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Abstract: Cyclodextrins (CDs) are natural, nontoxic, and biodegradable macrocyclic oligosaccharides. As supramolec-
ular hosts, CDs have numerous applications in many aspects. However, nonsubstituted CDs have the disadvantages of
solubility, unspecific recognition sites, and weak interactions with guest molecules. Therefore, new CD-based derivatives
are successfully designed, synthesized, and widely used in various fields. This contribution outlines the research progress
in CD derivatives. In particular, this review emphasizes the synthesis and application of CDs modified through func-
tionalization in definite positions, random substitution, and reconstruction of the skeleton. At the end of this review, a
summary and future directions are presented.
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1. Introduction
Cyclodextrins (CDs) are distinguished cyclic oligosaccharides derived from the enzymatic reactions of starch
(Figure 1) [1,2], which could be classified into three natural categories [3,4]. CDs that could be produced
on an industrial scale are nontoxic and biodegradable [5,6]. Due to their special cavity structure, solubility,
and cost, these oligosaccharides have been widely used. In particular, the hydrophobic cavity of CDs enables
them to encapsulate other small molecules and generate inclusion complexes [7], which demonstrate host–
guest relationships [8,9]. This remarkable property of encapsulation is very useful for guest molecules applied
in many industries such as medicine [10,11], cosmetics [12–14], agrochemistry [15], supramolecular chemistry
[16–18], enzymology [19,20], chromatography [21,22], and catalysis [23–27].

Currently, CD-based derivatives have attracted widespread interest as new hosts, and a considerable
amount of effort has been made to modify CDs and improve their properties. Hydroxypropyl-, sulfobutylether-,
and carboxymethyl-type β -CDs are versatile derivatives used to improve the solubility, stability, and physical
properties of CD–guest complexes. The foremost strategy is to convert hydroxyl groups to other improved
functional groups. Hence, modifications of CDs offer numerous opportunities and challenges for researchers
[28–32]. Although Khan et al. [33] described the methods for modification of CDs, few studies have been
conducted on the application of such derivatives. Much attention has been paid to the use of CD derivatives
in material and medicine industry, but very few reports are available about the methods for modifying CDs
[34,35]. Furthermore, new developments and methods, particularly the reconstruction of CD skeletons, have
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Figure 1. The structure and conformation of α -, β -, and γ -CD. Carbon atoms are named 1, 2, 3, etc. as usual.

been revealed for the modification of CDs. Therefore, this review mainly focuses on the modifications and
classifications of different positions of CDs while also analyzing the properties and practical applications of
corresponding derivatives.

2. Inclusion complexes of CD derivatives

Since the discovery of CDs, their cavities have served as important tools to form complex compounds with
other guest molecules. In macromolecular self-assembly, Chen and Jiang [36] summarized the process of
inclusion complex formation. On the one hand, Tan et al. [37] determined the kinds of functional CD-based
supramolecular assemblies and hydrogels when the CD inclusion complexes were applied in biomedicine. On the
other hand, scholars have focused on the functional application of CD polymers with host–guest recognition,
dynamic and adaptive materials, and other properties [38–40].

The host–guest system has been used in medicine, materials science, and several directions at this stage,
and many new applications will become available.

Recently CDs have a wide range of applications in cancer treatment owing to the particularity of their
different ring spaces. CDs could increase the solubility of anticancer flavonoids, such as curcumin and quercetin,
which are very poorly soluble in water [41,42]. A novel CD complex of curcumin had superior attributes
compared with free curcumin for cellular uptake and for antiproliferative and antiinflammatory activities,
preferentially aggregating in the pancreas and possessing strong anticancer activity against pancreatic or tubulin
surface cancer cells [41,43]. Similarly, the solubility of quercetin could be improved linearly with the increasing
molality of CDs at the same temperature [44].

3. Selective modifications of CDs at definite positions

3.1. Monosubstitution of CDs
When natural CDs are unsuitable for a particular application, chemists begin to modify CDs to allow their
derivatives to perform their intended function. To pursue an increasingly perfect structure, the idea of mono-
substituted CD derivatives was conceived. However, the direct synthesis of single-isomer CD derivatives is
challenging [45]. A single substitution has three possible isomers (Figure 2).
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Figure 2. The three types of CD monosubstituted derivatives.

In recent years, the immobilization of CDs onto magnetic nanoparticles has drawn considerable attention
on account of the unique size and physical properties of nanomaterials [46]. β -CD has been selectively
functionalized and then immobilized into Fe3O4 nanoparticles. The magnetic properties of β -CD nanoparticles
easily provide separation of enantiomers with respect to reducing the effort required for such separations.
Moreover, the immobilization of CDs onto iron oxide magnetic nanoparticles provides a surface diversity
associated with enhancing the stability of the CD [47].

3.1.1. Two-position modification

The second side of CDs has two different types of hydroxyl groups to ensure that the space is crowded. Many
articles have shown that the C-2 hydroxyl group seems to be easier to modify than the C-3 hydroxyl group.
Li et al. designed and synthesized a new α -CD derivative linked by an oligo (ethylene glycol) chain that had
two groups regulated by light (Figure 3) [48]. This structure of the derivative also causes a remarkable change
in the hydrodynamic radii of the duplex dimer. The terminal amine can be used to modify the derivative
and change its macroscopic dimension [42]. For the other type of CD, azobenzene was modified using β -CD.
Researchers found that forming the desired product caused competition under several reaction conditions and
reported measures to improve the reaction [49].

Figure 3. Molecular design and structure of α -CD derivative. Copyright 2010, Chemical Social of Japan.

A few decades ago, chemists found some CDs with poor water solubility. To improve solubility, researchers
began to transform the structure of CDs. 2-Hydroxy-β -CD that was modified by propylene oxide exhibited
satisfactory water solubility. Complexes with testosterone, progesterone, and estradiol exhibited remarkable
absorption effects. These complexes could also avoid the rapid first-pass loss in in vivo experiments. For β -CD,
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its 2,6-dimethyl derivatives and nonionic detergents were ineffective for buccal absorption. Hydrophilic β -CD
complexed with hormones leads to ineffective gastrointestinal absorption. Further studies should be conducted
on the role of 2-hydroxy-β -CD in the slow release of buccal tablets [50]. Zhao et al. successfully obtained two
different types of 2-O-(2-hydroxybutyl)-β -CD and used them as chiral selectors to separate racemic drugs. The
newly formed derivatives have better separation than natural β -CDs and another derivative (2-HP-β -CD) [51].

Given that hydroxyl groups are easily oxidized into other substances, researchers have developed a partial
oxidation reaction to form carbonyl-β -CD. The solubility of the derivative was substantially enhanced because
the intramolecular hydrogen bond network of β -CD was broken by the oxidation reaction. In addition, the novel
β -CD derivative could generate an inclusion complex with ferrocene. Furthermore, the complex has effective
electrical conductivity. The new combination of metal and CDs can be used in biosensor systems [52].

Liu et al. obtained two C-2 derivatives, which were modified by organoselenium. Then they used the
method of circular dichroism and NMR to investigate their conformation. Furthermore, these derivatives had
good enantioselectivity [53]. A previous work used copper sulfate as a catalyst to obtain a new β -CD derivative
[54]. Zgani et al. developed a new method for synthesis of β -CD derivative with modified C-2 position.
The interaction of host and guest was determined by many technologies when hydrocinnamic and adamantine
carboxylic acids were used as guest molecules [55]. Meanwhile, a γ -CD derivative, which was modified with
pyrene carbonyl in DMF, exhibited remarkable excimer emission and formed a stable inclusion complex with
1-borneol [56].

