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ABSTRACT
The Gram-negative bacterium Vibrio cholerae is responsible for the severe diarrheal pandemic 
disease cholera, representing a major global public health concern. This pathogen transitions from 
aquatic reservoirs into epidemics in human populations, and has evolved numerous mechanisms 
to sense this transition in order to appropriately regulate its gene expression for infection. At the 
intersection of pathogen and host in the gastrointestinal tract lies the community of native gut 
microbes, the gut microbiome. It is increasingly clear that the diversity of species and biochemical 
activities within the gut microbiome represents a driver of infection outcome, through their ability 
to manipulate the signals used by V. cholerae to regulate virulence and fitness in vivo. A better 
mechanistic understanding of how commensal microbial action interacts with V. cholerae patho
genesis may lead to novel prophylactic and therapeutic interventions for cholera. Here, we review 
a subset of this burgeoning field of research.
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Introduction

Vibrio cholerae is a Gram-negative bacterium respon
sible for the severe human diarrheal disease cholera. 
Cholera is characterized by voluminous watery diar
rheas and vomiting, which may rapidly lead to hypo
volemic shock, acidosis, and death, with an untreated 
case-fatality rate as high as 50%. Seven recorded major 
cholera pandemics have been recorded since 1871, 
though the disease likely has an ancient association 
with humans. Although the development of oral rehy
dration has reduced the treated case fatality rate sub
stantially, cholera continues to impose an enormous 
global health burden. One contributor to this is the 
high morbidity of cholera; though patients are likely 
to survive infection due to rehydration therapy, the 
debilitating diarrhea characteristic of cholera continues 
for days even if the pathogen is cleared with antibiotics. 
Cholera is widely distributed, and represents a threat to 
public health in many parts of Asia, Africa, and Latin 
America. Each year sees 1.3–4.0 million cases of cho
lera, and 21,000–143,000 deaths worldwide, as esti
mated by the World Health Organization (WHO) [1]. 
Therefore, infection with V. cholerae remains an 
important health and economic concern [2–5]; the 
Roadmap to 2030 from the WHO Global Task Force 

on Cholera Control (GTFCC) envisages a plan for 
a 90% reduction in deaths from cholera [6].

Although V. cholerae is serologically diverse with 
more than 206 serogroups reported, only O1 and 
O139 serogroups have been known to cause epidemic 
cholera [2]. The first six cholera pandemics were caused 
by classical biotype V. cholerae, whereas the El Tor 
biotype is responsible for the current, seventh pan
demic. These two V. cholerae biotypes differ consider
ably; El Tor strains generally cause a milder form of 
cholera than that caused by classical strains and appar
ently evolved as better survivors in the aquatic envir
onment [7]. Currently, El Tor strains are predominant 
everywhere that V. cholerae O1 can be found [2].

Between epidemics, V. cholerae natively resides in 
aquatic environments such as freshwater lakes and riv
ers, where these bacteria interact with various surfaces 
in the form of biofilms, which form an important 
survival mechanism [8]. From these aquatic reservoirs, 
V. cholerae spreads to populations of the natural host, 
humans, through contamination of water and food. 
Upon human colonization, virulence is due primarily 
to the production of cholera toxin (CT), which alters 
host cell signal transduction pathways and leads to cell 
damage and diarrhea, and the toxin coregulated pilus 
(TCP), which is critical for colonization of the intestinal 
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epithelium [9]. The profuse watery diarrhea of cholera 
then disseminates the pathogen back into the environ
ment, where the cycle of fecal contamination can con
tinue, leading to epidemic spread in human 
populations.

V. cholerae is able to respond to environmental 
signals in the transition from the aquatic environment 
into the gastrointestinal tract, and regulate virulence 
genes coordinately to allow for colonization, survival, 
virulence, and subsequent broad dissemination. The 
environmental conditions of the gut are tightly bound 
to the activities of the native microbial community of 
the gastrointestinal tract, the gut microbiome. Due to 
the rapidly expanding field of research, this review will 
focus on just a subset of recent work on how 
V. cholerae adapts to in vivo environments by respond
ing to intestinal signals produced and modulated by the 
host and by commensal microbes.

Regulatory networks to coordinately activate 
virulence genes during infection

A body of work on the ecology of cholera has demon
strated that V. cholerae is an autochthonous aquatic 
organism, occupying brackish water and estuarine 
environments when not associated with the human 
host [10,11], underlined by the presence of multiple 
adaptive strategies for persistence in aquatic reservoirs. 
Outside of the human host, V. cholerae can be found 
complexed with marine organisms such as crustacean 
zooplankton [12,13]. V. cholerae have been found as 
biofilms on zooplankton host exoskeleton, as well as in 
the gut of these marine organisms. Planktonic 
V. cholerae can also respond to low temperatures or 
nutrient limitation by phenotypic transition to a viable 
but non-culturable (VBNC) state [14] characterized by 
reduced cell size and minimal metabolic activity. These 
environmental persistence strategies have major conse
quences for the transition into the host gastrointestinal 
tract. Biofilm-associated V. cholerae is more acid- 
resistant than planktonic cells, which aids in the transi
tion through the low-pH environment of the stomach 
and ultimately into the distal small intestine, the pre
ferred site of human colonization [15]. There, 
V. cholerae also needs to exit biofilm structures in 
order to disseminate into the gut mucosa. This process 
is aided by gut-localized environmental factors such as 
bile [16].

As they enter the host, V. cholerae cells are exposed 
to a series of changes, such as temperature, osmolarity, 
oxygen concentration, and exposure of antimicrobial 
agents (e.g. bile salts). Given the dramatically different 
environmental conditions between the aquatic reservoir 

and the host mucosa, it is unsurprising that V. cholerae 
have evolved numerous regulatory mechanisms 
designed to tailor the production of factors permitting 
optimal host colonization.

