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ABSTRACT
Dopamine (3-hydroxytyramine or 3,4-dihydroxyphenethylamine) has many functions in animals, 
but also shows several other functions in plants. Since the discovery of dopamine in plants in 
1968, many studies have provided insight into physiological and biochemical functions, and stress 
responses of this molecule. In this review, we describe the biosynthesis of dopamine, as well as its 
role in plant growth and development. In addition, endogenous or exogenously applied dopamine 
improved the tolerance against several abiotic stresses, such as drought, salt, and nutrient stress. 
There are also several studies that dopamine contributes to the plant immune response against 
plant disease. Dopamine affects the expression of many abiotic stresses related genes, which 
highlights its role as a multi-regulatory molecule and can coordinate many aspects of plant 
development. Our review emphasized the effects of dopamine against environmental stresses 
along with future research directions, which will help improve the yield of eco-friendly crops 
and ensure food security.
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1. Introduction

Dopamine, along with norepinephrine and epinephrine, is 
a type of catecholamine found throughout the plant and animal 
kingdoms. Catecholamines are characterized as biogenic 
amines possessing a 3,4-dihydroxy-substituted phenyl ring, 
and are widespread in animals where they are well-known 
neurotransmitters.1 Dopamine is a nitrogen-containing 
organic compound with the molecular formula of C8H11NO2, 
its molecular weight is 153.18 (Figure 1a). It is sensitive to light 
and easy to oxidize in the presence of oxygen. In humans, 
dopamine serves a wide range of well-defined functions, 
including processes involved in reward, addiction, control of 
coordinated movement, metabolism, and hormonal secretion.2 

Correspondingly, the dysregulation of the dopaminergic sys-
tem has been implicated in diseases such as schizophrenia; 
Parkinson’s disease; depression; attention deficit hyperactive 
disorder; nausea and vomiting; and more recently, the autism 
spectrum disorder.3,4

Due to population growth and climate change, the negative 
effects of environmental stress on plant production increased 
in many regions of the world.5 The abiotic stresses such as 
drought, salinity, and nutrient deficiencies severely affect the 
growth, development, and metabolism of plants.6,7 Recently, 
many approaches have been used to overcome abiotic stresses 
in plants.8 Chemical priming is a promising field in crop stress 
physiology. The use of compounds as initiators has been found 
to significantly improve plant tolerance to a variety of biologi-
cal and abiotic stresses.9

Dopamine can promote the growth of plants under various 
stressful environments.10–14 More recent studies have shown that 
dopamine can enhance tolerance to drought, salt stress, and nutri-
ent deficiency in plants.11–13 In addition, dopamine can improve 
the ability of plants to resist biological stressors. However, the 
number of articles on dopamine in plants is still small. The number 
of papers was less than 10 each year (Figure 1b). In order to better 
promote the development of this field, this paper reviewed the 
effects of dopamine on abiotic stress in plants, and provided the 
future research direction for the utilization of dopamine for sus-
tainable production of crops.

2. Endogenous dopamine present in different plants

Considering the multiple function of dopamine in animals, 
investigation was carried out on the plants, and dopamine 
was detected in 1968.1,15 Dopamine content varies consider-
ably among species, from a few nanograms to several micro-
grams per gram. For example, dopamine is found at high 
concentration in the pulp of yellow banana (Musa acuminata), 
red banana (Musa sapientum var. baracoa), the spathes of 
Araceae inflorescences, fuerte avocado (Persea americana), 
and plantain (Plantago major).1 However, the dopamine con-
tent in oranges, tomatoes, apples and other plants being rela-
tively low, with a fresh weight of less than 1 µg per gram.16,17 

These notable variations of endogenous dopamine content 
among different plant species suggested that dopamine func-
tion varied from plant to plant. The content of dopamine in the 
number of plants is presented in Table 1.
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3. Dopamine biosynthetic pathway

The biosynthetic pathways of catecholamines in plants (Figure 2) 
are similar to those in mammals. There are two pathways, and the 
precursor of both is tyrosine.18,19 The first pathway starts with the 
decarboxylation of tyrosine by tyrosine decarboxylase (TYDC) to 
produce tyramine, which is then hydroxylated by monophenol 
hydroxylase (MH) to generate dopamine. The second pathway 
begins with the hydroxylation of tyrosine by tyrosine hydroxylase 
(TH) to produce levodopa (L-dopa), which is then decarboxylated 
by dopa decarboxylase (DD) to produce dopamine.18,20 However, 
there is variability between the biosynthetic pathways for dopa-
mine in different plants.

