in turn, repress signalling via a negative-feed-
back loop [6–10].

There are many CK derivatives, and methods for the 
detection of a large number of them have emerged in 
recent years [11–20]. However, it is often difficult to 
know for certain which of these derivatives represent 
active CKs, and not all of them are detectable. In paral-
lel to the advances made in hormone substance detec-
tion, efforts have also been invested in the detection of 
CK signalling via transcriptional sensors that mark the 
site of CK-derived response within a specific tissue or 
organ. Whereas specific genes and promoters involved 
in the CK pathway served as markers for CK response 
in the past [7, 8, 10, 21, 22], limitations in the ability to 
detect cytokinins and decipher the biosynthetic path-
ways culminating in active variants of CK molecules led 
to the necessity for accurate and robust sensors allowing 
us to follow CK response dynamics in planta. The search 
for a robust and sensitive CK sensor led to the creation 
of the TWO-COMPONENT OUTPUT SENSOR, TCS, 
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which was designed based on the CK phosphorelay net-
work. The TCS sensor was designed using the conserved 
DNA binding domain in the promoter of type A RRs that 
is recognized by type-B response regulator family mem-
bers of arabidopsis. With the goal of designing a univer-
sal CK reporter, different synthetic reporter designs were 
optimized using luciferase (LUC) activity in an arabidop-
sis mesophyll protoplast assay system [7, 8, 23]. The first 
generation TCS, TCS::LUC, harboured concatemerized 
type-B arabidopsis response regulator (ARR) binding 
motifs and a minimal 35S promoter [7, 8]. The second 
version of TCS, named TCSn, was optimized to better 
reflect the natural arrangement of binding motifs [24]. To 
minimize transcriptional silencing triggered by repeats, 
sequence variations in non-relevant residues were intro-
duced in TCSn. Since its introduction, TCSn-based 
reporters have proven essential tools to report cytokinin 
responses in different plant species, including monocots 
[25, 26].

TCS and TCSn design were based on analysis of bind-
ing motifs in verified cytokinin targets. This analysis 
revealed that tandem, head-to-head and tail-to-tail 
motif orientations are all equally frequent [24]. There-
fore, both TCS and TCSn reporters were designed to 
harbour a motif arrangement that provides all these rela-
tive orientations. However, in cellular assays, increased 
sensitivity was detected in head-to-head and tail-to-
tail motif orientations. This led to the design of another 
TCS version, which is described here. The correspond-
ing synthetic promoter, named TCSv2 (version2) shows 
increased cytokinin sensitivity in planta, in particular in 
the shoot meristem, making it an ideal choice for detect-
ing CK response in shoot organs. Here, we report the 
TCSv2::NLS-3XVenus expression pattern in transgenic 
tomato and arabidopsis.

Results
TCSv2 design and increased sensitivity
TCSv2 is a variant of TCSn, with alternating head-to-
head and tail-to-tail orientations of type B ARR-binding 
sites compared with the tandem tail-to-tail and head-to-
head orientation of sites in TCSn (Fig. 1a). TCSv2 dem-
onstrated increased sensitivity in mesophyll protoplast 
transient assays (Fig. 1a), as well as in arabidopsis floral 
meristems (Fig. 1b).

CK responsiveness of TCSv2 in various tissues 
in both arabidopsis and tomato
We cloned TCSv2 according to the description in the 
methods section, and introduced constructs in which 
TCSv2 drives VENUS or GUS (β-glucuronidase) expres-
sion into tomato and arabidopsis. To examine CK 
responsiveness of TCSv2 in vivo, we conducted a series 

of experiments examining TCSv2 driven expression with 
and without CK treatment in a variety of plant tissues in 
both arabidopsis and tomato (Fig. 2). For VENUS analy-
ses conducted in arabidopsis, two representative trans-
genic lines exhibiting moderate (TCSv2:3XVENUS#2) 
and strong (TCSv2:3XVENUS#7) VENUS expression 
were selected for the analysis. For VENUS analyses con-
ducted in tomato, several lines were screened, which 
demonstrated similar VENUS expression levels. One of 
these was selected for further analyses.