The ability of V. cholerae to colonize and cause 
disease in hosts requires production of a number of 
virulence factors during infection. The two major viru
lence determinants of V. cholerae are encoded by two 
separate genetic elements. Cholera toxin, which causes 
the diarrhea characteristic of cholera, is encoded by 
ctxAB genes on the lysogenic CTXΦ bacteriophage 
[17]. V. cholerae also produces toxin-coregulated pili 
(TCP), which are required for intestinal colonization 
both in animal models and in human volunteers 
[18,19]. TCP is thought to be a polymer of the main 
structural subunit, TcpA, and serves as the receptor for 
the CTXΦ bacteriophage [17,20]. The genes required 
for TCP synthesis, including tcpA as well as accessory 
colonization factor (acf) genes and the genes encoding 
the virulence transcriptional activators ToxT and TcpP, 
are located on a 40-kb Vibrio pathogenicity island [21]. 
Coordinate expression of V. cholerae virulence genes 
results from the activity of a cascading system of reg
ulatory factors [22].

The primary direct transcriptional activator of 
V. cholerae virulence genes, including ctxAB and tcpA, 
is ToxT, a member of the AraC/XylS-family of tran
scriptional regulators [23], members of which often 
bind effector molecules and/or oligomerize to affect 
transcriptional regulation at target promoters [24]. 
Unsaturated fatty acids can directly bind to and inhibit 
the activity of ToxT [25–27]. To activate transcription, 
ToxT recognizes and binds to a degenerate 13-bp DNA 
sequence, the “toxbox”[28]. FadR, the master regulator 
of fatty acid metabolism, modulates ToxT activity at 
both transcriptional and posttranslational levels [29], 
suggesting that the expression of genes involved in 
fatty acid biosynthesis and virulence are intertwined.

A complex regulatory pathway controls the expres
sion of ToxT (Figure 1). The ToxR protein was identi
fied as the first positive regulator of V. cholerae 
virulence genes; the genes involved in the transcrip
tional cascade resulting in toxT expression and conse
quent virulence gene activation is thus often referred to 
as the “ToxR regulon”[30]. Acting in conjunction with 
TcpP (see below), ToxR activates the transcription of 
toxT [31–33]. ToxR directly regulates the transcription 
of many genes [34], including ompU and ompT, which 
encode the major porins of V. cholerae [35,36]. ToxR is 
a bitopic membrane protein containing a cytoplasmic 
DNA-binding domain, a single transmembrane 
domain, and a periplasmic domain. ToxR activity 
requires the presence of another inner membrane 
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protein, ToxS; deletion of toxS negatively impacts ToxR 
transcriptional activity [37], suggesting that ToxS serves 
as an effector of ToxR function by influencing the 
stability and/or the dimerization of ToxR [23,38,39]. 
Recent work has also shown that ToxR-ToxR protein– 
protein interactions are significantly increased in 
response to ToxR operators and the co-activator 
ToxS [40].

To activate the expression of toxT, ToxR acts with 
a second transcription activator, TcpP, which is also 
membrane-localized and contains a cytoplasmic winged 
helix-turn-helix (w-HTH) domain [32]. TcpP, like ToxR, 
requires the presence of a membrane-bound effector pro
tein, TcpH, which interacts with TcpP [41]. TcpP is 
degraded by a protease in the absence of TcpH, and 
during conditions unfavorable for virulence gene activa
tion [42,43]. TcpP binds to the toxT promoter just 
upstream of the −35 element and is a direct toxT activator 
[44]. Overexpression of TcpP alone activates toxT expres
sion [45,46], but binding of ToxR to the upstream of 
TcpP-binding site is required for TcpP-mediated expres
sion of toxT at endogenous expression levels [47,48].

Two activators encoded by unlinked genes, AphA and 
AphB, regulate transcription of tcpPH. AphA is a dimer 
with an N-terminal winged-helix DNA binding domain 
that is structurally similar to those of MarR family tran
scriptional regulators [49]. AphA cannot activate tran
scription of tcpPH alone, but requires interaction with 
the LysR-type regulator AphB that binds downstream of 
AphA binding site [50]. This interaction is thought to 
stabilize AphB binding to its recognition site and result 

in activation of the tcpPH promoter. In addition, AphB 
enhances the expression of toxR [51]. Expression of 
aphA is also controlled by a quorum-sensing system 
[50,52–54], discussed in detail below. This process 
means that virulence gene expression declines at high 
cell density and is thought to contribute to the self- 
limiting nature of V. cholerae infections.

Gastrointestinal signals modulate virulence

Pathogens that cause diseases of complex animal hosts 
require clever strategies for survival and multiplication 
during the dynamic conditions found during infection. 
Often pathogens take advantage of host-specific signals to 
modulate their gene expression in order to adapt the new 
environments. V. cholerae encounters a variety of unique 
host-specific signals, including bile, differences in osmo
larity, oxygen availability, changes in pH as it travels from 
the aquatic reservoir to the stomach and into the intes
tines. Ample research has demonstrated that this bacter
ium has evolved to rapidly respond to these signals to 
promote survival and proliferation in the gut, and below 
we review a subset of these in vivo signals.

Bile

Bile is a digestive secretion primarily involved in emul
sifying and solubilizing dietary lipids to aid absorption, 
and is composed of bile acids, cholesterol, phospholi
pids, and IgA [55]. Bile acids, the predominant 

Figure 1.  
V. cholerae virulence regulatory networks. Major transcriptional regulators and their corresponding signals are shown. In particular, 
the master regulator ToxT activates virulence genes which products are involved in synthesis of the key virulence determinants TCP 
and CT. The expression of toxT is regulated by TcpP and ToxR. QS: quorum sensing. →: activation; �: repression.
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component of bile, are synthesized in the liver from 
cholesterol as primary bile acids, often conjugated to 
amino acids such as taurine and glycine. Bile is stored 
in the gall bladder, to be secreted into the small intes
tine with the intake of food, where due to the local pH 
they are often found as primary bile salts. In the intes
tines, bile acids/salts mediates digestive processes, and 
are modified by the action of gut microbes into several 
secondary bile molecules [56–58]. Up to 95% of bile 
acids are reabsorbed from the distal ileum, to be passed 
back to the liver via portal circulation to be re- 
conjugated to amino acids and re-secreted in 
a process called enterohepatic circulation [59,60].

