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ABSTRACT
The oxygen-evolving complex is integrated into photosystem (PSII). An essential part of oxygenic photo-
synthetic apparatus, embedded in the thylakoid membrane of chloroplasts. The OEC is a super catalyst to 
split water into molecular oxygen in the presence of light. The OEC consist of four Mn atoms, one Ca atom 
and five oxygen atoms (CaMn4O5) and this cluster is maintained by its surrounding proteins viz., PsbQ, 
PsbP, PsbO, PsbR. The function of this super catalyst with a high turnover frequency of 500 s−1 in standard 
condition. Chlorophyll a fluorescence (OJIP transients) are used to understand structural and functional 
cohesion of photosynthetic apparatus. A further K-peak in OJIP curve reflects damage at the OEC donor 
site in response to salinity, drought, and high temperature. The decline in performance indices (PI, SFI) also 
revealed structural damage of photosynthetic apparatus that leads to disruption of electron transport rate 
under abiotic conditions. This review discusses the structural and function cohesion of the OEC in plant 
against variable abiotic conditions.
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1. Introduction

The photosynthesis is an essential physiological process com-
mon to cyanobacteria, algae, and plants. That provides the 
molecular oxygen and source of foods for sustaining life on 
earth. The photosynthesis is an energy-conversion process by 
which the light energy converts into chemical energy. The 
organic compounds are synthesized by reducing atmospheric 
CO2 with the reducing equivalents (electron and protons) 
obtained by splitting water molecule, and molecular oxygen is 
released as a by-product in the atmosphere. The photosyn-
thetic apparatus consists of three major complexes of protein 
pigments: Photosystem II (PSII), cytochrome b6f complex 
(Cytb6f), and Photosystem I (PSI). They are embedded in the 
thylakoid membrane of oxygenic-photosynthetic organisms. 
PSII breaks the water molecule and releases the protons in 
the lumen side while passing electrons into the plastoquinone 
pool and the Cytb6f complex. This complex pumps protons 
from the stroma to the lumen side of the thylakoid membrane 
while transferring electrons to plastocyanin and PSI, and the 
electrons are transferred to ferredoxin a final acceptor and 
NADP(H) 1 (Figure 1). PSII is an engine of photosynthetic 
apparatus, produces an oxidant with high redox potential to 
oxidize H2O, ensuring life on earth has an infinite source of the 
electron.2,3 The multisubunit complex of PSII includes the 
oxygen-evolving complex (OEC) or water-oxidizing complex 
(WOC), reaction centres (RCs), and the light-harvesting 
antenna complex (LHC).4 The OEC consist of four Mn 
atoms, one Ca atom and five oxygen atoms (CaMn4O5) and 
this cluster maintained by its surrounding proteins 10 kDa, 18 
kDa, 23 kDa, and/or 33 kDa (PsbR, PsbQ, PsbP, PsbO).5–7 The 
structure of this “super catalyst with a high turnover frequency 

of 500 s−1” is evolutionary preserved and virtually identical 
from cyanobacteria to various algae and higher plants, and 
dates back to 2.4 billion years ago.8,9 Understanding the struc-
ture and function of the OEC catalytic center is often believed 
to be one of the key steps in producing efficient catalysts for the 
synthesis of molecular oxygen.

Chl a fluorescence provides valuable information on the 
basic understanding of the structure and function of the photo-
synthetic apparatus.10 When a dark-adapted leaf is exposed to 
light, fast dynamic changes in Chl a fluorescence occur and 
induction can be used to extract information about the effi-
ciency of electron transport through PSII.11–13 During fluores-
cence induction, a polyphasic pattern (O-J-I-P transients) is 
formed when plotted on a logarithmic time scale.14,15 These 
phases of fluorescence induction are linked with different 
energy fluxes, starts from light absorption (ABS), trapping 
(TR), dissipation (D1), electron transport (ET), and ends with 
the electron acceptor side at the PSI (RE).15,16 Some additional 
parameters viz., the quantum yields of primary PSII photo-
chemistry (φPo), electron transport from QA to PQ (ψEo), and 
electron transport from QA to final PSI acceptor (φRo) and the 
overall performance indices are characterized by 
O-J-I-P transients (Figure 1).15,17,18 Various attempts have 
made to understand the impact of different abiotic stresses, 
i.e., high and low temperature, salinity, droughts, high- 
intensity light, on the photosynthetic apparatus of the 
plants.3,7,16,19,20 Many workers reviewed the structure and 
function of PSII under abiotic stresses; however, progress in 
understanding the structure and function of mysterious super 
catalyst, i.e., OEC of PSII is faraway. The present review aims to 
summarise the structural and functional cohesion of the oxy-
gen-evolving complex in response to various abiotic stresses.
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2. Chlorophyll a fluorescence and the 
oxygen-evolving complex

