Skip to main content
. 2020 Nov 16;16:153. doi: 10.1186/s13007-020-00695-1

Table 3.

Performance criteria of DTs for peanut/weed classification

DT Feature selection/reduction method Train Test
Kappa RMSE Accuracy (%) Kappa RMSE Accuracy (%)
J48 –* 0.88 0.2472 93.89 0.83 0.2791 91.67
CFS 0.91 0.1942 95.56 0.88 0.1968 93.75
PCA 0.63 0.4200 81.67 0.63 0.4210 81.48
REP –* 0.84 0.2679 92.22 0.82 0.2888 90.91
CFS 0.86 0.2557 92.78 0.83 0.2895 91.67
PCA 0.47 0.4653 73.33 0.48 0.4986 74.074
RT –* 0.70 0.3873 85.00 0.70 0.3849 85.18
CFS 0.87 0.2582 93.33 0.85 0.2722 92.59
PCA 0.46 0.5217 72.78 0.42 0.5401 70.83

Bolditalic value indicates the most accurate DT classifier

* No feature selection applied (classification using all input features)