Bile can destabilize membranes and disrupt bacterial 
cellular homeostasis via its detergent-like properties. As 
a result, the large quantity of bile secreted by liver 
every day represents a challenge for invading pathogens 
[61]. V. cholerae is highly resistant to bile through the action 
of efflux pumps and by outer membrane porins selectively 
restricting the influx of bile salts [62–65]. The compart
ment-specific cycling of bile acids means that these mole
cules can serve as a convenient spatiotemporal cue for gene 
regulation in microbes adapted to the small intestine. Bile 
has been shown to promote V. cholerae motility, which is 
required for efficient colonization [66,67]. Most promi
nently, V. cholerae is able to use a set of largely primary 
bile salts (taurocholate, glycocholate) to activate virulence 
gene expression [68]. This activation is mediated through 
the transmembrane transcription factor TcpP. Various 
genetic and biochemical analyses indicate that in the 
absence of bile salts, one of the two cysteine residues in 
the periplasmic domain, Cys218, forms an inhibitory intra
molecular disulfide bond with the other cysteine residue 
Cys207. Taurocholate promotes the formation of C207-C207 

intermolecular disulfide bond formation of TcpP and 
dimerization, and thus increasing the activity TcpP. 
Further investigation [69] showed that bile salts inhibit 
the reductase activity of DsbA, a conserved oxidoreductase 
in the bacterial periplasm that participates in protein fold
ing by introducing disulfide bonds into proteins [70]; 
indeed, DsbA induces TcpP dimerization in the presence 
of primary bile salts such as taurocholate. Calcium has been 
shown to enhance virulence by promoting bile salt-induced 
TcpP–TcpP interaction [71]. Bile salts can also prevent 
ToxR proteolysis and promote ToxR-ToxR protein inter
action and ToxRS complex formation [40,72]. One bile salt, 
taurocholate, promotes V. cholerae dispersal from biofilm 
structure [16], in addition to activating virulence genes, 
suggesting that if V. cholerae is ingested as a biofilm to 
protect against reduced stomach pH, it has coopted the 
host-derived bile salt signal to detach from the biofilm 
and go on to activate virulence. Bile is a highly complex 
mixture and its components have been reported to have 

different effects on V. cholerae infection; as mentioned 
above, unsaturated fatty acids that are found in bile bind 
to ToxT and inhibit its transcriptional activity [25]. Crude 
bile has been found to decrease cholera toxin production, 
and fatty acids with bile can repress other aspects of 
V. cholerae virulence through ToxT [25,73].

Anaerobiosis

Given the presumed low oxygen concentration of the gut 
[74], it is unsurprising that anaerobiosis serves as one of the 
host environmental factors that modulate virulence factor 
production [75]. V. cholerae encounters low oxygen con
centrations in the upper intestine, and transcriptional 
examinations of in vivo grown bacteria have confirmed 
the expression of metabolic genes responsible for anaerobic 
energy metabolism [76]. Anaerobic respiration of trimethy
lamine N-oxide (TMAO) enhance cholera toxin produc
tion, and TMAO induces more severe symptoms in the 
infant mouse model [77]. Oxygen availability has been 
shown to modulate virulence gene expression in 
a number of gastrointestinal pathogens, such as Shigella 
[78], Salmonella [79,80], and enterohaemorrhagic E. coli 
[81]. Under anaerobic conditions, tcpP expression 
increases, and work has shown that this effect acts through 
AphB [82]; anaerobiosis enhances oligomerization and 
activity of AphB [83]. Specifically, one key AphB cysteine 
residue (Cys235) is oxidized under aerobic conditions. 
Under low oxygen conditions, AphB Cys235 is reduced, 
which promotes oligomerization and subsequently 
enhances AphB activity. Intriguingly, during the transition 
from oxygen-rich to oxygen-poor environments, the rate of 
reduction of AphB is slow. Another redox-sensing regula
tor, OhrR, whose cysteine reduction is faster than that of 
AphB, is needed to jump-start virulence gene expression 
[84]. Anaerobiosis also promotes ToxR-TcpP interaction, 
which is important for virulence gene induction [85]. Other 
global regulatory systems for anaerobic metabolism, such as 
the ArcA/ArcB two-component system, may also be 
involved in modulating expression of V. cholerae virulence 
genes [86], though the exact mechanism of this regulation is 
unclear.

Catabolite sensing and nucleotide-derived second 
messengers

In recent years, it has become more and more apparent that 
nucleotide-derived small molecules that accumulate intra
cellularly are important for bacterial environmental adapta
tion. These so-called second messengers often have global 
regulatory effects across bacterial species [87]. In 
V. cholerae, these small molecules control important phy
siological functions such as virulence and biofilm 
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formation. Among them, the well-studied cyclic adenosine 
monophosphate (cAMP) is primarily associated with the 
regulation of carbon utilization. The cAMP regulation is 
mediated through the cyclic AMP (cAMP) receptor protein 
(CRP), which binds DNA in response to the intracellular 
availability of cAMP. CRP-cAMP negatively regulates viru
lence genes, including cholera toxin genes, TCP pilin gene 
tcpA, and tcpP [88,89]. Recently, the Camilli group used 
chromatin immunoprecipitation coupled with DNA 
sequencing (ChIP-seq) to map the distribution of CRP 
binding sites across the V. cholerae genome [90] and 
found that CRP-regulated genes substantially overlaps the 
ToxR regulon, and that CRP also controls additional viru
lence factors not regulated by ToxR, such as production of 
RTX toxin. Another well-studied molecule is guanosine 
penta/tetraphosphate ((p)ppGpp), which is a primary sig
nal in the bacterial stringent response [91]. In V. cholerae, 
((p)ppGpp) signaling pathways regulates antibiotic toler
ance [92]. In recent years, the importance of cyclic 
dinucleotide second messengers has become widely appre
ciated. Bis (3ʹ-5ʹ) cyclic dimeric guanosine monophosphate 
(c-di- GMP) has been found in all major bacterial phyla. 
C-di-GMP is produced by diguanylate cyclases and 
degraded by phosphodiesterases [93]. The V. cholerae gen
ome contains 42 genes encoding putative diguanylate 
cyclases/phosphodiesterases [94]. In V. cholerae, c-di- 
GMP enhances biofilm matrix production and represses 
motility as well as virulence gene expression [95–101], 
suggesting that c-di-GMP may be regulated in response to 
a variety of environmental signals. Additionally, the most 
recently identified bacterial cyclic dinucleotide signaling 
molecule, the hybrid 3′, 3′-cyclic GMP-AMP (cGAMP), is 
synthesized by the enzyme DncV, whose expression is 
regulated by the master virulence regulator ToxT [102]. 
cGAMP binds to the effector called CapV, 
a phospholipase, and regulates virulence, chemotaxis, and 
fatty acid metabolic genes [103].