3.1.2. Three-position displacement

Selective derivatization at C-3 is more difficult than that at C-2 hydroxyl groups due to the weaker acidity of
the former. Only a few studies have been conducted on three-modified CDs [57–59].

Many researchers have made notable contributions in recent years. Miyawaki et al. successfully prepared
branched supramolecular polymers. Some compounds formed linear polymers, and others formed hyperbranched
polymers (Figure 4). The behavior of the branched polymers consisting of the complex of derivatives was
investigated. The mixture of derivatives showed polymer-like properties. This phenomenon could be ascribed
to the formation of a hetero-type inclusion complex and hydrophobic interactions and/or hydrogen bond [60].
A similar reaction was applied to successfully prepare β -CD derivative and obtained 30% isolated yield and
greater than 90% regioselectivity. The cinnamyl group could be easily changed to multiple other groups, such as
Ac and H. 2D NMR technology was applied to confirm and explain the substitution pattern in single-modified
CDs [61].

3-Monoamino-α -permethylated CD and 3-monoamino-β -permethylated CD were synthesized using a
new method described as the per-O-methylation of amino-CDs. In particular, the common group of tert-
butyloxycarbonyl was used to protect the amino group because it was stable in the reaction condition and can
be removed easily [62]. Masurier et al. designed and prepared an inclusion complex of β -CD with copper(II)
in an aqueous medium; some of the products were supplied to markets [54].

Martina et al. developed a novel approach to synthesize three different CD types of 3I -deoxy-3I -
azido derivatives and obtained pure altrose isomers; the use of US- and MW-assisted procedures proved very
advantageous in terms of yield, reaction time, and product purity [63]. Suzuki et al. successfully synthesized
a γ -CD derivative by three-point modification with pyrene carbonyl in DMF and studied its inclusion ability
[56].
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Figure 4. The structure of α -CDs; 2 has a cinnamamide moiety and 3 has two cinnamamide moieties. Copyright 2008,
Elsevier.

3.1.3. Six-position displacement
C-6 hydroxyl groups have no effect on other hydroxyl groups and can be used to easily perform structural
transformations. Sallas et al. firstly synthesized and obtained high yields of thio-β -CD derivatives by using the
direct Mitsunobu reaction; they also explored further use of the method [64]. The majority of CD derivatives
are utilized in chromatographic analysis. A new α -CD derivative was modified using a polyethylene glycol-
based sol-gel method. The derivative used as the new stationary phase displayed remarkable column efficiency
and satisfactory ability to separate aromatic isomers [65]. CD derivatives (β - or γ -chirasil-dex) were used as
chiral stationary phases (CSPs) to separate enantiomers. Li et al. evaluated mono-6-deoxy-benzimide-β -CD
enantioseparation and chiral recognition ability. Many analytes with rigid structures were separated by mono-
6-deoxyp-henylimine-β -CD [66]. Wang et al. successfully synthesized four cationic β -CD derivatives, which
were used as novel CSPs by coating them onto porous spherical silica gel. The performance of these CSPs
was examined using different types of alcohol. The derivative exhibited high separation ability upon different
analyses [67]. Four other cationic β -CD derivatives were investigated in terms of enantioseparation ability, and
the unsubstituted pyCDCl had the best resolving ability. Most analytes could be resolved using this chiral
selector [68]. Wang et al. utilized click chemistry to modify mono-azido-β -CD derivatives with silica. The new
derivative was used as a novel CSP and exhibited high stability and prominent enantioseparation effects [69].
Two isomers of 6-stilbene-amide-α -CD had interesting behavior; the stilbene moiety of the CD derivative could
change between the axle and trans- or cis-6-StiNH-α -CD when forming inclusion complexes with an alkyl chain
bearing pyridinium end caps (Figure 5). Similar findings were reported in previous works [70–72].

Lopez et al. reported a class of novel cup-shaped α -CD derivatives. The derivative containing an aldehyde
substituent showed more effective catalysis ability than other analogues [73].

Le et al. designed and synthesized two β -CD derivatives; NMR and computer modeling were used to
interpret data and the results showed that the triazole moieties had limited freedom of rotation to maintain
the rigid and compact structure of the derivatives. In water-soluble experiments, the derivatives were higher in
water solubility than the parent of β -CD. The MTT assay revealed that derivatives had no effect on cell viability
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Figure 5. The two isomers of 6-stilbene-amide-α -CD and different inclusion behaviors. Copyright 2011, American
Chemical Society.

under experimental conditions (1 mM). The solubility of prednisolone increased with increasing concentrations of
derivatives [74]. Water-soluble amphiphilic anion receptors were successfully designed based on urea-substituted
β -CDs, and the final products were stable [75]. Chitosan was used to functionalize β -CD to form a new product
that had improved effect against inflammation-related diseases [76].

Yoon et al. synthesized β -CD and 6-deoxy-6-formyl-β -CD derivatives by using the Nace reaction. As the
starting material, monoaldehyde was reacted with NaBH4 , NaHSO3 , NH2OH, NH2NH2 , H2O, and PhNH2

with NaCNBH3 to form new β -CD derivatives, particularly the carboxylic acid of 6-deoxy-6-carboxy-β -CD;
this work provided a general method for forming tosyl derivatives of β -CD [77]. Under mild detachment
conditions, new C-6-monosubstituted CD derivatives were obtained by solid phase method [78]. Martina et al.
found that regioselective synthesis of different functionalized CDs can be effectively performed under ultrasonic
condition or microwave radiation [63].

When β -CD is reacted with R-configuration groups, the derivatives function as CSPs. Other researchers
separated some chiral aromatic compounds by using CD derivatives. Molecular docking simulation was utilized
to explore the recognition mechanism. S-2-Naphthalene methanol possessed greater coactions with R-CPGCD
and R-HMPGCD than the R-isomer. The substituent derivative of R-CPGCD and the CD cavity were conducive
to the discrimination of the S-isomer, but only the derivative group of R-HMPGCD played a dominant role in
isolation. The R- and S-isomers in the R-HMPGCD system might have a high resolution value [79]. By using
novel derivatives as CSPs, Li et al. evaluated the separation of many chiral compounds. The derivatives were
characterized and prepared as chiral monolithic stationary phases [80].

Nanospheres could improve the water stability of camptothecin and display sustained release of the profile.
It was found that a novel derivative possessed a special cavity, as determined using some technologies, such as
transmission electron microscopy. The hollow nanosphere showed excellent drug-loading performance [81,82].

Many pathogens are formed during infection of the transmembrane pore of target cells. As important
virulence factors, bacteria and viruses are commonly used as new therapeutic targets. Karginov et al. hypoth-
esized that compounds could be designed to prevent pores and inhibit virulence factors; the opportunities for
finding high-affinity blockers increased if they had the same symmetry with the target aperture. In this regard,
several β -CD derivatives were synthesized to inhibit the action of lethal anthrax toxin (LeTx). By hole-blocking
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artificial lipid membranes and PA α -HL ion conduction ability, this method could provide a reference to find
new and effective therapies using pore-forming proteins as a virulence factor of various pathogens [83].