Chlorophyll a fluorescence (OJIP transients) is a non- 
destructive technique based on the theory of energy flow in 
the thylakoid membrane.21 In OJIP transients ‘O’ represents 
the origin, i.e., minimal fluorescence (Fo), J and I for inter-
mediate inflexions (Fj and Fi) and ‘P’ for maximal (Fm).13 The 
structure and function of electron transport apparatus could be 
accessed by chlorophyll a fluorescence. In the OJIP transients, 
the OJ corresponds to the reduction of primary electron 

acceptor quinone (QA) of PSII, JI means the reduction of 
secondary electron acceptors viz., quinone 
(QB), plastoquinone (PQ), cytochrome (Cyt b6f), and plasto-
cyanin (PC), and IP represents the reduction of electron trans-
porters of PSI ferredoxin (fd), intermediate acceptors, and 
NADP.22 Exposure of abiotic stresses forms an addition 
K level peak in OJIP transients at 300 to 350 µs that shows 
a disruption in the water-splitting complex or OEC 21,23 

(Figure 2A). Whenever the electron flow to the acceptor side 
exceeds the electron flow from the donor side, an additional 
K-step occurs. It leads to reaction center oxidation with 

Figure 1. Distribution of different proteins of photosynthetic apparatus embedded in the thylakoid membrane. Systematic scheme of conversion of light energy to 
chemical energy through photosynthetic electron transport chain between PSII and PSI (based on Gupta et al. 2020 and Huang et al., 2020). Here PSII – Photosystem II, 
OEC- the oxygen-evolving complex, PsbO, PsbP, PsbQ, and PsbR – are extrinsic proteins stabilize the structure of OEC, QA- primary and secondary quinone electron 
acceptors of photosystem II, PQ – plastoquinone; b6f -cytochrome b6f complex; PC – plastocyanin; PSI – photosystem I, Fd-soluble ferredoxin; FNR-ferredoxin-NADP+- 
reductase. ABS – absorption flux; ET-electron transport flux; TR-trapped excitation flux; RE-electron transport flux until PSI acceptors; φPo–maximum quantum yield of 
primary PSII photochemistry; ψ Eo–the efficiency/probability that an electron moves further than QA; δ Ro – efficiency with which an electron from QB is transferred until 
PSI acceptors; φEo–quantum yield of the electron transport flux from QA to QB; φRo – the quantum yield for the reduction of end electron acceptors at the PSI and SFIABS 

- structural and functional index on absorption basis.

Figure 2. a: The OJIP transients of maize seedlings under seawater with or without exogenous manganese. Here O is for origin (minimal fluorescence Fo), J and I for two 
different inflexions (Fj and Fi) and P for peak (maximum fluorescence Fp or Fm). An additional K step in salinity treated maize seedlings observed after seven days of 
seawater exposure (based on Gupta, 2020). b: Effect of various abiotic factors viz., salinity, high and low temperature and high light intensity on extrinsic proteins i.e, 
PsbO, PsbP, PsbQ, and PsbR in higher plants. Instability of the OEC caused production of reactive oxygen species (ROS) that adversely affect photosynthetic efficiency in 
plants.
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a photosystem shift towards the P680 which have a lower fluor-
escence yield. Henceforth, the OEC dissociation inhibits effi-
cient electron donation to the reaction center resulted in an 
additional K-phase in OJIP curve.24 Relative variable fluores-
cence at phase K of the fluorescence induction curve deter-
mines as 21,25

VK ¼ FK � F0ð Þ= FM � F0ð Þ, FK is fluorescence at the 
K-step (300 μs)

and the damage to oxygen-evolving complex OEC repre-
sents as 

WK ¼ FK � F0ð Þ= FJ � F0ð Þ

Performance indices (PIs) are proposed to combine informa-
tion on the performance of PSII and efficiencies of specific 
electron transport reactions in the thylakoid membrane during 
the OJIP transients.17 PIs are calculated with mathematical 
formulae that capture (and integrate) information contained 
in 3–4 fluorescence parameters in one number, which is then 
used to rank different samples according to their PSII and 
electron transport performance.15 Following four parameters 
are used to calculate the PIs (1) RC/ABS- the ratio of the total 
number of active PSII reaction centers (RC) per absorption flux 
(ABS); (2) TRo/ABS (equivalent to φP0) – the maximum 
quantum yield of PSII photochemistry that leads to QA reduc-
tion; it was estimated by FV/FM; (3) ETo/TRo (equivalent to 
ψE0) – the efficiency (ψ) with which a trapped exciton by PSII 
reaction center leads to electron transfer (E0) from QA

− to PQ, 
in the PQ pool and (4) REo/ETo (equivalent to δRo) – the 
efficiency (δ) of the electron transport (R0) from plastoquinol 
(PQH2), in the PQ pool, to the final electron acceptors of PSI 
(Figure 1). Following performance indices were proposed on 
the basis of parameters obtained from the OJIP curve.