Indeed, the biosynthesis and catabolism of catecholamines 
have been described in several systems where differences can 
easily be identified. For example, tyrosine in Musa sapientum is 
first hydroxylated to form L-dopa, and then decarboxylated to 
form dopamine, while the synthesis of dopamine in cacti 
(Opuntia stricta) and purslane (Portulaca oleracea L.) initiated 
with the decarboxylation of tyrosine.21 Furthermore, in the 

peyote cactus Lophophora williamsii, phenylalanine is hydro-
xylated to tyrosine, which is further hydroxylated to L-dopa or 
decarboxylated to tyramine.22

In addition to variability in catecholamines biosynthetic path-
ways in plants, their synthesis is also influenced by environmental 
factors.11 For example, the treatment of potato plants with abscisic 
acid (ABA) can increase the activity of TYDC, DD, and TH; high 
salt treatment increased the activity of TYDC; ultraviolet exposure 
increased the activity of DD; drought increased the activity of TH 

Figure 1. (a) Structures of dopamine and (b) evolution of the number of articles related with dopamine in plants from 2000 to 2020 (Jan to Sep).

Table 1. Dopamine content in different parts of plants.

Species
Detected Plant 

Parts
Dopamine 

content

Yellow banana (Musa acuminata) Fruit pulp 42 μg/g FW
Red banana (Musa sapientum var. 

baracoa)
Fruit pulp 55 μg/g FW

Plantain (Plantago major) Fruit pulp 5.5 μg/g FW
Fuerte avocado (Persea americana) Fruit pulp 4 μg/g FW
Cavendish banana Fruit pulp 2.5–10 μg/g 

FW
Cavendish banana Fruit peel 100 μg/g FW
Potato (Solanum tuberosum var. Desiree) Leaves 2–7 μg/g FW
Potato (Solanum tuberosum var. Desiree) Tubers < 0.5 μg/g FW
Portulaca (Portulaca oleracea L.) 39 μg/g DW
Ryegrass (Lolium perenne L.) Seeds 37.66 μg/g FW
Cocoa (Theobroma cacao) Been powder 1 μg/g FW
Broccoli (Brassica olereacea var. italica) 1 μg/g FW
Brousel sprouts (Brassica olereacea var. 

gemmifera)
1 μg/g FW

Oranges (Citrus sinensis) < 1 μg/g FW
Tomatos (Lycopersicon esculentum) < 1 μg/g FW
Aubergine (Solanum melanogena) < 1 μg/g FW
Spinach (Spinacia oleracea) < 1 μg/g FW
Beans (Phaseolus vulgaris) < 1 μg/g FW
Peas (Pisum sativum) < 1 μg/g FW
Apples (Malus domestica Borkh.) ROOTS 5–6 ng/g FW
Apples (Malus domestica Borkh.) Leaves < 10 ng/g FW

Figure 2. Dopamine biosynthetic pathways in plants.
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and DD; low-temperatures can reduce the activity of DD; and dark 
treatment and red light treatment can inhibit the activity of TYDC, 
TH, and DD.11

4. Plant growth and development

Some studies have suggested that catecholamines can inter-
act with plant hormones. For example, treatment with ABA 
significantly increases the level of dopamine in potato 
plants.23 The hormone GA3 induced hypocotyl elongation 
in lettuce seedlings,24 and dopamine stimulated GA3 action 
in isolated lettuce hypocotyls.25 Another study demon-
strated that exogenous dopamine (5–100 μL) stimulated 
ethylene biosynthesis in illuminated chloroplast lamellae 
from sugar beet leaves.26 In that study, dopamine was 
shown to function as a cofactor in reducing monovalent 
oxygen, which is necessary for the formation of ethylene. It 
is known that auxins promote the growth of stems and 
coleoptile while inhibiting the growth of roots.27 The study 
by Kulma and Szopa showed that dopamine is key to the 
growth of lettuce hypocotyls,1 which fits with the observa-
tion that dopamine inhibited oxidation of the auxin IAA by 
reducing the expression of IAA oxidase genes.28 