Liu et al. synthesized CD derivatives. In 2005, they found a simple method for synthesis of water-soluble
CD derivatives and modified them by using C60 . The derivative displayed desirable DNA-cleaving ability under
the experimental conditions [84]. A new β -CD derivative modified by cyclohexylamine had high yield. The
binding ability of the derivative with many naphthalene derivatives was also explored. Hence, this modification
method improved the original binding ability of β -CD, except that of 2-naphthalene sulfonic acid sodium.
Moreover, pH and salt concentration can influence the stability of the inclusion complex [85]. Two types of
β -CD derivatives were satisfactorily obtained. Liu et al. characterized the products by FTIR, NMR, elemental,
and mass analyses. The stability constants (KS) of the two derivatives with a series of acyclic and cyclic alcohols
were calculated. The modified CDs could discriminate the nature of the opponent’s molecules [86]. Another
study reported two other β -CD derivatives [87]. The novel permethylated β -CD was modified using naphthalene
and quinolone fluorophores to form two derivatives. Inclusion mode, complex-induced fluorescent behavior,
binding ability, and selectivity for bile salts of biological relevance were observed [88]. A convenient method
was applied to synthesize two β -CD derivatives, which were modified by (1-naphthyloxamino)-ethyleneamino
or (1-naphthyloxamino)-diethylenediamino moiety; a high product yield was obtained. Liu et al. evaluated the
inclusion ability of the derivatives and reported that a series of fluorescent dyes could form inclusion complexes.
The two derivatives had satisfactory molecular recognition ability [89].

Martina et al. synthesized novel water-soluble β -aminoalcohol β -CD derivatives via the reactions of
nucleophilic epoxide opening. The derivative was linked by aminoalcohol subunits and showed improved
solubility. The reaction condition was optimized through microwave irradiation, and a high product yield
was obtained [90].

L-Carnosine (LCar) is one of the most widely distributed copper(II)-endogenous dipeptides. Although
the physiological role of LCar remains unclear, many functions of this compound have been proposed. LCar
has an important pathological role by reducing or preventing the disturbance of metal ions. The potential
therapeutic applications of LCar are limited because of the hydrolysis of specific dipeptidase (carnoseptidase).
D-Carnosine (DCar) is a naturally occurring dipeptide enantiomer that exhibits the same properties as those of
LCar; that is, they cannot be hydrolyzed enzymatically. DCar is a promising chemical modification of LCar for
reducing enzymatic hydrolysis and conjugation with carbohydrate moieties to improve the tissue specificity of
transport and enhance the bioavailability of the peptide. DCar was functionalized with β -CD and characterized
by NMR. Similar LCar derivatives exhibit differences particularly with respect to dimeric species. Based on
spectroscopic data, this stereoselectivity was driven by noncovalent interactions, such as hydrogen bonding,
CH-π interaction, and spatial and hydrophobic effects of the CD cavity [91].

When β -CD is modified with a natural product, some properties of the raw product might change. Yang
et al. successfully prepared many scutellarin-β -CD derivatives that were covalently bound. The water solubility
test demonstrated that the aqueous solubility, stability, and cytotoxicity of the conjugates were significantly
higher than those of scutellarin. The high antitumor activity and stability of the water-soluble conjugates
indicate their potential for use in chemotherapy for human colon cancer [92]. Li et al. found that phosphate
served as a catalyst in the synthesis of β -CD derivatives, which are connected to maleic and itaconic acids. They
also studied the reaction conditions and found that the esterification rates of β -CD-maleic and β -CD-itaconic
acids were 70.38% and 21.02%, respectively [93].
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To deal with continuous changes and widen the application of CD in many aspects, Moutard et al.
synthesized new phospholipidyl-β -CD derivatives, which exhibited satisfactory self-organization properties.
However, the NMR experiments could not rapidly assess the clearly assigned structure and purity of the final
product. Therefore, ESI-MS was combined with MS/MS to identify new amphiphilic compounds [94]. The
derivatives could serve as artificial enzymes. To solve this problem, Bjerre et al. obtained β -CD derivatives
containing trifluoromethyl groups at C-6 and discovered that trifluoromethylated alcohol was an artificial enzyme
[95].

Takenaka et al. prepared a β -CD derivative connected to a naphthalene fluorophore. They investigated
the stoichiometric binding of the derivative and alcohol guest molecules through fluorescent titration. The
binding constant of the 1:1 host–guest inclusion complexes was dependent on alcohol molecules. Hence, the
β -CD cavity was involved in guest sensing, and the partially self-included naphthalene probe of the derivative
would extrude from the cavity upon binding to the guest molecules. According to the geometry of the inclusion
complexes and energy changes, van der Waals interactions between the host and guest played an important role
in fit-induced inclusion [96]. Wang et al. modified vinylene-functionalized cationic β -CD with vinylized silica
and used it as a CSP to separate compounds [97].

Hydroxyl groups could become additional functionalized groups. Zhang et al. synthesized many β -CD
derivatives, which were modified using the anthracene moiety and exhibited good solubility. They also studied
the fluorescence properties of these derivatives [98].

Casas-Solvas et al. used two approaches for obtaining β -CD derivatives bearing azobenzene in the C-
6 position. Furthermore, a convenient click chemistry method was applied to produce 1,2,3-triazole-linked
azobenzene-CD derivatives [99]. Alvarez-Dorta et al. explored a method for modifying the primary face of CDs
[100].

3.2. Multiple substitutions of CDs

When the two-hydroxyl groups of CD are substituted to form corresponding derivatives, they are usually based
on different reactivities. Furthermore, a protection/deprotection method is usually employed to obtain the
desired derivative. The three-hydroxyl groups of CD exist when they are simultaneously substituted. The
structures of these derivatives are shown in Figure 6.

3.2.1. Displacement of two and three positions

The C-2 and C-3 hydroxyls of CDs are located on the secondary face. The reaction is generally carried out by
substituting the two-position first and further reacting with the three-position.

Menuel et al. applied mechanical lapping to modify different CDs at room temperature. Mono-2-tosylated
CDs were obtained in good yield and in solid state. The yield was found to be dependent on the nature of the
base and reaction time. By using NMR spectroscopy, they found that the highest yields of mono-2-tosyl CDs
were obtained using KOH as a base and within a short reaction time. Lastly, mono-(2,3-manno-epoxide)-CDs
were synthesized by mechanical mixing. The modified CDs were characterized using many technologies. The
reaction mechanism was provided by the supramolecular arrangement of molecules in the solid state [25]. Fujita
et al. obtained 2,3-substituted CDs as the main product [101]. Xiao et al. synthesized bis-de-O-methylated α -
CD derivatives and reported the corresponding mechanism. In this reaction, the use of DIBAL-H as a chemical
‘scalpel’ showed that some parts of CD might be involved in the reaction [102].
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Figure 6. The types of multiple replaced CD derivatives.