(1) SFIABS – “structure-function index” on absorption 
basis: which characterize structural and functional char-
acteristics of PSII 26,27

SFIABS ¼ RC=ABSð Þ � TR0=ABSð Þ � ET0=TR0ð Þ

where (RC/ABS): the amount of active PSII reaction centers, 
(TR0/ABS): a higher quantum yield of PSII photochemistry, 
(ET0/TR0): higher efficiency of the electron transport from QA- 
to the PQ pool. An increase in SFIABS suggests reflecting 
changes that “favor” photosynthesis

(2) PIABS – performance index on absorption basis: PIABS is 
the most widely used PI, and was proposed by Strasser 
et al. 28 as a product of RC/ABS. 

PIABS ¼ RC=ABSð Þ � TR0=ABSð Þ= 1 � TR0=ABSð Þ½ �

� ET0=TR0ð Þ= 1 � ET0=TR0ð Þ½ �

(3) PIABS,total – total performance index on absorption 
basis: proposed by Tsimilli-Michael and Strasser 17

PIABS; total ¼ PIABS � RE0=ET0ð Þ= 1 � RE0=ET0ð Þ½ �

PIABS, the total can have positive or negative values, with 
negative values expressing a “loss” of ability for energy 
conservation.29

Since PIABS, the total is related to the function of the 
“whole” linear electron transport, whereas PIABS is related 
only to the electron transport to the PQ pool,

Therefore, performance indices have been used to under-
stand structural and functional cohesion of the photosynthetic 
apparatus in higher plants.15

3. Effect of abiotic stresses on the OEC

Photosystem II complex (PSII) is one of the most vulnerable 
parts in plant photosynthesis system, which is often disrupted 
by different abiotic stresses such as heat, chilling, salinity, and 
intense visible light.7,19,30,31 The oxygen-evolving complex 
(OEC) of PSII is protected by extrinsic proteins viz., PsbO, 
PsbP, PsbQ, and PsbR located at the luminal side, encoded by 
multiple gene families in pea, tomato, tobacco, and arabidopsis 
32 (Figure 2B). These extrinsic proteins are an easy target to 
different stresses. Instability of extrinsic proteins facilitates the 
generation of reactive oxygen species (ROS) molecules leads to 
damage the OEC.33 Consequently, the decreases in PSII activity 
and over-reduction in the electron transport chain (ETC) 
results in the photooxidation 34,35 (Figure 2B). Molecular 
mechanism of photoinhibition of PSII explains in two pro-
posed schemes. First is the excess-energy scheme, in which 
ROS cause direct oxidative damage to PSII complexes. 
Second, two steps scheme demonstrates that the primary 
photodamage to PSII occurs at the oxygen-evolving complex 
(OEC) resulted in the release of manganese ions (Mn2

+).36 

Following photodamage to OEC, the supply of electrons from 
water to the primary electron donor of PSII (P680) is blocked 
that might damage the PSII reaction centers.37,38 Furthermore, 
ROS inhibits the repair of photodamaged PSII.39 Net PSII 
photoinhibition occurs only when the rate of PSII photodam-
age exceeds than the speed of recovery.40

Under optimal conditions, an intact manganese cluster 
(Mn4CaO5) at the OEC promotes electron donation from 
water to PSII-RC with a low constant. It reduces the accessi-
bility of non-water electron donation. However, non-water 
electron donors, i.e., Asc and Pro compete with the water- 
splitting complex/oxygen-evolving complex (OEC), where the 
reaction constant for non-water electron donors (kD) is much 
higher than that of splitting water (kW). PSII is adversely 
affected under various abiotic stresses and the OEC then pre-
sumably favors donation of electrons from non-water electron 
donors with a high rate constant. As the OEC activity 
decreases, the total electron transport increases, due to the 
easy accessibility of non-water electrons. Hence, the fraction 
of electrons donated by water is lower in the stressed 
condition.41 Different performance indices determine damage 
and repair to oxygen-evolving complex (OEC) against various 
abiotic stresses.15

4. Salinity

Salt stress has deleterious effects on the Mn cluster of OEC 
resulted in a reduction of PSII activity.42 Surrounding extrinsic 
proteins that protect the OEC detach during high salinity by 
which OEC releases two or three manganese ions and leads to 
a permanent cessation of oxygen evolution.43,44 PsbO appears 
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to prime importance in stabilizing the OEC.3,7,45 The PsbP 
protein plays a role in optimizing Ca2

