Skip to main content
. 2020 Nov 16;16:153. doi: 10.1186/s13007-020-00695-1

Table 2.

Performance criteria of DTs for plant type identification

DT Feature selection/reduction method Train Test
Kappa RMSE Accuracy (%) Kappa RMSE Accuracy (%)
J48 a 0.70 0.3129 77.50 0.64 0.3483 73.61
CFS 0.74 0.2855 80.83 0.73 0.2947 80.56
PCA 0.39 0.4594 54.17 0.36 0.4859 52.77
REP a 0.70 0.3135 77.50 0.60 0.3334 75.00
CFS 0.73 0.3007 80.00 0.72 0.3143 79.17
PCA 0.38 0.4121 53.33 0.34 0.4930 51.38
RT a 0.62 0.3764 71.67 0.57 0.3953 68.75
CFS 0.72 0.3227 79.17 0.70 0.3371 77.27
PCA 0.40 0.4743 55.00 0.38 0.4556 54.17

Bolditalic value indicates the most accurate DT classifier

aNo feature selection applied (classification using all input features)