3.2.2. Displacement of two and six positions
Given that the C-2 and C-6 hydroxyl groups of CDs are located on different faces, this technology is difficult
to use. However, some researchers obtained certain derivatives. Zhou and Zeng used Boger’s method [103] to
prepare (2,6-di-O-methyl)-β -CD (DM-β -CD). They blended DM-β -CD with hydroxy-terminated silicone oil,
prepared coated solid-phase microextraction fiber through sol-gel technology, and applied it to headspace solid-
phase microextraction for analysis of ephedrine and methamphetamine in human urine by gas chromatography.
The derivative exhibited the advantages of the unique cavity-shaped cyclic molecular structure of CD and
the superiorities of the sol-gel-coating technique. The derivative displayed satisfactory extraction ability and
operational stability. Under the optimum conditions, the proposed headspace SPME-GC method had good
linearity and satisfactory recovery rate [104].

3.2.3. Displacement of three and six positions
Limited studies have been conducted on the modification of the three and six positions. Baudin et al. prepared
per(3,6-anhydro)CD derivatives. In their subsequent study, they found a novel derivative that could produce
new lanthanide chelates by carefully selecting the size and functional groups [105].

3.2.4. Displacement of two, three, and six positions
Derivatives also possess improved properties when the hydroxyl at different positions is superseded by other
groups. Three CD derivatives were successfully obtained by Bicchi et al. A previous study discovered that some
CD derivatives might have drawbacks. The results of these experiments motivated these scholars to search for
additional CD derivatives. Furthermore, 2,6-dimethyl-3-pentyl-β -CD and 2,3,6-tripentyl-β -CD were used in
capillary GC, and 10 compounds were separated. Among different derivatives that CDs can produce, one is
based on their average degree of substitution [106]. Junge et al. prepared highly enantioselective CD derivatives
by exchanging a methyl group for an acetyl substituent in a single glucose [107].
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Ma et al. synthesized a range of SBEβ -CD with a mean degree of substitution (DS) and examined
the products using several technologies. The substitution reaction occurred simultaneously at C-6 and C-
2 in the moderate alkaline solution, and the proportion of C-2 substitution increased with increasing DS.
The DS of SBE-β -CDs demonstrated good reproducibility, and analysis by capillary electrophoresis showed
the normal distribution of the composition [108]. A new β -CD derivative was designed and synthesized by
Zhang et al. by substituting different positions of CDs with different groups. The novel derivative was called
carboxymethyhydroxypropyl-β -CD. DTF, IR, and NMR methods were used to verify the derivative. The ability
of the derivative to bind to insulin and its cytotoxicity in Caco-2 cells were investigated. The derivative could
form an inclusion complex with insulin and obtained better cytotoxicity than other β -CD derivatives. Hence,
the developed derivative might be a promising protein carrier for oral delivery of protein drugs [109].

The selective modification of CDs on definite positions is dominant in CD modification. The method
could be used to obtain specific structures of CD derivatives for subsequent study of their properties. Future
studies should explore other applications of CDs that have accurate structures.

4. Random modifications of CDs
Randomly substituted CD derivatives are modified at various positions and confirmed by their DS. The exact
structure and ratio of these CD derivatives are unknown (Figure 7). Moreover, CD derivatives have potential
for widespread commercial applications. In future works, inexpensive and randomly substituted CD derivatives
should be developed.

Figure 7. The structures of the randomly substituted CD derivatives.

Randomly substituted CD derivatives can also be used as CSPs. Berthod et al. synthesized CD derivatives
that can be used in capillary gas chromatography. These derivatives had good solubility in water and were able
to separate 13 trifluoroacetylated sugars. Most of the sugars had their enantiomeric elution order. As CSPs,
these derivatives had a wide range of usage temperatures [110]. Zhong et al. developed a new β -CD derivative,
which was modified with dinitrophenyl, and used it as a CSP for chiral separation of analytes. This study is
the first report of dextrin, which contains π -electron-deficient substituents. Many factors can affect the ability
of CSPs [111].

Cucinotta et al. observed that a capped CD derivative, namely hemispherodextrin, could be applied as
an efficient chiral separation reagent for many phenoxyacid enantiomeric pairs. The derivative exhibited good
separation behavior [112].

To separate neutral racemates, Tanaka et al. prepared five different anionic CD derivatives as chiral
selectors and used them to successfully separate 40 basic racemates [113]. Zhou et al. used a β -CD tosylate
derivative as a CSP to separate tetracyclines. These derivatives had satisfactory stability and reproducibility
[114]. Xu et al. used CD derivatives to separate enantiomers and explored separation conditions, such as
pH, temperature, and running voltage [115]. Issaraseriruk et al. applied heptakis(2,3-di-O-methyl-6-O-tert-
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butyldimethylsilyl)-β -CD to analyze trifluoroacetyl-derivatized 1-phenylalkylamines with different types and
positions of the substituent [116].

Although certain CD derivatives have separation ability, they have other abilities, such as good water
solubility and photostability. Resveratrol functionalized CD to form a new derivative, which exhibited better
photostability than resveratrol [117]. Pitha et al. converted α -, β -CD and its hydroxypropyl derivative into
the corresponding sulfates in chlorosulfonic acid to enhance drug solubility [118]. Shao et al. reported that
CD derivatives could be used as transdermal absorption enhancers for insulin [119]. Cheng et al. used many
technologies to characterize the structure of succinic-β -CD as a potential emulsion stabilizer. The derivative
was more stable than β -CD after 24 h of storage at 25 °C [120].

5. Reconstruction of the skeleton of CDs
Changing the skeleton structure of cyclodextrin is a new theory, which could form a new cavity of derivatives
and have innovative application. The structures of derivatives are given in Figure 8.

Figure 8. The structures of derivatives modified by changes of the skeleton.

Kida developed new CD derivatives, which were connected by β -(1,4)-glucosidic bonds. The derivatives
displayed novel inclusion ability and selectivity [121–123].

Kikuzawa et al. modified the α -(1,4)-glucosidic bond to a β -(1,4)-glucosidic bond and studied their inclu-
sion ability. The derivative, as a host molecule, demonstrated inclusion selectivity for sodium p-nitrobenzoate,
in contrast to a permethylated CD. However, the host molecule of the derivative exhibited para-isomer selectiv-
ity towards the sodium p-nitrophenolate guest. Hence, the inclusion selectivity was affected by the properties
of guest molecules. The structures of the complexes of the β -(1,4)-type CD derivatives with different kinds of
nitrobenzoates were determined by 1H NMR studies [124]. In addition, novel stimulus-responsive CDs modified
by a disulfide unit were successfully obtained. The inclusion ability of the derivatives was regulated by opening
and closing of the ring through dithiol-disulfide interconversion [125].
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The method of reconstituting the CD skeleton is a new path for modifying CDs in recent years. Moreover,
these new derivatives have different properties compared to the original CDs. This new method may have broader
use in the future.

6. Conclusions
Since the discovery of CDs, research on this area has progressed significantly. CDs are applied in many fields,
such as pharmaceuticals, biomedicine, textiles, and separation. Many CD derivatives have been commercially
available for many years, but their prices are still not accepted by most people. At present, most derivatives
have been limited to laboratory synthesis. This review summarizes different types of CD substitution and the
use of certain derivatives in separation of isomers. The structure of CDs can be further improved by modifying
the different structures and reaction conditions of CD derivatives to benefit ecologically sustainable chemical
processes and technologies. Scholars have substantial interest in the practical application of CD derivatives and
supramolecular chemistry based on structural modification. In the future, potential host–guest systems, new
polymer materials, and utilization in clinical treatments should be explored based on the novel structure of CD
derivatives.