ROS/RNS

One of the major stresses in the intestine that 
V. cholerae must overcome are those generated by 
exposure to reactive radical species. Reactive com
pounds, including reactive oxygen species (ROS) and 
reactive nitrogen species (RNS), are produced in the gut 
during V. cholerae infection [104–106]. Several proteins 
have been identified in V. cholerae ROS resistance, 
including catalases (KatG and KatB), peroxiredoxin 
(PrxA), organic hydroperoxide resistance protein 
(OhrA), a redox-regulated chaperone (Hsp33), and 
a DNA-binding protein from starved cells (DPS) [107–
107–110]. ROS resistance in V. cholerae is tightly 

regulated by a variety of mechanisms. OxyR is required 
to activate catalase genes and dps, and is modulated by 
another OxyR homolog, OxyR2 [107,109,111]. Quorum 
sensing systems [54], PhoB/PhoR two-component sys
tems [112], and the virulence regulator AphB also play 
important roles in the V. cholerae oxidative stress 
response [113]. Interestingly, ROS may also enhance 
the V. cholerae mutation rate in vivo, which results in 
increased catalase production and increased biofilm 
formation, leading to colonization advantages in ROS- 
rich intestines [114]. Adaptive responses in many bac
terial pathogens are induced by nitric oxide and RNS. 
For example, in an inflamed gut, NO is converted to 
nitrate, which is used by enteric pathogens, such as S. 
Typhimurium and E. coli, as an anaerobic respiration 
substrate, leading to pathogen expansion at the expense 
of the native gut microbiota [115–118]. V. cholerae 
lacks a nitrite reductase, but nitrate reduction in 
V. cholerae can occur at alkaline pH during hypoxic 
growth, whereas in acidic conditions, accumulation of 
NO2 from NO3 simultaneously limits growth while 
preserving viability [119]. It has also been shown that 
a NO-activated transcriptional regulator, NorR, posi
tively regulates hmpA, which encodes 
a flavohemoglobin that is critical for V. cholerae RNS 
resistance in vitro and in vivo [120,121].

Temporal gene expression during V. cholerae 
infection

Facultative bacterial pathogens such as V. cholerae that tran
sit from environmental reservoirs to host populations and 
back are rarely in a static environmental context. Thus, these 
bacteria must continuously adapt, re-tooling their transcrip
tional and translational repertoires in order to suit the varied 
environments they encounter. For example, toxins, host- 
specific adherence/attachment and invasion factors, loosely 
classified under the designation “virulence genes,” are acti
vated in an infection-specific manner, whereas the expression 
of some genes important for environmental survival are 
down-regulated during infection in order to evade host 
defense mechanisms (Figure 2).

In vivo induced genes

Very often virulence genes are only highly expressed in vivo; 
in vitro conditions developed to induce virulence gene 
expression may thus seem artificial. For instance, the labora
tory conditions required for activation of TCP and CT in the 
classical biotype (30°C, pH 6.5, and low osmolarity) are 
obviously different from the conditions in the small intestine 
[122]. In the El Tor biotype, one artificial condition (AKI) 
has been defined that induces expression of CT and TCP 
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[123]. In an elegant study [124], Camilli and colleagues used 
a recombination-based in vivo expression technology 
(RIVET) to study in vivo timing of gene induction at the 
single-cell level. They found that while cholera toxin gene is 
induced monophasically in the small intestine, the expression 
of tcpA, which encodes the major subunit of TCP, is induced 
biphasically in two temporally and spatially separable events 
during V. cholerae infection. Intriguingly, ToxR, TcpP, and 
ToxT are all required to activate virulence genes in vitro but 
only ToxT is fully required in vivo. Later RNA-Seq analysis 
identified that transcripts elevated in infected rabbits and 
mice relative to laboratory media are regulated not only by 
previously identified regulators, but also by genes and small 
RNAs previously not linked to virulence [125], suggesting 
that virulence activation in vivo is more complex than pre
viously thought.

In vivo repressed genes

Pathogenic bacteria must contend with an in vivo 
environment that is under the protection of host 
mechanisms capable of rapidly identifying and 

eliminating foreign microorganisms. Successful patho
gens often have mechanisms to survive the recognition 
by components of the host immune system. Using 
a differential fluorescence-activation approach, Hsiao 
et al. reported [126] that among the genes that are 
repressed by V. cholerae during infection are those 
encoding for the biogenesis of a Type IV mannose- 
sensitive hemagglutinin (MSHA), a structure that is 
produced in vitro and is important for V. cholerae 
biofilm formation [127], but not during early coloniza
tion of the infant mouse model. This is an important 
process for V. cholerae during infection, as host- 
secreted IgA nonspecifically binds to V. cholerae cells 
in an MSHA-dependent manner. Bacteria bound by 
secretory immunoglobulin in the gut can become 
entrapped in the mucus layer of the intestine, excluding 
them from the epithelium and leading to clearance by 
bulk flow [128–130]. Interestingly, it has been shown 
that the transcription factor responsible for the negative 
regulation of msh gene transcription is ToxT, the same 
transcription factor responsible for direct virulence 
gene induction [131]. Thus, this pathogen very 

Figure 2.  
Interaction of the gut microbiome with environmental signaling during V. cholerae life cycle. The microbiome is shaped on an 
individual basis by diet, microbial exposure, and history of gut insults such as diarrhea, malnutrition, and inflammation. Commensal 
microbial functions influence chemical cues used by V. cholerae to time gene expression during early vs late infection states.
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efficiently combines its responses to host stimuli in 
order to simultaneously upregulated factors necessary 
for colonization (ctx and tcp genes), while using these 
same factors to transcriptionally repress the biogenesis 
of anti-colonization factors such as MSHA. Recently, 
another study used a different approach to identify 
in vivo-repressed genes in V. cholerae and found that 
clcA, encoding an H+/Cl− transporter, is repressed dur
ing infection [132]. While ClcA facilitates survival 
under low pH (e.g., the stomach), its activity becomes 
detrimental under the alkaline conditions found in the 
small intestine; indeed, constitutive expression of clcA 
reduces colonization fitness.