TCS driven VENUS expression is observed primarily in 
meristematic tissues in the arabidopsis shoot and root, as 
was reported for previous TCS versions (Fig. 2a, e). Simi-
larly, strong expression was observed in tomato SAM and 
RAM (Fig. 2g, k). Interestingly, in tomato, strong expres-
sion was also observed in the leaf marginal blastozone 
(Fig.  2g), a meristematic region present in leaf margins 
and expanded in margin of compound leaves [27]. Upon 
CK treatment, the VENUS pattern of expression expands 
to the cotyledons and hypocotyl in arabidopsis (Fig. 2b), 
and becomes stronger in tomato shoot apexes (Fig. 2h). 
In roots of both arabidopsis and tomato, TCS driven 
VENUS expression is observed in the root apex, presum-
ably localized to the root apical meristem, as well as in 
the columella and internal stele (Fig. 2e, k). This pattern 
is strengthened and expanded following CK treatment 
(Fig.  2f, l). TCSv2:NLS-3XVENUS may respond to CK 
treatment in a dose dependent manner (Additional file 1: 

Fig. 1  TCSv2 possesses increased sensitivity. a Design scheme of 
TCSn and TSCv2, displaying the arrangement of the motifs in the 
synthetic promoter, alongside activity of the construct (Luciferease/
GUS staining) in mock and 100 nM transZeatin (tz) treated samples. b 
Expression of TCSn and TCSv2 driven VENUS in the floral meristem of 
arabidopsis. Bar = 50 µM
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Figure S1). Results obtained with TCSv2 in a Ler arabi-
dopsis background were similar (Additional file 1: Figure 
S2). For some tissues, such as shoot apices, tomato may 
require a higher concentration of CK to achieve a similar 
strength response in the same time frame as arabidopsis.

In order to examine the time course of the response 
of TCSv2 to CK treatment, we utilized a TCSv2:GUS 
construct (the VENUS construct contains 3 repeats of 
the VENUS sequence and is therefore unsuitable for 
qPCR analysis). We first characterized GUS expression 
in arabidopsis and tomato (Fig.  3). Time course experi-
ments show that TCS-driven GUS mRNA peaks 2  h 
after CK treatment in arabidopsis (Fig. 3c), and declines 
soon thereafter. Examination of TypeA ARR​ genes in the 

same samples, shows that, as previously reported [28, 
29], ARR5 and ARR7 respond earliest, within half an 
hour of CK treatment (Fig.  3c). In tomato, TCS-driven 
GUS mRNA peaks 3 h after CK treatment (Fig. 3d), ris-
ing and falling slightly slower than in arabidopsis, per-
haps reflecting the higher amount of CK needed to elicit 
a similar response. When comparing TRR​ expression 
in tomato to that of the TCS-GUS mRNA, GUS mRNA 
expression rises in a manner similar to that of TRR16B 
and TRR3/4, but to a greater degree, rising slowly and 
peaking 2–3 h from CK treatment, while TRR5/6/7 rises 
more quickly, showing significant increase in expression 
30 min after CK treatment, similar to arabidopsis ARR7 
(Fig. 3c, d). TCSv2 can thus be viewed as an “averaging” 

Fig. 2  TCSv2:3XVENUS responds to CK treatment. Arabidopsis (A. thaliana Columbia) seedlings (a, b), inflorescences (c, d), and roots (e, f), and 
Tomato (S. lycopersicum M82) apexes (g, h, developmental stages indicated), flower primordia (i, j) and roots (k, l) were treated with mock or 
indicated 6-benzylaminopurine (BA) concentrations. Images of TCSv2 driven VENUS expression were captured 24 h after treatment with a Nikon 
stereomicroscope (a–d, g, h), a Leica SPX confocal microscope (e, f) or a lsm510-META confocal microscope (K-L). Parameters and settings are 
described in the materials and methods section. Bars = 100 µM
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output of Type A ARR​ response in terms of time course, 
representing a response to CK that is later than the earli-
est responding ARRs but earlier than the later responding 
ones. Also of note is that in both arabidopsis and tomato, 
TCSv2 responds more strongly to CK treatment than 
any one individual RR, perhaps reflecting a combined 
response output that is normally “divided” between sev-
eral RR genes. This should be taken into account when 
conducting analyses using TCSv2.