Conflict of interest
The authors declare no conflict of interest.

Acknowledgements:
Jia Yue Liu and Xiao Zhang contributed equally to this work. This research did not receive any specific grant
from funding agencies in the public, commercial, or not-for-profit sectors.

References
1. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews 1998; 98: 1743-1754.
2. Mura P. Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. Journal

of Pharmaceutical and Biomedical Analysis 2014; 101: 238-250.
3. Fourmentin S, Crini G, Lichtfouse E. Cyclodextrin Fundamentals, Reactivity and Analysis. Berlin, Germany:

Springer, 2018.
4. Crini G. Review: A history of cyclodextrins. Chemical Reviews 2014; 114: 10940-10975.
5. Huang Z, Wu Q, Liu S, Liu T, Zhang B. A novel biodegradable β -cyclodextrin-based hydrogel for the removal of

heavy metal ions. Carbohydrate Polymers 2013; 97: 496-501.
6. Kurkov SV, Loftsson T. Cyclodextrins. International Journal of Pharmaceutics 2013; 453: 167-180.
7. Schmidt BV, Hetzer M, Ritter H, Barner-Kowollik C. Complex macromolecular architecture design via cyclodextrin

host/guest complexes. Progress in Polymer Science 2014; 39: 235-249.
8. Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J. A review on the use of cyclodextrins

in foods. Food Hydrocolloids 2009; 23: 1631-1640.
9. Madene A, Jacquot M, Scher J, Desobry S. Flavour encapsulation and controlled release-a review. International

Journal of Food Science & Technology 2006; 41: 1-21.
10. Hsu CM, Yu SC, Tsai FJ, Tsai Y. Characterization of in vitro and in vivo bioactivity of a ferulic acid-2-

Hydroxypropyl-β -cyclodextrin inclusion complex. Colloids and Surfaces B: Biointerfaces 2019; 180: 68-74.
11. Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug

Delivery Reviews 2008; 60: 876-885.

272



LIU et al./Turk J Chem

12. Liu P, Lin Y, Feng CH, Chen Y. Determination of hydroxy acids in cosmetics by chemometric experimental design
and cyclodextrin-modified capillary electrophoresis. Electrophoresis 2012; 33: 3079-3086.

13. Mori T, Tsuchiya R, Doi M, Nagatani N, Tanaka T. Solubilization of ultraviolet absorbers by cyclodextrin and
their potential application in cosmetics. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2019; 93:
91-96.

14. Szejtli J. Cyclodextrins in Foods, Cosmetics and Toiletries. Cyclodextrin Technology. Dordrecht, the Netherlands:
Springer, 1982.

15. Morin-Crini N, Loiacono S, Placet V, Torri G, Bradu C et al. Hemp-based adsorbents for sequestration of metals:
a review. Environmental Chemistry Letters 2019; 17: 393-408.

16. Chen G, Jiang M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolec-
ular self-assembly. Chemical Society Reviews 2011; 40: 2254-2266.

17. Cremer PS, Flood AH, Gibb BC, Mobley DL. Collaborative routes to clarifying the murky waters of aqueous
supramolecular chemistry. Nature Chemistry 2017; 10: 8-16.

18. Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers. Chemical Society Reviews
2009; 38: 875-882.

19. Gupta A, Khare SK. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.
Critical Reviews in Biotechnology 2009; 29: 44-54.

20. Otero C, Cruzado C, Ballesteros A. Use of cyclodextrins in enzymology to enhance the solubility of hydrophobic
compounds in water. Applied Biochemistry and Biotechnology 1991; 27: 185-194.

21. Xiao Y, Ng SC, Tan TTY, Wang Y. Recent development of cyclodextrin chiral stationary phases and their
applications in chromatography. Journal of Chromatography A 2012; 1269: 52-68.

22. Armstrong DW, Stalcup AM, Hilton ML, Duncan JD, Faulkner JR et al. Derivatized cyclodextrins for normal-
phase liquid chromatographic separation of enantiomers. Analytical Chemistry 1990; 62: 1610-1615.

23. Tian BR, Zhang RX, Chu HM, Huang Q, Wang ZZ. Preparation of α -hydroxyphenylacetic acid with cyclodextrins
as an effective phase-transfer catalyst and its reaction mechanism. Turkish Journal of Chemistry 2019; 43: 359-368.

24. Brown CJ, Toste FD, Bergman RG, Raymond KN. Supramolecular catalysis in metal-ligand cluster hosts. Chemical
Reviews 2015; 115: 3012-3035.

25. Menuel S, Léger B, Addad A, Monflier E, Hapiot F. Cyclodextrins as effective additives in AuNP-catalyzed
reduction of nitrobenzene derivatives in a ball-mill. Green Chemistry 2016; 18: 5500-5509.

26. Sadjadi S, Heravi MM, Daraie M. Cyclodextrin nanosponges: a potential catalyst and catalyst support for synthesis
of xanthenes. Research on Chemical Intermediates 2017; 43: 843-857.

27. Zhang Q, Elemans JAAW, White PB, Nolte RJM. A manganese porphyrin-α -cyclodextrin conjugate as an artificial
enzyme for the catalytic epoxidation of polybutadiene. Chemical Communications 2018; 54: 5586-5589.

28. Cousin H, Trapp O, Peulon-Agasse V, Pannecoucke X, Banspach L et al. Synthesis, NMR spectroscopic character-
ization and polysiloxane-based immobilization of the three regioisomeric monooctenylpermethyl-β -cyclodextrins
and their application in enantioselective GC. European Journal of Organic Chemistry 2003; 2003: 3273-3287.

29. Nishimura S, Kohgo O, Kurita K, Kuzuhara H. Chemospecific manipulations of a rigid polysaccharide: syntheses
of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical
modifications. Macromolecules 1991; 24: 4745-4748.

30. Řezanka M. Synthesis of substituted cyclodextrins. Environmental Chemistry Letters 2019; 17: 49-63.

31. Tian S, Zhu H, Forgo P, D’Souza VT. Selectively monomodified cyclodextrins. Synthetic strategies. Journal of
Organic Chemistry 2000; 65: 2624-2630.

273



LIU et al./Turk J Chem

32. Wang X, Fan H, Zhang F, Qi Y, Qiu W et al. Synthesis of a β -cyclodextrin derivate and its molecular recognition
behavior on modified glassy carbon electrode by diazotization. Tetrahedron 2010; 66: 7815-7820.

33. Khan AR, Forgo P, Stine KJ, D’Souza VT. Methods for selective modifications of cyclodextrins. Chemical Reviews
1998; 98: 1977-1996.

34. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. International Journal of Pharma-
ceutics 2007; 329: 1-11.

35. Szejtli J. Utilization of cyclodextrins in industrial products and processes. Journal of Materials Chemistry 1997;
7: 575-587.

36. Chen G, Jiang M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolec-
ular self-assembly. Chemical Society Reviews 2011; 40: 2254-2266.

37. Tan S, Ladewig K, Fu Q, Blencowe A, Qiao GG. Cyclodextrin-based supramolecular assemblies and hydrogels:
recent advances and future perspectives. Macromolecular Rapid Communications 2014; 35: 1166-1184.