Catecholamines like dopamine are dihydroxyphenols, and 
biosynthetic dihydroxyphenols have been shown to inhibit 
IAA oxidase.29,30 Thus, by inhibiting IAA oxidase in the 
roots, dopamine increases the auxin content, high levels of 
which can inhibit root growth. Therefore, this could be the 
mode of action by which dopamine inhibits root growth, as 
was observed in the growth of soybean seedling roots.31

Carbohydrate levels changed in plants that transformed 
with dopamine synthesis genes showed that dopamine are 
linked with sugar metabolism.23 In previous study, over-
expression of TYDC in potatoes increased the content of 
glucose and sucrose.32 Increased expression of human dopa-
mine receptor in potatoes resulted in increased sucrose, 
glucose, and fructose contents.33 Apple plants pretreated 
with exogenous dopamine showed higher sucrose and 
malic acid contents but lower starch accumulation.9 Gao 
et al. (2020) showed that exogenous dopamine increased 
the content of glucose and fructose by increasing the expres-
sion of sucrose phosphate synthase (MdSPS1;6), cell wall 
invertase (MdCWINV1;2) and neutral invertase 
(MdCINV1;2) in mycorrhizal plant under salt stress.17

In addition, the cyclic adenosine monophosphate (cAMP) 
signaling pathway, which participates in the regulation of 
numerous metabolic processes in the cell, can be regulated 
by catecholamines like dopamine. Through this interaction, 
dopamine has been associated with processes including nitro-
gen fixation, flowering, and the photophosphorylation of 
chloroplasts.34,35 Protacio et al. (1992) showed that catecho-
lamines stimulated growth in root cultures of Acmella oppo-
sitifolia and Nicotiana tabacum.36 However, as noted 
previously, dopamine inhibited growth in soybean roots,31 

which may indicate that dopamine’s promotion of plant 
growth is determined by plant-specific interactions with 
growth hormones.37

5. Abiotic and biotic stressors

5.1 Drought stress

The stress caused by drought is one of the most common 
abiotic stresses and has the greatest impact on crop yields.38 

Under drought conditions, plants usually close their stomata to 
minimize water loss, at the cost of reduced photosynthetic 
capacity.11,39 In addition, drought directly affects the absorp-
tion of nutrients by plants,40 which reduces growth rates and 
ultimately leads to a reduction in the accumulation of 
biomass.41 A plant’s water status can be observed by looking 
at indicators like relative water content (RWC), leaf water 
potential, osmotic potential, pressure potential, and transpira-
tion rate,42 all of which are significantly affected by drought. 
Drought stress can also lead to the production and accumula-
tion of ROS (e.g.,2− O2,

1H2O2, RO, and OH−) in plants, which 
can have harmful effects.11 The expression of the TYDC gene 
was induced in both Arabidopsis and Malus hupehensis by 
drought stress.12,43 However, the effects of drought can be 
alleviated, the overexpression of TH can significantly increase 
the absorption and utilization of nutrients by plants, thereby 
improving their drought resistance.43

Dopamine can also reduce the impact of drought conditions 
by increasing the photosynthetic rates of plants. Dopamine was 
observed to increase the net photosynthetic rate in apple seed-
lings during drought conditions.9 Furthermore, under drought 
conditions, plants pretreated with dopamine had higher intrin-
sic water-use efficiencies (WUE) than those that were not.9 

WUE is an important indicator of a plant’s acclimation status 
to drought conditions and can determine its tolerance to 
drought.44 Decreases in photosynthetic rate under drought 
conditions are related to disturbances to the photosynthetic 
pigments in leaves.45 Exogenous dopamine significantly sup-
pressed the upregulation of chlorophyll degradation gene 
(PAO) and senescence-associate gene (SAG12) under drought 
stress.13 Studies have shown that dopamine increased Car, Chl 
a and Chl t content, keeping plants greener and reducing 
damage caused by drought.9 Under drought, exogenous dopa-
mine treatment can significantly improve the water retention 
capacity of apple leaves, reduce leaf wilt, reduce electrolyte 
extravasation and adjust stomatal opening.9,11 It has been sug-
gested that dopamine significantly increases the aperture size 
of the stomata under drought conditions.11 Thus, by prevent-
ing the degradation of chlorophyll and adjusting stomata, 
dopamine is able to alleviate the negative effects of drought 
on photosynthetic capacity and reduce the impact of drought 
stress on plant growth.11