TCSv2 driven expression is affected by alterations 
in endogenous CK levels in tomato
To examine whether TCSv2-driven expression responds 
to alterations in endogenous CK level alterations in 
tomato, we backcrossed the tomato VENUS line into 
transgenic plants overexpressing the arabidopsis CK bio-
synthesis enzyme Isopentenyltransferase-7 (IPT7) or CK 
catabolic enzyme Cytokinin Oxidase/Dehydrogenase 
-3 (CKX3) [30], driven by the FIL promoter. As can be 
seen in Fig. 4, the TCSv2 sensor responds to an increase 
in endogenous CK with elevation of VENUS expression 
(Fig.  4d–f) and to a decrease in endogenous CK with a 

decrease in VENUS expression (Fig. 4g–i), indicating that 
the sensor is useful for examining both exogenous and 
endogenous changes in CK levels. Indeed, we recently 
successfully utilized the TCSv2 sensor to analyse endog-
enous effects of different genetic background manipula-
tions on the CK pathway [31–33].

TCSv2 responds primarily to CK treatment
The balance between different hormones is one of the 
underlying mechanisms serving plant development, 
growth, and response to various cues. Cytokinin and 
gibberellin, as well as cytokinin and auxin, can antago-
nize each other or act in concert in a variety of processes 
throughout plant development [30, 34–43]. We therefore 
tested whether the TCS sensor could possibly respond 
to additional cues other than CK treatment. Figure  5 
demonstrates that TCSv2 responds specifically to CK 
and does not respond significantly to additional tested 
hormones at the applied concentrations and within the 
indicated time frames, in both tomato (VENUS protein 
expression 12  h after CK treatment, Fig.  5a and Addi-
tional file 1: Figure S3A–E) and arabidopsis (GUS mRNA 

Fig. 3  TCSv2 time course following CK treatment. Arabidopsis (A. thaliana Columbia) seedlings (a), and Tomato (S. lycopersicum M82) leaves and 
apexes (b) were assayed for GUS accumulation with and without CK treatment (6-benzylaminopurine, BA; 100 µM) tissues were harvested 2 and 
4 h after treatment respectively). Images were captured with a Nikon stereomicroscope. Bars = 1 cm. GUS and response regulator ARR/TRR​ relative 
expression were assayed at indicated time points after CK treatment in arabidopsis (c) and tomato (d). Each point represents at least 3 biological 
replicas ± SE
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expression 2 h after CK treatment, Fig. 5b). This indicates 
that the TCSv2 sensor is specific and accurate, in addi-
tion to being robust, in the detection of CK response in 
plants.

Characterization of TCSv2 driven expression 
throughout development
The observation that TCSv2 is primarily visible in meris-
tematic tissues, along with published analyses of previous 

Fig. 4  Endogenous CK alterations affect TCSv2 driven expression. Characterization of TCS driven VENUS expression in wild type (WT) Tomato shoot 
apexes and leaf primordia (S. lycopersicum M82) (a–c), in comparison with apexes and primordia of tomato plants overexpressing pFIL >  > IPT7 (d–f) 
and pFIL >  > CKX3 (g–i). Images were captured with a Nikon stereomicroscope. Bars = 100 µM
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TCS versions in arabidopsis development, prompted a 
more in depth examination of TCSv2 in various develop-
mental contexts. Figure 6 presents an analysis of TCSv2 
driven expression throughout shoot and leaf develop-
ment in tomato (Fig.  6a–e) and arabidopsis (Fig.  6f–j). 
In tomato, TCSv2 is expressed in the SAM and at the 
margin of young leaf primordia. The TCS expression 
domain, which likely correlates with the marginal blasto-
zone [27], appears to be wider in younger leaf primordia 
(Fig. 6a–c), and becomes localized and quite thin in older 
leaf primordia (Fig. 6d, e), consistent with the notion that 
the young leaf undergoes morphogenesis and reaches 
maturation concurrently with the loss of its morphoge-
netic potential and meristematic tissues. This is evident 
in Additional file 1: Figure S4, which shows older tomato 
leaves in which the TCS driven signal is localized to 
the margins of the developing leaflets only (Additional 
file 1: Figure S4E, the VENUS signal was color coded in 
dark blue to make it more visible). In contrast, in arabi-
dopsis, which has a simple leaf, the limited morphoge-
netic potential retained by young leaf primordia serves 
in the execution of leaf marginal patterning. As such, 
TCSv2 driven expression can be observed in the SAM 

(Fig. 6f ), and at the adaxial side of the leaf base in young 
leaf primordia (P1–P3, Fig. 6g). The TCSv2 driven signal 
is restricted as the leaf matures, in-line with the basipe-
tal differentiation of the arabidopsis leaf. TCSv2 is also 
present throughout the young leaf venation (Fig.  6h–j), 
and localized to a small number of cells which mark the 
leaf tip and the peak/tip of a nascent marginal serration 
(Fig.  6h–j, marked with asterisks), which presumably 
maintain some form of meristematic qualities to allow for 
subsequent leaf marginal patterning, which is dependent 
on CK response. Consistent with the short marginal blas-
tozone activity, TCSv2 is not observed throughout the 
leaf margin in arabidopsis.