Late induced genes

Schild and colleagues employed a modified the tnpR 
RIVET system described above [124,133] to screen for 
genes only induced late in infection [134]. The library 
of promoters can be culled at any given point during 
infection by the oral administration of kanamycin to 
infected animals, which kills those cells that have 
already expressed tnpR and resolved the neo-sacB cas
sette. Interestingly, many of the genes found to have 
been induced in later stages of infection are involved in 
bacterial metabolism, indicating that V. cholerae initi
ates a transcriptional program to prepare for life out
side the host. Using a host-to-environment transition 
assay, these genes are shown to be important for 
V. cholerae to persist within cholera stool and/or aqua
tic environments. In addition, biogenesis genes 
required for the environmental adhesin, MSHA pili is 
also upregulated, further suggesting that V. cholerae are 
transcriptionally committing to life outside of the host 
during exit.

Quorum sensing regulates V. cholerae transmission 
and dissemination

Quorum sensing (QS) refers to the phenomenon in which 
bacteria produce and exchange chemical signals to moni
tor population density [135–138]. Many Gram-positive 
and Gram-negative bacteria use quorum sensing to con
trol a variety of physiological functions. V. cholerae QS 
regulatory systems are highly complex. At low cell den
sities, the components of the QS pathway act as kinases to 
phosphorylate LuxO, which in turn activates the tran
scription of small RNAs (qrr1-qrr4) that destabilize 
mRNA of hapR, encoding the QS master regulator [139] 
and activate aphA, encoding the virulence regulator. At 
high cell densities, two sets of autoinducers, CAI-1 ((S)- 
3-hydroxytridecan-4-one) and AI-2 ((2S,4S)-2-methyl- 
2,3,3,4-tetrahydroxytetrahydrofuran borate) [140–142], 

bind to cognate sensors on the bacterial surface and 
induce conformational changes in the sensors [143], 
which results in dephosphorylation of LuxO. Thus, 
expression of the Qrr sRNAs is repressed by AI-2 and 
CAI-1. In addition, two other receptor proteins, CqsR and 
VpsS, have been reported to channel information through 
LuxO [144]. More recently, Recently, Bassler’s group has 
discovered another QS system [145] that does not require 
LuxO or the Qrr sRNAs, but rather relies on another 
autoinducer, DPO (3,5-dimethylpyrazin-2-ol), which is 
synthesized by the threonine dehydrogenase Tdh. DPO 
is sensed by VqmA, a LuxR-type transcriptional regulator 
[146], which induces the transcription of the VqmR 
sRNA. VqmR inhibits transcription of multiple target, 
including vpsT [97,147] that encodes a key activator of 
biofilm formation, as well as the virulence regulator gene 
aphA [148,149].

V. cholerae employs QS systems to temporally con
trol virulence during infection. It has been shown that 
QS represses virulence gene expression and biofilm 
formation while activating production of extracellular 
proteases, suggesting the importance of QS in entering 
and exiting the host [15,54,150,151]. Surface-attached 
V. cholerae (as in biofilms) may be the major entry 
route for V. cholerae infection as simple filtration 
using used sari cloths reduces cholera significantly 
[152]. The biofilm structure may be critical during 
entry into the host in order to protect against acid 
shock in the stomach [15]. After reaching the intestine, 
dispersal of individual cells from the biofilm leads 
V. cholerae to transition away from a high cell density 
state, leading to de-repression of virulence. However, 
the reduction in cell density alone may not be sufficient 
to completely inhibit HapR-mediated repression of 
virulence gene expression. By penetrating mucus bar
rier, V. cholerae utilize flagellar regulatory systems to 
further repress hapR [153]. Later in the infection, the 
number of V. cholerae in the intestine increases, and 
quorum sensing again represses CT and TCP produc
tion and activates production of proteases, which serve 
as detachases [154]. Detachment from the epithelium 
could permit individual cells to establish new infection 
foci in the intestine or to exit the host. This mucosal 
escape response is also mediated by the stationary 
phase alternative sigma factor RpoS [155]. In addition 
to these quorum sensing molecules, it has been shown 
that other small molecule metabolites, such as indole 
and cyclo(Phe-Pro) (cFP) that accumulate to high con
centrations at the stationary phase, inhibit virulence 
through a global regulator LeuO [156,157]. The QS 
regulon also consists of a number of additional genes 
involved in chitin-induced natural competence, stress 
responses, and hemolysin production, phage 
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production, among others [113,158–161], suggesting of 
the importance of QS mechanisms to adaptation to 
diverse environmental niches [136].

Interestingly, a large percentage of natural 
V. cholerae isolates are QS-deficient [162–164], imply
ing a selective advantage of QS mutants in nature. It 
has been reported that these QS mutants actively cheat 
through signaling others to produce QS-dependent 
“public goods”[165], suggesting that social cheating 
may drive QS deficiency emergence within V. cholerae 
natural populations. The loss of QS regulation may also 
improve virulence gene expression in the gut.

The role of the gut microbiome in V. cholerae 
pathogenesis

The gut microbiome is a highly diverse assemblage of 
microorganisms representing all domains of life, 
though dominated by the eubacteria. While many 
human body sites host resident or transiently present 
microbes, the gastrointestinal tract represents the den
sest site of continuous microbial colonization; it is 
thought that bacterial cells in the gut outnumber 
human somatic cells, and the genetic diversity of the 
assembled genomes of gut resident species far eclipses 
that of humans [166,167]. The gut microbiome has 
been implicated in numerous host phenotypes, and 
research has recently begun to focus on the molecular 
interactions of this commensal microbial community 
and enteric pathogens such as V. cholerae (Figure 2).