38. Hu J, Liu S. Engineering responsive polymer building blocks with host-guest molecular recognition for functional
applications. Accounts of Chemical Research 2014; 47: 2084-2095.

39. Schmidt BVKJ, Barner-Kowollik C. Dynamic macromolecular material design-the versatility of cyclodextrin-based
host-guest chemistry. Angewandte Chemie International Edition 2017; 56: 8350-8369.

40. Xu C, Wu Y, Li Z, Loh XJ. Cyclodextrin-based sustained gene release systems: a supramolecular solution towards
clinical applications. Materials Chemistry Frontiers 2019; 3: 181-192.

41. Yadav VR, Prasad S, Kannappan R, Ravindran J, Chaturvedi MM et al. Cyclodextrin-complexed curcumin exhibits
anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake.
Biochemical Pharmacology 2010; 80: 1021-1032.

42. Magnolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML et al. Curcumin-β -cyclodextrin inclusion complex:
stability, solubility, characterization by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and
food application. Food Chemistry 2014; 153: 361-370.

43. Dandawate PR, Vyas A, Ahmad A, Banerjee S, Deshpande J et al. Inclusion complex of novel curcumin analogue
CDF and β -cyclodextrin (1: 2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharma-
ceutical Research 2012; 29: 1775-1786.

44. Dong L, Liu M, Chen A, Wang Y, Sun D. Solubilities of quercetin in three β -cyclodextrin derivative solutions at
different temperatures. Journal of Molecular Liquids 2013; 177: 204-208.

45. Wenz G. Cyclodextrins as building blocks for supramolecular structures and functional units. Angewandte Chemie
International Edition 1994; 33: 803-822.

46. Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors.
Electroanalysis 2006; 18: 319-326.

47. Arslan M, Sayin S, Yilmaz M. Enantioselective sorption of some chiral carboxylic acids by various cyclodextrin-
grafted iron oxide magnetic nanoparticles. Tetrahedron Asymmetry 2013; 24: 982-989.

48. Li S, Taura D, Hashidzume A, Takashima Y, Yamaguchi H et al. Photocontrolled size changes of doubly-threaded
dimer based on an α -cyclodextrin derivative with two recognition sites. Chemistry Letters 2010; 39: 242-243.

49. Casas-Solvas JM, Vargas-Berenguel A. Synthesis of a β -cyclodextrin derivative bearing an azobenzene group on
the secondary face. Tetrahedron Letters 2008; 49: 6778-6780.

50. Pitha J, Harman SM, Michel ME. Hydrophilic cyclodextrin derivatives enable effective oral administration of
steroidal hormones. Journal of Pharmaceutical Sciences 1986; 75: 165-167.

51. Zhao M, Hao A, Li J, Wei Y, Guo P. New cyclomaltoheptaose (β -cyclodextrin) derivative 2-O-(2-hydroxybutyl)
cyclomaltoheptaose: preparation and its application for the separation of enantiomers of drugs by capillary elec-
trophoresis. Carbohydrate Research 2005; 340: 1563-1565.

274



LIU et al./Turk J Chem

52. Zheng L, Xiong L, Li J, Li X, Sun J et al. Synthesis of a novel β -cyclodextrin derivative with high solubility
and the electrochemical properties of ferrocene-carbonyl-β -cyclodextrin inclusion complex as an electron transfer
mediator. Electrochemistry Communications 2008; 10: 340-345.

53. Liu Y, You C, Zhang H, Zhao Y. Enantioselective recognition of aliphatic amino acids by β -cyclodextrin deriva-
tives bearing aromatic organoselenium moieties on the primary or secondary side. European Journal of Organic
Chemistry 2003; 2003: 1415-1422.

54. Masurier N, Lafont O, Le Provost R, Lesur D, Masson P et al. Regioselective access to 3I-O-substituted-β -
cyclodextrin derivatives. Chemical Communications 2009; 2009: 589-591.

55. Zgani I, Idriss H, Barbot C, Djedaïni-Pilard F, Petit S et al. Positive variation of the MRI signal via intramolecular
inclusion complexation of a C-2 functionalized β -cyclodextrin. Organic & Biomolecular Chemistry 2017; 15: 564-
569.

56. Suzuki I, Ueno A, Osa T. Marked differences in molecular association behavior between two regioisomers of γ -
cyclodextrin derivatives bearing a pyrenecarbonyl moiety at C-2 and C-3. Chemistry Letters 1989; 18: 2013-2016.

57. Fujita K, Tahara T, Imoto T, Koga T. Regiospecific sulfonation onto C-3 hydroxyls of beta-cyclodextrin. Prepara-
tion and enzyme-based structural assignment of 3A,3C and 3A3D disulfonates. Journal of the American Chemical
Society 1986; 108: 2030-2034.

58. Tian S, Forgo P, D’Souza VT. Selective modification at the 3-position of β -cyclodextrin. Tetrahedron Letters
1996; 37: 8309-8312.

59. Yuan D, Tahara T, Chen W, Okabe Y, Yang C et al. Functionalization of cyclodextrins via reactions of 2,3-
anhydrocyclodextrins. Journal of Organic Chemistry 2003; 68: 9456-9466.

60. Miyawaki A, Takashima Y, Yamaguchi H, Harada A. Branched supramolecular polymers formed by bifunctional
cyclodextrin derivatives. Tetrahedron 2008; 64: 8355-8361.

61. Jindřich J, Tišlerová I. Simple preparation of 3’-O-substituted β -cyclodextrin derivatives using cinnamyl bromide.
Journal of Organic Chemistry 2005; 70: 9054-9055.

62. Kordopati GG, Tsivgoulis GM. Amino cyclodextrin per-O-methylation: synthesis of 3-monoamino-permethylated
derivatives. Tetrahedron Letters 2018; 59: 2447-2449.

63. Martina K, Trotta F, Robaldo B, Belliardi N, Jicsinszky L et al. Efficient regioselective functionalizations of
cyclodextrins carried out under microwaves or power ultrasound. Tetrahedron Letters 2007; 48: 9185-9189.

64. Sallas F, Leroy P, Marsura A, Nicolas A. First selective synthesis of thio-β -cyclodextrin derivatives by a direct
Mitsunobu reaction on free β -cyclodextrin. Tetrahedron Letters 1994; 35: 6079-6082.

65. Delahousse G, Peulon-Agasse V, Debray J, Vaccaro M, Cravotto G et al. The incorporation of calix[6]arene and
cyclodextrin derivatives into sol-gels for the preparation of stationary phases for gas chromatography. Journal of
Chromatography A 2013; 1318: 207-216.

66. Mayer S, Schurig V. Enantiomer separation using mobile and immobile cyclodextrin derivatives with electromi-
gration. Electrophoresis 1994; 15: 835-841.

67. Wang R, Ong T, Ng SC. Chemically bonded cationic β -cyclodextrin derivatives and their applications in super-
critical fluid chromatography. Journal of Chromatography A 2012; 1224: 97-103.

68. Wang R, Ong T, Ng SC. Chemically bonded cationic β -cyclodextrin derivatives as chiral stationary phases for
enantioseparation applications. Tetrahedron Letters 2012; 53: 2312-2315.

69. Wang Y, Xiao Y, Tan TTY, Ng SC. Click chemistry for facile immobilization of cyclodextrin derivatives onto silica
as chiral stationary phases. Tetrahedron Letters 2008; 49: 5190-5191.