TCSv2 marks the zone of the incipient axillary bud
CK response has been reported to be crucial in the estab-
lishment of the axillary bud [44, 45]. Utilizing TCSv2, we 
followed the generation of the axillary shoot in tomato. 
We were able to observe CK response signal in the axils 
of leaf primordia from the P7 stage onward (Fig.  7). At 
P7, the TCSv2 signal is present in the leaf axil, though no 
axillary bud or axillary meristem dome has yet formed 
(Fig. 7b). At later stages, in the P8-P10 axil, an activated 
bud with a characteristic TCSv2 signal in the meristem 
and the margins of the developing leaf primordia can 
be observed (Fig. 7c, d). Interestingly, after induction of 
flowering, we see TCSv2-driven expression in the axils of 
younger, P6 primordia (Fig. 7e). When the reproductive 
transition state is coupled with elevation of endogenous 
Cytokinin present in pFIL >  > IPT7 overexpressing plants, 
the TCSv2 signal is observed in the axils of even younger 
primordia—P4 and P5 (Fig. 7f ). Notably, TCS driven GFP 
expression using the first TCS version [8] was observed 
in the leaf axils of P6 and older leaf primordia in arabi-
dopsis [46].

TCSv2 driven expression is observed in all stages 
of reproductive organ development
As reported previously and here above, CK response and 
TCSv2 driven expression are primarily observed in mer-
istematic tissues. This is the case also in reproductive 
organ development (Fig. 8). TCSv2 is observed during the 
transition to flowering in the domed meristem (Fig. 8a), 
the transitional meristem (Fig. 8b), and the inflorescence 
and floral meristems (Fig. 8c). Once reproductive organs 
have formed, we can observe TCSv2 in the anthers and 
filaments (Fig. 8d, e) and the ovules (Fig. 8e), indicating 
that CK response is required for proper reproductive 
organ development.

In mature embryos, TCSv2 driven expression is 
observed very strongly in the region of the RAM (Addi-
tional file  1: Figure S5A–C), but, interestingly, can 
barely be seen in the progenitor cells of the SAM, both 

Fig. 5  TCSv2 responds primarily to CK. a Quantification of TCS 
driven VENUS expression in wild type Tomato shoot apexes 
following treatment with indicated hormones. VENUS expression 
was quantified as arbitrary fluorescent units (AFU) using ImageJ 
software [62], using images captured with a Nikon stereomicroscope 
(5–8 shoots per sample). Representative images are shown in 
Additional file 1: Figure S3. b GUS relative expression was assayed 
2 h after treatment with indicated hormones in arabidopsis. Each 
point represents at least 3 biological replicas ± SE. In both a and b, 
Student’s t-test (two-tailed) was used for comparison of means, which 
were deemed significantly different at P ≤ 0.05
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in desiccated and imbibed seeds, even after germination 
(Additional file  1: Figure S5A–C). Following cotyledon 
expansion and generation of the nascent SAM struc-
ture, TCSv2 driven expression can be observed in the 
meristem and young P1  (L2) and P2 (L1) leaves (Addi-
tional file  1: Figure S5D, E). Different versions of TCS 
can therefore be used in order to obtain a full picture of 
CK response in plant tissues. A combination of different 
TCS promoters could be useful, depending on the exact 
nature of the processes being observed.

Discussion
Here we report a new version of the CK sensor TCS, 
which is more sensitive than previous versions, and 
characterize its expression patterns in response to CK 
treatment and during developmental processes in both 
arabidopsis and tomato. The differences between the TCS 
versions should be taken into account when considering 
which version of TCS to work with.