Impact of cholera on the gut microbiome

The characteristic “rice water stool” produced during acute 
cholera is dominated by vibrios [168], and was an early clue 
as to the etiology of the disease in humans. Culture- 
dependent and culture-independent efforts have since 
defined at a much greater taxonomic resolution the effects 
of cholera on the bacteria within human gut microbiome. 
The fulminant diarrhea caused by cholera has predictably 
deleterious effects on the abundance and diversity of the gut 
microbial population. Culturing studies have shown 
a multi-log decrease in cultivatable non-Vibrio bacteria 
during cholera in stool during acute disease in adults com
pared to convalescent populations [168]. More recently, 
metagenomic techniques, focusing largely on high- 
throughput sequencing of PCR amplicons of the 16S ribo
somal small subunit gene in fecal specimens, have been 
used to probe for gut microbiome changes at high taxo
nomic resolution. Hsiao et al. closely tracked adult cholera 
patients in Bangladesh from presentation at clinic to 
3 months of convalescence, and showed that the micro
biome became dramatically less diverse during diarrhea, 

becoming dominated by mostly streptococcal species [169]. 
Existing gut microbes were detected at very low abundance, 
but over the course of recovery from diarrhea expanded to 
re-populate the gut in a successional process similar to the 
initial colonization of the gut during infancy and childhood. 
This drop in diversity is paralleled in findings in children 
with cholera [170]. Subsequent 16S amplicon sequencing- 
based studies in malnourished children with cholera 
showed an increase in Enterobacteriaceae, Veillonellaceae, 
and Streptococcaceae during infection [171]. A transient 
but dramatic dysbiosis in microbial structure has since been 
reported not only for cholera, but diarrhea of multiple 
etiologies [172,173] and in severe malnutrition [174]. 
These patterns in fecal microbiome complexity and mem
bership during dysbiosis are paralleled in the small intes
tine, where E. coli, Streptococci, and aerobic lactobacilli 
were found in abundance in the duodenum and jejunum 
by culturing [175].

Gut microbiome structure as a driver of 
colonization resistance

A role for commensal microbes in V. cholerae infection 
outcome has been long recognized. Freter et al. showed in 
the 1950s that guinea pigs and mice whose commensal flora 
had been depleted by antibiotics were susceptible to 
V. cholerae colonization, while untreated animals were 
highly resistant [176]. This is in contrast to germfree 
mice, which support very high levels of V. cholerae coloni
zation in both the distal small intestine and distal gut 
compartments [177]. Limitations in the ability to define, 
culture, and establish in vivo complex mixtures of microbes 
in the gut has until recently prevented work at the species 
resolution on the role of the human, as opposed to the 
rodent, gut microbiome, which differ in both species rich
ness and composition [178].

Several recent studies have used a variety of molecular 
and animal model approaches to examine the role of 
human microbiome structure in susceptibility to infection. 
Hsiao et al. established in germfree mice defined commu
nities of cultured human gut commensal bacteria closely 
modeled on normal healthy human gut communities [169]. 
The defined model healthy human microbiome were found 
to be highly resistant to V. cholerae, and one gut microbe 
commonly found in healthy human populations, Blautia 
(formerly Ruminococcus) obeum drove a large proportion 
of this colonization resistance phenotype. Specific exclusion 
of this species in communities established in germfree mice 
yielded significantly higher V. cholerae colonization, and 
direct competition of V. cholerae and B. obeum led to 
a 2-log decrease in pathogen load compared to germfree 
conditions. This suggested that human microbiomes could 
be a susceptibility factor for V. cholerae colonization, and 
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that these effects may be highly specific to certain micro
biome members; engineered communities with and with
out B. obeum in the above study had negligible differences 
in overall phylogenetic diversity, and the closely related 
Blautia torques showed no effects on V. cholerae. Midani 
et al. examined complete human fecal microbiomes of 
household contacts of cholera patients in Bangladesh that 
did or did not subsequently develop symptomatic infection 
to identify microbial correlates of infection susceptibility in 
full human microbiomes [179]. Using a machine learning 
approach, they identified several species associated with 
household contacts that remained uninfected, including 
Blautia, Ruminococcus, and Prevotella species, while 
Streptococcus, Prevotella, and Blautia species were higher 
in infected contacts. Differences in alpha diversity were not 
associated with subsequent infection. That species of the 
same genus were associated with both infected and unin
fected outcomes further highlights the likely specificity of 
species and their biochemical functions in determining the 
outcome of exposure to V. cholerae.

Work by Alavi et al. has experimentally confirmed 
the role of differences in human gut microbiomes in 
V. cholerae colonization outcome [180]. These studies 
established defined model and complete human fecal 
microbiomes in germfree mice and suckling animals 
with their native murine microbiomes cleared using 
antibiotics. High-Streptococcus microbiomes modeled 
after diarrhea- and malnutrition-disrupted gut commu
nities were highly susceptible to V. cholerae infection. 
Surprisingly, complete fecal microbiomes from healthy 
US donors transplanted into suckling animals yielded 
~30-fold differences in subsequent V. cholerae coloni
zation. These findings suggest that commensal 
microbe-dependent disease susceptibility differences 
are not strictly dichotomous between “normal” vs “dis
eased” microbiome states, and that interpersonal differ
ences in microbiome structure can drive infection 
outcomes. Furthermore, this suggests that disruption 
of the microbiome by other infectious diarrheas or 
malnutrition may also be a risk factor for cholera.

Commensal microbial quorum sensing in 
V. cholerae infection

The complex and tightly coordinated virulence regula
tory cascade of V. cholerae can be modulated by auto
inducer molecules from various sources. One 
mechanism of interaction between commensal 
microbes and V. cholerae pathogenesis is the produc
tion of cross-species autoinducers. V. cholerae responds 
to a set of species-specific (CAI-1) and potentially 
cross-species (AI-2, DPO, ethanolamine) signals in 
gene regulation [144,149,181]. The human commensal 

B. obeum has been shown to upregulate production of 
an AI-2 molecule in response to V. cholerae infection 
when colonized in germfree mice [169]. Expression of 
the B. obeum AI-2 synthase LuxS in an AI-2-null E. coli 
was sufficient to restrict V. cholerae colonization. This 
signaling was independent of the canonical AI-2 sensor 
LuxP, as luxP deletion did not rescue V. cholerae colo
nization in the presence of B. obeum. This suggests that 
AI-2 molecules produced by different members of the 
gut microbiome may differentially integrate into the 
virulence regulatory cascade. LuxS homologs are widely 
distributed in the genomes of gut commensals [182], 
though it is uncertain if there is substantial structural 
diversity in the resulting autoinducer molecules. Two 
structures of AI-2 have been elucidated, the AI-2 of 
Vibrio being a furanosyl borate diester, in contrast to 
a non-borated molecule synthesized by Salmonella 
[140,183]. Cross-feeding experiments demonstrate that 
V. cholerae can respond to AI-2 from E. coli [184]. That 
LuxP seems to be dispensable in V. cholerae regulatory 
responses to B. obeum AI-2 suggests that there may be 
further structural diversity in this QS molecule as made 
by different gut commensals.