70. Oshikiri T, Takashima Y, Yamaguchi H, Harada A. Kinetic control of threading of cyclodextrins onto axle
molecules. Journal of the American Chemical Society 2005; 127: 12186-12817.

275



LIU et al./Turk J Chem

71. Oshikiri T, Takashima Y, Yamaguchi H, Harada A. Face-selective [2]- and [3]rotaxanes: kinetic control of the
threading direction of cyclodextrins. Chemistry-A European Journal 2007; 13: 7091-7098.

72. Wang Z, Takashima Y, Yamaguchi H, Harada A. Photoresponsive formation of pseudo[2]rotaxane with cyclodextrin
derivatives. Organic Letters 2011; 13: 4356-4359.

73. Lopez OL, Marinescu L, Bols M. New cup-shaped α -cyclodextrin derivatives and a study of their catalytic
properties in oxidation reactions. Tetrahedron 2007; 63: 8872-8880.

74. Le HT, Jeon HM, Lim CW, Kim TW. 6-Triazolyl-6-deoxy-β -cyclodextrin derivatives: synthesis, cellular toxicity,
and phase-solubility study. Carbohydrate Research 2014; 391: 22-28.

75. Stepniak P, Lainer B, Chmurski K, Jurczak J. The effect of urea moiety in amino acid binding by β -cyclodextrin
derivatives: a 1000-fold increase in efficacy comparing to native β -cyclodextrin. Carbohydrate Polymers 2017; 164:
233-241.

76. Hardy A, Seguin C, Brion A, Lavalle P, Schaaf P et al. β -Cyclodextrin-functionalized chitosan/alginate compact
polyelectrolyte complexes (CoPECs) as functional biomaterials with anti-inflammatory properties. ACS Applied
Materials & Interfaces 2018; 10: 29347-29356.

77. Yoon J, Hong S, Martin KA, Czarnik AW. A general method for the synthesis of cyclodextrinyl aldehydes and
carboxylic acids. Journal of Organic Chemistry 1995; 60: 2792-2795.

78. Fabio GD, Malgieri G, Isernia C, D’Onofrio J, Gaglione M et al. A novel synthetic strategy for monosubstituted
cyclodextrin derivatives. Chemical Communications 2012; 48: 3875-3877.

79. Li X, Zhou Z, Xu D, Zhang J. Enantiomeric separation in high-performance liquid chromatography using novel
β -cyclodextrin derivatives modified by R-configuration groups as chiral stationary phases. Talanta 2011; 84: 1080-
1092.

80. Li Y, Song C, Zhang L, Zhang W, Fu H. Fabrication and evaluation of chiral monolithic column modified by
β -cyclodextrin derivatives. Talanta 2010; 80: 1378-1384.

81. Zeng J, Huang H, Liu S, Xu H, Huang J et al. Hollow nanosphere fabricated from β -cyclodextrin-grafted α ,β -
poly(aspartic acid) as the carrier of camptothecin. Colloids and Surfaces B 2013; 105: 120-127.

82. Shukla A, Singh AP, Ray B, Aswal V, Kar AG et al. Efficacy of polyurethane graft on cyclodextrin to control drug
release for tumor treatment. Journal of Colloid and Interface Science 2019; 534: 215-227.

83. Karginov VA, Nestorovich EM, Schmidtmann F, Robinson TM, Yohannes A et al. Inhibition of S. aureus α -
hemolysin and B. anthracis lethal toxin by β -cyclodextrin derivatives. Bioorganic & Medicinal Chemistry 2007;
15: 5424-5431.

84. Liu Y, Zhao Y, Chen Y, Liang P, Li L. A water-soluble β -cyclodextrin derivative possessing a fullerene tether as
an efficient photodriven DNA-cleavage reagent. Tetrahedron Letters 2005; 46: 2507-2511.

85. Liu Y, Kang S, Zhang H. Synthesis of β -cyclodextrin derivative bearing a cyclohexylamino moiety and its inclusion
complexation with organic dye molecules. Microchemical Journal 2001; 70: 115-121.

86. Liu Y, You C, Wada T, Inoue Y. Molecular recognition studies on supramolecular systems. 22. Size, shape, and
chiral recognition of aliphatic alcohols by organoselenium-modified cyclodextrins. Journal of Organic Chemistry
1999; 64: 3630-3634.

87. Liu Y, Li B, Wada T, Inoue Y. Enantioselective recognition of aliphatic amino acids by organoselenium modified
β -cyclodextrins. Supramolecular Chemistry 1999; 10: 173-184.

88. Liu Y, Shi J, Guo D. Novel permethylated β -cyclodextrin derivatives appended with chromophores as efficient
fluorescent sensors for the molecular recognition of bile salts. Journal of Organic Chemistry 2007; 72: 8227-8234.

89. Liu Y, Kang S, Li L. Synthesis of novel β -cyclodextrin derivatives bearing a 1-naphthyloxamino-oligo(ethyleneamino)
moiety and their inclusion complexation with some fluorescent dyes. Supramolecular Chemistry 2002; 14: 329-337.

276



LIU et al./Turk J Chem

90. Martina K, Caporaso M, Tagliapietra S, Heropoulos G, Rosati O et al. Synthesis of water-soluble multidentate
aminoalcohol β -cyclodextrin derivatives via epoxide opening. Carbohydrate Research 2011; 346: 2677-2682.

91. Grasso GI, Bellia F, Arena G, Vecchio G, Rizzarelli E. Noncovalent interaction-driven stereoselectivity of copper(II)
complexes with cyclodextrin derivatives of L- and D-carnosine. Inorganic Chemistry 2011; 50: 4917-4924.

92. Yang B, Zhao Y, Yang X, Liao X, Yang J et al. Scutellarin-cyclodextrin conjugates: Synthesis, characterization
and anticancer activity. Carbohydrate Polymers 2013; 92: 1308-1314.

93. Li Y, Ha Y, Guo Q, Li Q. Synthesis of two β -cyclodextrin derivatives containing a vinyl group. Carbohydrate
Research 2015; 404: 55-62.

94. Moutard S, Djedaïni-Pilard F, Meudal S, Luijten W, Perly B et al. Structural identification of new glycolipids
based on cyclodextrin using high-resolution positive and negative electrospray ionization mass spectrometry. Rapid
Communications in Mass Spectrometry 2003; 17: 2535-2540.

95. Bjerre J, Hauch Fenger T, Marinescu LG, Bols M. Synthesis of some trifluoromethylated cyclodextrin derivatives
and analysis of their properties as artificial glycosidases and oxidases. European Journal of Organic Chemistry
2007; 2007: 704-710.

96. Takenaka Y, Nakashima H, Yoshida N. Fluorescent amino-β -cyclodextrin derivative as a receptor for various types
of alcohols having cyclic and macrocyclic rings. Journal of Molecular Structure 2007; 871: 149-155.

97. Wang R, Ong T, Ng SC. Chemically bonded cationic β -cyclodextrin derivatives and their applications in super-
critical fluid chromatography. Journal of Chromatography A 2012; 1224: 97-103.

98. Zhang X, Sasaki K, Kuroda Y. Syntheses and photophysical studies of cyclodextrin derivatives with two proximate
anthracenyl groups. Journal of Organic Chemistry 2006; 71: 4872-4877.