During leaf development, the young leaf undergoes 
morphogenesis and reaches the maturation stage of its 
development concurrently with the loss of its morphoge-
netic potential. The morphogenetic potential of tomato 
leaves serves to model compound leaves bearing leaflets, 
from a meristematic region termed the marginal blasto-
zone [27], while in arabidopsis the more limited morpho-
genetic potential of young leaf primordia serves in the 
execution of leaf marginal patterning, resulting in serra-
tions at the leaf margin. The leaf morphogenetic poten-
tial is marked by meristematic / totipotent / stem/ cells, 
which respond to CK and exhibit TCS driven expres-
sion. The tomato compound leaf retains morphogenetic 
potential, and expresses TCSv2 throughout the leaf mar-
gin. The older the leaf becomes, the lower its morphoge-
netic potential, and thus, the weaker and more localized 
the TCS signal becomes. TCSv2, and likely other TCS 
versions, could therefore serve as a marginal blasto-
zone marker in tomato. In arabidopsis, TCSv2 driven 

Fig. 6  TCSv2 driven expression during leaf development. TCSv2 driven expression at various stages of leaf development in tomato (a–e) and 
arabidopsis (f–j). The dotted red circle in F marks the shoot apical meristem. Images were taken with a lsm780 confocal microscope. Bars = 100 µM
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expression is absent from the leaf margins, but is retained 
in the leaf base, where undifferentiated cells remain for a 
longer time during development. Leaf differentiation is a 
gradual process, and in many plant species, cell differen-
tiation and expansion progress from the leaf tip towards 
the base in a moving “cell cycle arrest front” [47, 48].

TCSv2 also marks CK response in axillary bud for-
mation and activation in tomato. CK is known to be 
required for axillary bud activation [49]. CK biosynthesis 
was suggested to correlate with bud outgrowth [44], and 
auxin was demonstrated to regulate the synthesis of CKs 
[50] and negatively regulate local biosynthesis of CKs 
by controlling the expression of isopentenyltransferase 
(IPT) genes [51], suggesting that auxin-dependent apical 
dominance is exerted, at least in part, by inhibiting axil-
lary bud growth via CK inhibition. However, this is likely 
more complex, as recently it was reported that defects 

in bud CK response do not affect auxin-mediated bud 
inhibition in arabidopsis [52]. Observing TCSv2 driven 
expression in tomato leaf axils, we were able to deter-
mine that axil CK response is activated in developmen-
tally younger leaf axils after the plant has undergone an 
induction to flowering, perhaps suggesting that the api-
cal dominance of the plant is somewhat reduced after it 
has transitioned to its reproductive stage. Indeed, it was 
recently demonstrated that increased CK levels in sub-
apical axillary buds coincide with a release from apical 
dominance after floral transition in chrysanthemum [49]. 
We also showed that apical dominance is reduced further 
when the CK pathway is manipulated, consistent with 
published data that overproduction of CK in leaf axils 
can rescue axillary meristem initiation deficiency in rax 
mutants in arabidopsis [53], and that CK application to 
tomato seedlings promotes axillary bud outgrowth [54].

Fig. 7  TCSv2 driven expression during axillary bud/shoot activation in tomato. TCSv2 driven expression in tomato leaf axils of leaves at different 
developmental stages, before (a–d) and after (e, f) flowering induction. Dotted box in A marks the axil of the removed P6. Arrows in e and f indicate 
the axils of leaves that were removed. Images were taken with a Nikon stereomicroscope. Bars = 100 µM
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TCSv2 driven expression was observed in ovules and 
stamens, demonstrating that CK response is required 
for proper reproductive organ development during the 
reproductive stage in tomato. Indeed, mutants impaired 
in the CK pathway have varying degrees of reduced fer-
tility [55–58]. It will be interesting to examine TCSv2 
driven expression during the various stages of flower and 
fruit development in tomato.

Conclusions
We present here a new version of the TCS CK sen-
sor, TCSv2, which responds to CK in various tissues in 
both arabidopsis and tomato. TCSv2 proved very use-
ful in following several developmental processes and is 
an important addition to those interested in following 
CK responses in planta, with the exception of embryo 
development.