Commensal microbial bile metabolism modulates 
V. cholerae virulence

Similarly to V. cholerae, commensal gut microbes 
adapted to the small intestine have evolved mechanisms 
to deal with the bacteriostatic qualities of bile. Microbial 
bile salt hydrolase (bsh) enzymes can remove the con
jugated amino acid of primary bile salts, and a series of 
microbial enzymes can dehydroxylate the 7th position of 
sterol backbone of bile (7α-dehydroxylation). Microbial 
bsh enzymes are broadly distributed within the genomes 
of human gut-associated species and play an important 
role in microbial bile tolerance and bile recirculation. 
Deconjugation of amino acids attached to primary bile 
salts such as taurocholate and glycocholate reduces the 
hydrophilicity of these molecules, leading to a drop in 
their detergent-like effects [185,186]. Though many gut 
commensal microbes are refractory to genetic manipula
tion, mutations in bsh genes in Lactobacillus amylovorus 
and L. plantarum have been associated with sensitivity to 
bile and bile salts [186,187]. That microbial metabolism 
of bile salts is a major player in the composition of the 
bile acid pool has been demonstrated in germfree animal 
systems; in germfree mice, essentially all small intestinal 
bile are conjugated primary bile salts (taurocholate and 
tauromuricholate) [188]. Bioinformatic studies have 
identified several broad bsh phylotypes within commen
sal microorganisms, which have different predicted bile 
salt substrates and activity [58]. The presence of specific 
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sets of bacteria in the small intestine can thus lead to 
differential activity against components of the bile acid 
pool, with consequent effects on the chemical environ
ment of the small bowel.

Recent work has shown that bsh activity by 
V. cholerae-restricting microbes such as B. obeum 
strongly contributes to the outcome of V. cholerae 
infection [180]. Using an in vitro screen for activity 
against bile acids, Alavi et al. showed that B. obeum 
encodes for a bsh level with high activity against taur
ocholate, a key activator of V. cholerae virulence in 
mice and humans [68]. Overall levels of bsh activity 
were higher in organisms characteristic of healthy 
human gut microbiomes in vitro and bsh genes were 
more abundant in sequenced metagenomic datasets of 
fecal samples from healthy Bangladeshi adults com
pared to dysbiotic, V. cholerae-susceptible micro
biomes. Genes encoding for these enzymes were 
found in lower abundance in post-diarrhea fecal micro
biomes, and taurocholate deconjugating activity was 
less frequently found in isolates of species characteristic 
of these dysbiotic gut communities. B. obeum bsh activ
ity has been directly correlated to the ability of com
plete complex human fecal microbiomes to resist 
V. cholerae infection in suckling mice; communities 
with B. obeum led to lower tcpA expression during 
infection of suckling animals [180]. This was indepen
dent of AI-2 production, as B. obeum reduced tcpA 
activation by intestinal tissues even when boiled to 
remove AI-2, and constitutive expression of B. obeum 
bsh was able to significantly restrict V. cholerae coloni
zation. This suggests that microbiome dysbiosis can 
lead to increased V. cholerae susceptibility via a loss 
of bsh activity, and represents a recurrent and indivi
dual-specific window of vulnerability to infection in 
human populations in cholera endemic areas.

Driving disease resistance using the microbiome

Several proof-of-principle studies have demonstrated the 
effectiveness of engineering probiotic strains to modulate 
V. cholerae colonization in vivo. Duan et al. used a probiotic 
E. coli Nissle strain engineered to produce CAI-1 via con
stitutive cqsA expression, and showed that introduction of 
this strain into suckling mice reduced susceptibility to sub
sequent V. cholerae challenge in a QS-dependent manner 
[189]. Recently, Mao et al. reported the effectiveness of an 
engineered Lactococcus lactis that can serve as a sensor of 
V. cholerae infection via detection of V. cholerae-specific 
autoinducers and consequent production of an enzymatic 
indicator. This strain was also able to promote colonization 
resistance via decreases in intestinal pH [190]. Co-opting 
the metabolic activities of commensal microbes has also 

been shown to reduce V. cholerae susceptibility. Expression 
of other autoinducers produced by microbiome members 
such as AI-2 (via luxS expression) [169] and manipulation 
of bile acid pools (via bsh expression) [180] has demon
strated effectiveness in mouse infection models, using 
E. coli as an expression platform. Engineered V. cholerae 
may also have “probiotic” effects on subsequent infec
tion; recent studies have shown that a non-virulent 
candidate live vaccine strain rapidly outcompeted 
fully virulent V. cholerae in infant rabbits [191]. 
However, it is unclear whether the use of existing 
probiotic species for introduction of specific microbial 
functions will have durable efficacy as a prophylactic 
compared to introduction of fully gut-adapted species 
with multiple levels of activity; commercial probiotic 
strains have demonstrated low effective colonization in 
germfree animals [192] and V. cholerae are rapidly 
excluded by normal commensal microbes in animal 
models in the absence of successful colonization lead
ing to toxin production and diarrhea [169]. The iden
tification of human commensal microbes with efficacy 
against V. cholerae virulence, for example B. obeum, 
the source organism for the luxS and bsh mechanisms 
described above, may allow for more stable prophylac
tic effects on the host due to these organisms being 
better adapted to colonization of the human gastroin
testinal tract.