99. Casas-Solvas JM, Martos-Maldonado MC, Vargas-Berenguel A. Synthesis of β -cyclodextrin derivatives function-
alized with azobenzene. Tetrahedron 2008; 64: 10919-10923.

100. Alvarez-Dorta D, León EI, Kennedy AR, Martín A, Pérez-Martín I et al. Easy access to modified cyclodextrins by
an intramolecular radical approach. Angewandte Chemie International Edition 2015; 54: 3674-3678.

101. Fujita K, Tahara T, Nagamura S, Imoto T, Koga T. Synthesis of specifically modified maltooligosaccharides by
enzymic degradation of cyclodextrin derivatives. Substrate-based investigation of the active site of Taka-amylase.
Journal of Organic Chemistry 1987; 52: 636-640.

102. Xiao S, Yang M, Yu F, Zhang L, Zhou D et al. Synthesis of four mono-functionalized α -cyclodextrin derivatives
for further confirming DIBAL-H-promoted bis-de-O-methylation mechanism. Tetrahedron 2013; 69: 4053-4060.

103. Boger J, Corcoran RJ, Lehn J. Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of
α - and β -cyclodextrins. Helvetica Chimica Acta 1978; 61: 2190-2218.

104. Zhou J, Zeng Z. Novel fiber coated with β -cyclodextrin derivatives used for headspace solid-phase microextraction
of ephedrine and methamphetamine in human urine. Analytica Chimica Acta 2006; 556: 400-406.

105. Baudin C, Tardy F, Dalbiez J, Jankowski C, Fajolles C et al. Ionic complexation properties of per(3,6-anhydro)
cyclodextrin derivatives towards lanthanides. Carbohydrate Research 2005; 340: 131-138.

106. Bicchi C, Artuffo G, D’Amato A, Manzin V, Galli A et al. Cyclodextrin derivatives in the GC separation of
racemic mixtures of volatile compounds, Part V: Heptakis 2,6-dimethyl-3-pentyl-β -cyclodextrins. Journal of High
Resolution Chromatography 1992; 15: 710-714.

107. Junge M, König WA. Selectivity tuning of cyclodextrin derivatives by specific substitution. Journal of Separation
Science 2003; 26: 1607-1614.

108. Ma D, Zhang Y, Xu J. The synthesis and process optimization of sulfobutyl ether β -cyclodextrin derivatives.
Tetrahedron 2016, 72: 3105-3112.

277



LIU et al./Turk J Chem

109. Zhang L, Zhang Z, Li N, Wang N, Wang Y et al. Synthesis and evaluation of a novel β -cyclodextrin derivative for
oral insulin delivery and absorption. International Journal of Biological Macromolecules 2013; 61: 494-500.

110. Berthod A, Li WY, Armstrong DW. Chiral recognition of racemic sugars by polar and nonpolar cyclodextrin-
derivative gas chromatography. Carbohydrate Research 1990; 201: 175-184.

111. Zhong Q, He L, Beesley TE, Trahanovsky WS, Sun P et al. Development of dinitrophenylated cyclodextrin deriva-
tives for enhanced enantiomeric separations by high-performance liquid chromatography. Journal of Chromatog-
raphy A 2006; 1115: 19-45.

112. Cucinotta V, Giuffrida A, Grasso G, Maccarrone G, Vecchio G. Hemispherodextrins, a new class of cyclodextrin
derivatives, in capillary electrophoresis. Journal of Chromatography A 2001; 916: 61-64.

113. Tanaka Y, Yanagawa M, Terabe S. Separation of neutral and basic enantiomers by cyclodextrin electrokinetic chro-
matography using anionic cyclodextrin derivatives as chiral pseudo-stationary phases. Journal of High Resolution
Chromatography 1996; 19: 421-433.

114. Zhou C, Deng J, Shi G, Zhou T. β -Cyclodextrin-ionic liquid polymer based dynamically coating for simultaneous
determination of tetracyclines by capillary electrophoresis. Electrophoresis 2017; 38: 1060-1067.

115. Xu X, Bao X, Dong X, Shi Z, Yu Z et al. Chiral separation of 2,3-allenoic acid by capillary zone electrophoresis
using cyclodextrin derivatives. Chirality 2003; 15: 201-205.

116. Issaraseriruk N, Sritana-Anant Y, Shitangkoon A. Substituent effects on chiral resolutions of derivatized 1-
phenylalkylamines by heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-β -cyclodextrin GC stationary phase.
Chirality 2018; 30: 900-906.

117. Cheng JG, Tian BR, Huang Q, Ge HR, Wang ZZ. Resveratrol Functionalized carboxymethyl-β -cyclodextrin:
synthesis, characterization, and photostability. Journal of Chemistry 2018; 2018: 1-7.

118. Pitha J, Mallis LM, Lamb DJ, Irie T, Uekama K. Cyclodextrin sulfates: characterization as polydisperse and
amorphous mixtures. Pharmaceutical Research 1991; 8: 1151-1154.

119. Shao Z, Li Y, Chermak T, Mitra AK. Cyclodextrins as mucosal absorption promoters of insulin. II. Effects of β -
cyclodextrin derivatives on α -chymotryptic degradation and enteral absorption of insulin in rats. Pharmaceutical
Research 1994; 11: 1174-1179.

120. Cheng J, Hu Y, Luo Z, Chen W, Chen H et al. Preparation and properties of octenyl succinate β -cyclodextrin
and its application as an emulsion stabilizer. Food Chemistry 2017; 218: 116-121.

121. Kida T, Kikuzawa A, Higashimoto H, Nakatsuji Y, Akashi M. Synthesis of novel cyclodextrin derivatives by
aromatic spacer insertion and their inclusion ability. Tetrahedron 2005; 61: 5763-5768.

122. Kida T, Kikuzawa A, Nakatsuji Y, Akashi M. A facile synthesis of novel cyclodextrin derivatives incorporating
one β -(1,4)-glucosidic bond and their unique inclusion ability. Chemical Communications 2003; 2003: 3020-3021.

123. Kida T, Michinobu T, Zhang W, Nakatsuji Y, Ikeda I. A facile synthesis of novel types of cyclodextrin derivatives
by insertion of an aromatic dicarbonyl spacer into a permethylated α -cyclodextrin skeleton. Chemical Communi-
cations 2002; 2002: 1596-1597.

124. Kikuzawa A, Kida T, Nakatsuji Y, Akashi M. Short synthesis of skeleton-modified cyclodextrin derivatives with
unique inclusion ability. Journal of Organic Chemistry 2005; 70: 1253-1261.

125. Kikuzawa A, Kida T, Akashi M. Synthesis of stimuli-responsive cyclodextrin derivatives and their inclusion ability
control by ring opening and closing reactions. Organic Letters 2007; 9: 3909-3912.

278


	Introduction
	Inclusion complexes of CD derivatives
	Selective modifications of CDs at definite positions
	Monosubstitution of CDs
	Two-position modification
	Three-position displacement
	Six-position displacement

	Multiple substitutions of CDs
	Displacement of two and three positions 
	Displacement of two and six positions
	Displacement of three and six positions
	Displacement of two, three, and six positions


	Random modifications of CDs
	Reconstruction of the skeleton of CDs
	Conclusions