Dopamine can also improve the antioxidant capacity of 
plants. Studies have shown that dopamine can significantly 
limit increases of H2O2 in plant leaves caused by drought 
stress.9 This may be related to increases in certain antioxidant 
enzymes like superoxide dismutase (SOD), peroxidase (POD), 
catalase (CAT), ascorbate peroxidase (APX) and glutathione 
reductase (GR) in the ascorbic acid-glutathione (ASA-GSH) 
circulation system of the leaves under drought conditions. The 
up-regulated expression of certain antioxidant genes like ascor-
bate peroxidase (cAPX), monodehydroascorbate reductase 
(MDHAR), dehydroascorbate reductase (DHAR) and 
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glutathione reductase (cGR) may also contribute to the anti-
oxidant capacity.46,47 The strong antioxidant effect of dopa-
mine is believed to be mainly due to: (a) Dopamine’s direct 
antioxidant capability. Studies have shown that dopamine’s 
antioxidant capacity is equal to ascorbic acid’s and catechin’s, 
which have strong antioxidant capacities.48 (b) Melanin, the 
oxidation product of dopamine, is a strong active oxygen 
scavenger.49 (c) Exogenous dopamine treatment can activate 
the antioxidant system of plants, thereby indirectly removing 
reactive oxygen species.9

5.2 Salt stress

Under salt stress, plants usually close or constrict their stomata 
to prevent water loss.50 However, closing stomata also restricts 
entry of CO2 to the leaf cells, thereby inhibiting 
photosynthesis.51 These methods of reducing the impact of 
salt stress can also disrupt the ion homeostasis within 
plants.12 The restricted ion exchange can lead to the formation 
of superoxide, hydrogen peroxide, hydroxyl radicals, singlet 
oxygen, and other ROS.52 When subjected to salt stress, the 
activities of the antioxidant enzymes CAT, APX, POD, and 
SOD in plants increase, and the degree of the increase is related 
to the salt tolerance of the plant.52 Furthermore, from observed 
increases in activity of tyrosine hydroxylase in potato tubers 
under salt stress, we know that salt stress can induce dopamine 
synthesis.32

As discussed, exogenous dopamine treatment alleviated 
chlorophyll degradation and improved photosynthesis under 
salt stress.12,53 Dopamine can reduce the content of Chl b, and 
in so doing increase the Chl a/b ratio and prevent the accumu-
lation of excess of electrons, which is an adaptive mechanism in 
the photosynthetic electron transport chain.54 Studies have 
shown that exogenous dopamine can increase the degree to 
which stomata are opened, increasing the length and width of 
stomata in plants under salt stress. With dopamine treatment, 
the maximum stomatal openings of Malus were under 
100 μM.14 Studies have shown that sugar and ABA can regulate 
stomatal behavior under different environmental scenarios and 
other studies have shown that dopamine can regulate sugar 
metabolism and ABA content. This may be the pathway by 
which dopamine is able to regulate plant stomatal behavior 
under salt stress.1 Dopamine has also been shown to regulate 
the expression of the rice aquaporin gene OsPIP1-3 under salt 
stress.55 It has been observed that treatment of cucumber 
seedlings with dopamine prior to the induction of nitrate stress 
inhibited the negative effects on plants by increasing the carbon 
metabolism, nitrogen metabolism-related enzymes and the 
expression of related genes.53

Under salt stress, Na+ and K+ concentrations in leaves can 
be important indicators of plant salt tolerance. The application 
of exogenous dopamine can significantly inhibit the absorption 
of Na+ by plants while maintaining high levels of K+ content.12 