Materials and methods
Cloning and plant transformation
The CK responsive promoter-reporter TWO-COMPO-
NENT OUTPUT SENSOR VERSION2 (TCSv2) har-
bours concatamerized type B ARR-binding motifs and 
is a variant of TCSn [24], with alternating head-to-head 
and tail-to-tail orientations of type B ARR-binding sites 
compared with the tandem tail-to-tail and head-to-head 
orientation of sites in TCSn. TCSv2 reflects the activity 
of the CK phosphorelay cascade. The sequence of TCSv2 
is 5′-CAA​AGA​TTT​TGC​AAA​ATC​TTT​TAA​AGG​ATT​

TTG​AAA​GAT​CTT​TGC​AAA​GAT​CTT​TAT​AAA​TCT​
TTT​CAA​AGA​TTT​TTC​AAG​ATC​CGA​TTA​AAG​ATT​
TTG​CAA​AAT​CTT​TAG​AGA​GAT​CTT​TCA​AAA​TCC​
AAC​GCT​AGT​CAA​AGA​TTT​TGC​AAA​ATC​TTT​TAA​
AGG​ATT​TTG​AAA​GAT​CTT​TGC​AAA​GAT​CTT​TAT​
AAA​TCT​TTT​CAA​AGA​TTT​TTC​AAG​ATC​CGA​TTA​
AAG​ATT​TTG​CAA​AAT​CTT​TAG​AGA​GAT​CTT​TCA​
AAA​TCC​AAC​-3′.

For TCSv2:3XVENUS, the DNA sequence of TCSv2 
was synthesized with flanking NsiI and BamHI restric-
tion sites [32]. The synthetic promoter was then cloned 
adjacent to 3xVENUS-N7 in the pBJ36 vector [59]. 
The construct was subcloned into the pGREEN binary 
vector. For TCSv2::GUS, TCSv2 was ligated to the 
β-galactosidase (GUS) gene from Escherichia coli to gen-
erate a TCSv2:GUS fusion in pART27 [33]. Constructs 
were introduced into arabidopsis Ler and Col back-
grounds by floral dipping, and into tomato M82 accord-
ing to [60]. Kanamycin resistant transformants were 
selected.

Transgenic tomato plants overexpressing pFIL >  > IPT7 
and pFIL >  > CKX3 have been described previously [30].

Transient protoplast expression
Protoplast isolation and transfection experiments were 
performed as reported [23, 24]. All protoplast experi-
ments were performed in duplicates, and independent 
biological replicates yielded similar results.

Fig. 8  TCSv2 driven expression during flower development in tomato. TCSv2 driven expression at various stages of flower development in tomato. 
Images were taken with a Nikon stereomicroscope. FM floral meristem, IFM inflorescence meristem, SIM sympodial inflorescence meristem, SYM 
sympodial meristem. Bars = 100 µM
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CK and hormone treatments
All exogenous applications of the synthetic CK 6-ben-
zylaminopurine (BA) (Sigma-Aldrich, St Louis, MO, 
USA) were performed by spraying or immersing the 
plants for 5  min. Absicic acid (ABA, 100  µM), 1-Naph-
thaleneacetic acid (NAA, 100 µM), gibberellic acid (GA, 
100  µM) paclobutrazol (paclo, 10  mg/mL), all from 
Sigma-Aldrich, and Ethylene (Ethrel, Bayer Cropsci-
ence) were applied by spraying. All hormone treatments 
included the surfactant Tween 20 (100 μl l−1).

Tissue preparation and imaging
Dissected whole-leaf primordia, shoots, leaves, leaf 
axils, inflorescences, flowers, roots and embryos were 
placed into drops of water on glass microscope slides 
and covered with cover slips. Roots and embryos were 
stained with PI (Propidium iodide, Sigma-Aldrich P4170, 
10-20ug/mL final concentration in water for 2 min with 
subsequent washing) prior to mounting. GUS stain-
ing was carried out essentially as described in Ori et al., 
2000 [61]: Plant tissue was vacuum infiltrated for 1 min 
in a solution containing 25 mM phosphate buffer, pH 7, 
0.25% Triton X-100, 1.25  mM potassium ferricyanide, 
1.25 mM potassium ferrocyanide, 0.25 mM EDTA, 1 mg/
ml 5 bromo-4 chloro-3-indolyl-β-D-glucuronide (X-Glu-
coside, Inalco Pharmaceuticals), and incubated overnight 
at 37 °C. Tissue was then cleared in 95% ethanol, gradu-
ally brought to 50% ethanol and then to 50% glycerol. Tis-
sue was photographed in 50% glycerol.