Inter-bacterial competition and V. cholerae 
virulence

V. cholerae has evolved numerous mechanisms as part 
of infection that are able to deplete the native micro
flora of the small intestine. The profuse watery diarrhea 
of cholera is one obvious element of this process, as this 
rapidly drops the levels of commensal microbes in both 
rice water stool and the small intestine [168,169,175]. 
Recent work has identified other biochemical pathways 
by which this human pathogen can influence gut com
mensal levels. The Type-six secretion system (T6SS) is 
a molecular complex that enables V. cholerae to kill 
other Gram-negative cells and modulate host cell beha
vior via contact-dependent cell-cell secretion of effector 
proteins [193,194]. These systems have been identified 
in several Gram-negative species associated with the GI 
tract [195,196]. Several lines of evidence suggest that 
this mechanism of microbial competition plays an 
important role in V. cholerae pathogenesis. Genetic 
deletion of the T6SS leads to a colonization defect or 
loss of virulence in several animal models, including 
infant rabbits [197], Drosophila [198] and suckling mice 
[180,199]. V. cholerae uses the T6SS to directly and 
indirectly target competitor commensal microbes. 
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This interbacterial competition can be via direct killing; 
V. cholerae is able to use T6SS to kill murine commen
sal E. coli isolates during colonization of suckling mice 
[199]. Interestingly, this killing leads to an increased 
upregulation of virulence gene expression over and 
above that seen during the in vitro to in vivo transition. 
This has also been demonstrated in a Drosophila model 
of infection, where T6SS interactions with the com
mensal Acetobacter pasteurianus led to increased dis
ease symptoms including host death [198]. T6SS can 
also play a role in displacing competitive commensal 
organisms as demonstrated in V. cholerae colonization 
of zebrafish [200], where T6SS mediated increased gut 
motility to provide a competitive advantage to the 
pathogen over resident bacteria.

The T6SS may also be regulated by processes 
related to commensal metabolism in the gut. Several 
studies have also shown a link between QS and T6SS 
regulation; the key QS regulator HapR has been shown 
to directly initiate T6SS gene expression [201] and 
indirectly via the transcription factor QstR [202]. QS- 
depending T6SS regulation has been shown to be 
conserved across pandemic and non-pandemic strains 
of V. cholerae [203]. The presence of numerous inter- 
species signaling molecules in the gut may thus also be 
associated with upregulation of competitive cell-cell 
killing mechanisms during infection. The layer of 
highly glycosylated mucins that form the intestinal 
epithelial mucus barrier is also sensed by 
V. cholerae to de-repress expression of T6SS related 
genes [204]. T6SS gene expression can also be regu
lated by specific bile acids; deoxycholic acid, 
a metabolic product of cholic acid formed by 7-α- 
dehydroxylation by microbial action, has been shown 
to inhibit T6SS assembly [204]. These processes may 
intersect with the action of the gut microbiome. 
Commensal microbes are found in large numbers in 
mucus [205,206]; several microbes, for example 
Akkermansia muciniphila [207], are known to be 
highly adapted to use human mucus components as 
nutritional sources, while the role of microbial 
enzymes in bile metabolism has been heavily studied. 
Processing by commensal microorganisms of mucin 
and bile may thus play important but as yet un- 
elucidated roles in T6SS regulation.

Perspectives and future studies

As experimental and bioinformatic techniques for prob
ing microbe-microbe and microbe-host interactions dur
ing V. cholerae infections advance, we can expect new 
discoveries in how the gut microbiome shapes the in vivo 
signals that drive V. cholerae infection.

While oral rehydration with antibiotic treatment is highly 
effective at reducing mortality due to cholera, cholera 
remains a formidable global health challenge demanding of 
new therapeutic or prophylactic approaches. While the 
development of antibiotic resistance in V. cholerae is of 
growing concern [208], therapeutic or prophylactic 
approaches using the microbiome that target colonization, 
virulence gene expression, or nutrient competition is unlikely 
to be as strong a driver for the development of resistance 
mechanisms. Therapies leading to reductions in mortality 
also largely do not reduce the high morbidity of cholera. It is 
increasingly clear that the variability of the microbiome, 
from individual to individual, and within individuals in 
response to environmental stimuli, determines 
a personalized infection outcome, depending on the presence 
and activity of key commensal microbes. Thus, manipulation 
of microbial colonization, if understood mechanistically and 
rationally designed, may offer durable prophylactic or ther
apeutic efficacy against cholera. Probiotics that can durably 
establish in the context of complex human fecal gut com
munities, as opposed to simplified animal model system, 
critical for such approaches; the identification of commensals 
such as B. obeum with anti-virulence activity that are native 
to the human gastrointestinal tract and able to establish 
colonization across different human gut microbiomes is 
thus of increasing significance [169,180].

Another avenue of research of key importance to the 
field is the development of new and tractable experi
mental models to identify candidate microbes mediat
ing infection resistance and to test targeted microbiome 
manipulations. Mice without native murine microbes, 
whether germfree [169,180,192] or antibiotic-cleared 
[199], can serve as hosts for complete or defined 
model human fecal gut microbiomes in the context of 
V. cholerae colonization and infection. These systems 
allow researchers to insert, remove, or mix microbes 
and assemblages to determine their effects on patho
genesis and in vivo pathogen fitness. While V. cholerae 
behavior differs in germfree adult mice compared to 
suckling animals by lower CT expression [169], this 
experimental model allowed for the targeted establish
ment of human gut bacteria to evaluate their effects on 
colonization, and extended studies of in vivo metabo
lism and cell–cell interactions that are difficult to 
accomplish with shorter-term models such as suckling 
mice or suckling rabbits.

Consistency of effects on colonization resistance will be of 
key importance in identifying candidate next-generation 
probiotics. Combinatorial approaches, where microbial sub
sets are randomized to determine whether specific microbes 
play active roles in vivo regardless of other colonizing 
microbes, have also been used to identify contributors to 
host immunity and V. cholerae colonization resistance in the 
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context of quite different background microbiomes 
[180,209], a necessary characteristic in a broadly efficacious 
next-generation probiotic.

The role of diet and nutrition, both of the host and 
of V. cholerae during colonization, may also play an 
important role in future work. Microbiome structure is 
strongly driven by host diet [210–213]. However, the 
role of dietary components, and what nutrient sources 
are most important for rapid V. cholerae proliferation 
in vivo, have not been extensively studied. The role of 
commensal microbes in setting the stage for early infec
tion through contribution to the gut nutrient landscape 
is also largely unknown. Prebiotic approaches, which 
use targeted nutritional interventions to drive specific 
effects on gut microbiomes, may also be a fruitful area 
of research for targeted microbiome modification as 
applied to V. cholerae colonization resistance.

The expansion in multi-omics approaches, microbial eco
logical analysis, and experimental animal models of 
V. cholerae infection and in vivo fitness have revealed numer
ous fascinating aspects of the biology of this important 
human pathogen and how it is impacted by the variable 
membership and biochemistry of the human gut micro
biome. Future advances will capitalize on the translational 
potential of these findings, as pathogenesis starts to incorpo
rate new understandings of the microbiome to produce 
prophylactic and therapeutic interventions for cholera.
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