Studies have also found that exogenous dopamine can improve 
the water-use efficiency of plants under salt stress.12 Higher 
WUE can reduce the plant’s intake of salt and prevent a water 
deficit.56 It is believed that plant cells under salt stress can 
reduce the concentration of Na+ in the cells by expelling 
them or compartmentalizing them into vacuoles, thereby 

lessening the impact of the salty conditions.57 Studies have 
also shown that the application of exogenous dopamine can 
increase the expression of Na+/H+ antiporter genes (MdHKT1, 
MdNHX1, MdSOS1, MdSOS2, and MdSOS3) in the roots and 
leaves of apple plants under salt stress, thereby maintaining 
a higher K+/Na+ ratio within plants and alleviating the damage 
caused by salt stress.12

The application of dopamine can improve the antioxidant 
capacity of plants under salt stress by increasing the activities of 
SOD, POD, CAT, and APX and inhibiting the production of 
H2O2.12,58,59 The ASA-GSH cycle plays an important role in 
the salt tolerance of plants. Studies have found that the applica-
tion of exogenous dopamine can significantly enhance the 
activities of plant dehydroascorbate reductase (DHAR) and 
monodehydroascorbate reductase (MDHAR) under salt stress. 
It has also been shown that dopamine can regulate the photo-
synthetic oxygen reduction process.48,52 The protective effect of 
dopamine on plants under salt stress may be attributed to its 
ability to act as a natural medium for chemical analogs and to 
act as an oxygen reduction factor, enabling oxygen reduction to 
participate in energy conversion during photosynthesis.48 

Therefore, dopamine can exert an important protective effect 
on plants under salt stress by preventing oxidative stress- 
induced tissue damage at the cellular level.60,61

5.3 Nutrient stress

Nutrient deficiencies can significantly reduce photosynthetic 
rates in plants as well as reduce the concentrations of photo-
synthetic pigments.11,12 Nutrient stress reduces the photo-
synthesis rate of plants because, when nutrients are deficient, 
the synthesis of biological components required for photo-
synthesis can be halted, which can reduce the efficiency of 
photosynthesis or disrupt it altogether.62 The root system is 
the first organ to be affected by changes in the nutrient content 
of the soil, so the growth status and configuration of the root 
system are important indicators of a plants ability to obtain 
nutrients.63,64 Under nutrient-deficient conditions, plant roots 
will adapt by continuously adjusting their physiological and 
structural characteristics, and the degree to which they can 
adapt depends on their ability to change the root 
architecture.65 The effects of nutrient deficiencies on plant 
roots manifest mainly in reductions in root length, diameter, 
volume, surface area, quantity, and number of root hairs.11,66 

Throughout the life cycle of a plant, the realization of optimal 
physiological function requires a stable supply of nutrients, 
with a nutrient deficiency the normal growth of plants will be 
affected and plant biomass will be reduced.67 Furthermore, 
under nutrient stress the ASA-GSH circulatory system, which 
is an important pathway for ROS removal, can be altered, 
potentially reducing ROS removal efficiency.11,12

Dopamine alleviated the inhibitory effect of nutrient stress 
on plant photosynthesis, probably by regulating certain phy-
siological and biochemical processes related to 
photosynthesis.12 It has been shown that dopamine can be 
used as an analog of naturally occurring substances that reg-
ulate the process of oxygen reduction in spinach 
photosynthesis.1 In addition, dopamine can alleviate the inhi-
bitory effects of nutrient stress on photosynthetic rates by 
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adjusting leaf stomatal conductance to improve the utilization 
of CO2 and by maintaining high concentrations of 
chlorophyll.12 Similarly, dopamine can alleviate the inhibitory 
effect of nutrient deficiency on the absorption and accumula-
tion of large and trace elements.12 The root structure of plants 
is determined according to nutrient availability to best max-
imize absorption and utilization.63 The effect of dopamine on 
element absorption when nutrients are lacking is related to its 
ability to alter the root configuration. For example, under 
potassium-deficient conditions, apples were able to reconfigure 
their roots, like changing the length and diameter of their 
roots, to enhance potassium absorption and utilization.12 In 
addition to influencing root structure, exogenous dopamine 
treatment can enhance the transfer of nutrients from the roots 
to stems and leaves, and increase nutrient accumulation in 
roots. Therefore, dopamine can enhance the adaptability of 
plants to nutrient stress by regulating the absorption of nutri-
ents by plants and their transfer and distribution within plants. 
Studies also have shown that exogenous dopamine can sca-
venge ROS by up-regulating the expression of ASA-GSH cycle- 
related genes, thereby improving resistance to nutrient stress.11