The pattern of VENUS expression was detected by 
a confocal laser scanning microscope (CLSMmodel 
SP8;  Leica), with the solid-state laser set at 514  nm for 
excitation and 530  nm for emission. Chlorophyll-A was 
detected at 488 nm for excitation and 700 nm for emis-
sion. Alternatively, the pattern of VENUS expression was 
also observed with a Leica CLSM model SP5 or a Zeiss 
lsm780 confocal microscope (VENUS excitation: 488 nm; 
emission: 536  nm. Chlorophyll-A excitation: 561  nm; 
emission: 680  nm. PI excitation: 561  nm; emission: 
648 nm). VENUS expression and GUS staining were fur-
ther observed with a Nikon SMZ1270 stereomicroscope 
equipped with a Nikon DS-RI2 camera and NIS elements 
software. The expression of VENUS was also quantified 
using ImageJ software [62].

Tissue collection, RNA preparation and analysis
Arabidopsis RNA was extracted using the RNeasy Mini 
Kit (Qiagen) according to the manufacturer’s instruc-
tions, except that samples were incubated for 30  min 
at room temperature after addition of the lysis buffer. 
cDNA synthesis was performed using the SuperScript™ 
II Reverse Transcriptase cDNA Kit (invitrogen) with 3 µg 
of RNA. Tomato RNA preparation and qRT-PCR analysis 

were performed as previously described [63]. Quantita-
tive reverse transcription-PCR analysis was performed 
using the Absolute Blue qPCR SYBR Green ROX Mix 
(AB-4162/B) kit (Thermo Fisher Scientific). Reactions 
were performed using a Rotor-Gene 6000 cycler (Cor-
bett Research). A standard curve was obtained for each 
gene using dilutions of a cDNA sample. Each gene was 
quantified using Corbett Research Rotor-Gene software. 
Values are means of at least three biological repeats, each 
containing for tomato: the above ground tissue of 2 week-
old seedlings treated as indicated (4–6 seedlings per sam-
ple), and for arabidopsis: ~ 30 µg of ten day-old seedlings 
treated as indicated.

Expression of tomato genes was normalized relative to 
tomato EXPRESSED (EXP), and expression of arabidopsis 
genes was normalized relative to arabidopsis TUBULIN 
BETA CHAIN3 (B-TUB3). Primer sequences used for 
the qRT-PCR analyses are detailed in Additional file  1: 
Table S1. Student’s t-test (two-tailed) was used for com-
parison of means, which were deemed significantly dif-
ferent at P ≤ 0.05.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1300​7-020-00694​-2.

Additional file 1: Figure S1. Possible dose effects of the TCSv2:3XVENUS 
response to CK treatment. Arabidopsis (top, Columbia seedlings are 
depicted) and tomato (bottom, M82 shoots are depicted) were treated 
with mock or indicated concentrations of BA (6-benzylaminopurine) for 
24-48 hours. Images were taken with a Nikon stereomicroscope. Bars= 
100 µM. Figure S2. TCSv2 driven expression in arabidopsis in the Ler 
background. Arabidopsis seedlings in the Ler background expressing 
TCSv2 driven VENUS (top) or GUS (bottom), with or without (mock) BA 
(6-benzylaminopurine) treatment, were photographed 24 hours after 
CK treatment or subjected to GUS staining 24 hours after CK treatment. 
Images were taken with a Nikon stereomicroscope. Bars= 100 µM. Figure 
S3. TCSv2 responds primarily to CK. Characterization of TCS driven VENUS 
expression in wild type tomato shoot apexes following treatment with 
indicated hormones. Images were captured with a Nikon stereomicro‑
scope. Bars= 100 µM. Figure S4. Stereomicroscope analysis of TCSv2 
driven expression in tomato leaves. Tomato seedlings expressing TCSv2 
driven VENUS at various stages of leaf development as indicated. Images 
were taken with a Nikon stereomicroscope. The VENUS channel was hue-
masked using Adobe photoshop to a dark blue color in order to better 
visualize it when superimposed on light microscopy images of the young 
developing leaves. Bars= 100 µM. Figure S5. TCSv2 driven expression in 
the tomato embryo. TCSv2 driven expression in mature tomato embryos. 
Images were taken with a Nikon stereomicroscope. The root apical 
meristem is indicated with an asterisk (A-C) and the shoot apical meristem 
is marked with a dotted box (A-D). The area in the dotted box in D is 
enlarged in E. Bars= 100 µM. Table S1. Primer pairs used in this work.
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