+ and Cl− availability 
for maintaining the Mn–Ca2

+–Cl− cluster of OEC. At the 
same time, the PsbQ is required at low Cl−concentrations (<3 
mM) for oxygen evolution.46,47 The PsbR locates at PSII lumi-
nal side, but the activity of this is not yet experimentally tested.7 

Seawater exposed maize seedlings form a pronounced K step in 
0.3 ms reveals the damage of oxygen-evolving complex (OEC) 
of PSII.21 A gradual increase in VK and WK under salinity 
exposure indicated that photodamage to oxygen-evolving 
complex.21,26,48 A sharp decline Fv/Fo ratio in response to 
salinity represents damage in the donor site of the OEC.21,49 

Declined performance indices (SFIABS and PIABS) under high 
salinity indicates instability of the photosynthetic apparatus. 
That leads to disruption of electron transport rate and overall 
photosynthetic activity of many plants.21,50,51

5. Temperature

In both high and low temperature, Photosystem II complex is 
the most susceptible part of the photosynthetic 
apparatus.19,20,52 The extrinsic proteins viz., PsbO, PsbP, 
PsbQ, and PsbR disassociates from the OEC complex of 
PSII.3 The donor site of the OEC is primary target site to 
damage under a gradual increase in temperature, causing an 
appearance of K peak at 0.3 ms on chlorophyll a fluorescence 
induction curve.7,20,53,54 Before K-peak discovery, the FO 
increase was generally used for screening plants for high- 
temperature sensitivity/resistance.55,56 PSII repair mechanism 
inhibited after exposure of low-temperature while no evident 
for photodamage to PSII.30,57 Several studies reveal the 
response of performance indices to temperature. PIABS 
decreased was reported in response to the high-temperature 
in wheat,58 sorghum,59 barley 60 and pigeon pea.20 However, 
PIABS total showed an increase in response to high 
temperature.51 A linear relationship between log(PIABS) to 
temperature in Crofton weed reflects the normalized level of 
the K-peak.61 The PIs or log(PIs) have indicated a tendency to 
decrease in response to chilling and freezing 
tolerance.15,52,62–64

6. High Light intensity

Generally, leaves receive significantly more light than can be 
processed by photosynthesis, which leads to photoinhibition of 
PSII.65 During this inactivation of PSII reaction centers, 
damage to the OEC and/or decreased turnover of D1 protein 
observed in many plants.3,16,30,66,67 The balance between opti-
mal utility of light and thermal dissipation during high light 
intensity is of key impedance for plants.68 Also, high light 
produces ROS, which inhibits the repair of PSII mainly 
through suppressing the de novo synthesis of proteins,69 thus 
damaging the photochemical reaction center of PSII, the OEC 
in particular. The extrinsic protein PsbR protects the damage 
of OEC in the presence of high light and maintain the standard 
rate of oxygen evolution.70 Several attempts have been made to 
measured PIABS after prolonged exposure to excessive light. 
PIABS was found to be strongly affected by the high-light treat-
ment, much more so than FV/FM.71–73

7. Drought

Water deficit in plants is often accompanied by high-light and 
salinity stress.3,24,74–76 Drought damages of the OEC may be 
observed and assessed through the increase in relative variable 
fluorescence at 300 µs (K-step).24,77,78 Several performance 
indices (PIs) have been tested to quantify responses to drought 
stress. PIABS was shown to decrease in response to drought 
stress.15,79,80 Drought factor index (DFI) based on PIABS mea-
sured was used to quantify the response of barley and sesame 
varieties to drought.81,82

8. Conclusion and prospectives

Plants are subjected to various abiotic factors and need to 
maintain stasis between environment and plant functionality. 
The photosynthetic apparatus is more vulnerable to abiotic 
stresses, PSII in particular. In the presence of light water split 
into molecular oxygen catalyzed by a super catalyst, the OEC. 
The OEC is protected and stabilized by four different extrinsic 
proteins viz., PsbO, PsbP, PsbQ, and PsbR located at the 
luminal side. Chlorophyll a fluorescence (OJIP transients) are 
used to understand the structural and functional integrity of 
photosynthetic apparatus. An addition K-peak in OJIP curve 
reflects damage at the OEC donor side. Performance indices 
are also used for better understanding of structural and func-
tional cohesion of photosynthetic apparatus as a whole. Over 
the year, much information has been gathered about PSII 
response in various abiotic conditions. However, despite the 
extensive efforts put into studying PSII, a huge gap exist espe-
cially with respect to the structure and function cohesion of the 
OEC is still a mystery in response to various abiotic factors. 
Now researchers should think and put more efforts into trans-
lating this knowledge for a better understanding of dynamics of 
the OEC of plants in response to variable climatic conditions.
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