5.4 Plant diseases

Numerous studies have shown that the biosynthesis of hydro-
xycinnamic acid amides from tyramine, and their subsequent 
polymerization in the cell wall by oxidative enzymes, are an 
integral component of a plant’s response to a pathogen 
challenge.68,69 These amides, together with other cell wall- 
bound phenolics, are believed to create a barrier against patho-
gens by reducing the digestibility of the cell wall.70 Several 
reports have suggested that TYDC is involved in the biosynth-
esis of numerous secondary metabolites and thus also contri-
butes to the plant immune response against infection.68,71 

Notably, tyramine, the product of dopamine, can effectively 
restrict sexual reproduction and inhibit the growth of fungal 
hyphae.72 Therefore, it has been suggested that dopamine plays 
a role in disease resistance. Indeed, the expression of the TYDC 
gene has been shown to be higher in disease-resistant plants 
than in susceptible plants.73 In one case, the TYDC gene from 
parsley was introduced into potatoes to catalyze the metabo-
lism of tyrosine, this increased the tyramine content in the cell 
wall and effectively improved the disease resistance of the 
potatoes.74 Similarly, introducing the poppy TYDC gene into 
rapeseed significantly improved the binding of tyramine to the 
cell wall and reduced the digestibility of cells.70 Studies have 
shown that TYDC expression can be induced by pathogenic 
bacteria as well as by methyl jasmonate,75 and that it partici-
pates in the biosynthesis of hydroxyphenylacrylamide. As 
a component of the cell wall, amides are considered 
a physical barrier against pathogens, so an increase in cell- 
wall amides can contribute to an increase in disease 
resistance.70,71

6. Conclusions and future prospects

Dopamine is a type of catecholamine which emerged as 
a multifunctional ubiquitous signaling molecule. In this review, 
we discussed the dopamine biosynthesis pathway and 

summarized the most relevant aspects concerning abiotic and 
biotic stressors (Figure 3). The expression of dopamine bio-
synthesis genes can be induced by drought, salt, and diseases, 
which may lead to an increase of endogenous dopamine con-
tent in plant (Figure 3a). Dopamine involved in plant growth 
and development, and against several abiotic stresses by affect-
ing stress-related genes expression, such as chlorophyll degra-
dation, senescence, nitrate transport, IAA oxidase, aquaporin, 
and carbohydrate related genes (Figure 3c; Table 2). 
Endogenous or exogenously applied dopamine alleviated the 
damage to plants caused by many abiotic and biotic stresses 
(Figure 3b).

However, there are numerous vital issues that need to be 
elucidated in the future. Genes involved in dopamine biosynth-
esis and metabolism pathway in plants remain to be further 
clarified. Many studies have focused on the application of 
exogenous dopamine to plants and the effects of increasing 
endogenous dopamine through transgenic methods need to be 
more thoroughly explored. In addition, the study of catecho-
lamine receptors is helpful to reveal the mechanism of it at the 
molecular level. Dopamine receptors in plants have not been 
reported. However, many experiments have shown the exis-
tence of plant catecholamine receptors. Verelst et al. (2004) 
have identified a class of DoH-CB proteins in plants that can 

Figure 3. Schematic of dopamine’s positive effects on physiological processes. 
Abiotic and biotic stressors provoke an increase into endogenous dopamine level 
through the upregulation of dopamine biosynthetic genes (panel A). Stressors act 
as negative effectors in many physiological processes such as carbon and nitrogen 
metabolism, photosynthesis, and hormone levels (panel B). Endogenous dopa-
mine can regulate the expression of many genes and regulatory factors, which 
can reduce the negative effects of biotic/abiotic stressors on physiological pro-
cesses (panels C).
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regulate the activity of catecholamines.76 DoH-CB protein can 
bind to dopamine through the induction of auxin. It is specu-
lated that DoH-CB protein may be the receptor of plant cate-
cholamines, and the binding between them is induced by 
auxin.77 To conclude, dopamine increase plant stress resistance 
is a new field that needs further study, but may provide useful 
clues for the cultivation of new plant varieties resistant to 
stress.
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