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ABSTRACT

Normalization with respect to sequencing depth is
a crucial step in single-cell RNA sequencing pre-
processing. Most methods normalize data using the
whole transcriptome based on the assumption that
the majority of transcriptome remains constant and
are unable to detect drastic changes of the tran-
scriptome. Here, we develop an algorithm based on
a small fraction of constantly expressed genes as
internal spike-ins to normalize single-cell RNA se-
quencing data. We demonstrate that the transcrip-
tome of single cells may undergo drastic changes
in several case study datasets and accounting for
such heterogeneity by ISnorm (Internal Spike-in-like-
genes normalization) improves the performance of
downstream analyses.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) provides re-
searchers with a powerful tool to investigate questions that
cannot be addressed by bulk sequencing. The scRNA-seq
data share similar features with data from bulk RNA-seq,
such as overdispersion of gene expression, but also have sev-
eral distinct features, such as high sparsity (i.e. high propor-
tion of zero read counts in the data) (1). These features can
be derived from both technical noises and biological vari-
ations, which provide challenges for computational meth-
ods to handle scRNA-seq data. Among the computational
methods, normalization is one of the most important steps
in scRNA-seq data preprocessing and exerts significant ef-
fect on downstream analyses. As current high-throughput
sequencing techniques provides compositional data, where
the value of one feature is a proportion and is only meaning-
ful when compared to other features, normalization serves
the function of transforming relative abundances into ab-

solute abundances and making the data interpretable by
conventional statistical methods (2–4). Although there are
many existing methods of normalization, most of them
adopt the principle of normalization to effective library size,
which is very similar to the centered log-ratio transforma-
tion strategy (3). They calculate a cell-specific scaling fac-
tor (size factor) and divide raw counts from each cell by its
size factor to account for the difference of RNA capture ef-
ficiency, sequencing depth or other potential technical bi-
ases between individual cells. Several state-of-the-art meth-
ods have been developed to better handle specific technical
biases in scRNA-seq technology such as dropout effects (2–
4). However, almost all methods assume that the majority
of the transcriptome remains constant and seek to minimize
the number of differentially expressed (DE) genes. There-
fore, systematic biases may be introduced when the tran-
scriptome undergoes drastic changes.

In RNA-seq, to capture the drastic changes in tran-
scriptome, a set of synthetic control transcripts (external
spike-ins) is normally used for normalization (5). The same
amounts of external spike-in RNAs are added to each sam-
ple (bulk samples or single cells) to serve as external refer-
ences. The usage of external spike-ins is based on the as-
sumption that all technical factors affect extrinsic and in-
trinsic genes in the same manner (6). However, there are
several limitations on the adoption of external spike-ins in
scRNA-seq (7) (e.g. too many spike-ins overwhelm signals
from intrinsic genes; external spike-ins are not always avail-
able; differences in cell lysis efficiency). Most importantly,
external spike-ins can vary significantly even between tech-
nical replicates (6).

Considering the potential caveats of external spike-ins,
normalization with an internal spike-in can avoid most of
these problems. Therefore, some studies also try to use sta-
bly expressed endogenous genes that can serve as inter-
nal references in both bulk RNA-seq (6) and scRNA-seq
(8,9). However, both of these methods for scRNA-seq per-
form a library size-like normalization before detecting sta-
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bly expressed genes, which automatically assume equal to-
tal RNA abundances and thus identify suboptimal stable
genes when facing huge variations in total RNA abun-
dances in heterogeneous single-cell population. In addi-
tion, as scMerge is designed to handle and merge multiple
batches, it does not suit cases when the input dataset is from
just one single batch. Another simple alternative to internal
reference calculated the size factors for normalization based
on just highly expressed genes (10).

Here, we develop an algorithm, ISnorm (Internal Spike-
in-like-genes normalization), that selects a set of stably ex-
pressed genes (IS genes) as internal references and then nor-
malizes scRNA-seq data accordingly. Notably, our algo-
rithm selects genes based on the pairwise variance [a mod-
ified version of log-ratio variance (LRV)] (2) between IS
genes from the input expression matrix and does not require
any prior knowledge or the guidance of external reference
datasets. We adopt this approach as previous work demon-
strated that LRV-based measurements of pairwise similar-
ities outperformed Pearson’s correlation for compositional
data such as RNA-seq (11). In this work, we first demon-
strate that ISnorm correctly selects a set of constantly ex-
pressed genes and provides unbiased estimate of size fac-
tors on simulated datasets. By applying ISnorm to several
case study datasets, we also demonstrate that ISnorm im-
proves the accuracy and enhances the statistical power of
downstream analyses especially when transcriptome under-
goes drastic changes.

MATERIALS AND METHODS

Overview of the ISnorm method

Here, we give a brief description of the ISnorm algorithm
(Figure 1). ISnorm first learns the internal variance for a
set of high-quality genes from a raw matrix by calculating
a slightly modified LRV between the expression vectors of
genes (2), called dispersion of ratio (DoR). Then, ISnorm
applies the DBscan (density-based spatial clustering of ap-
plications with noise) algorithm to the distance matrix and
selects several candidate genesets. For each candidate gene-
set, ISnorm calculates a statistical term called instability
score for each single cell, reflecting the inconsistency of ex-
pression for these genes against a reference sample. Aggre-
gation of the instability scores across all cells gives the reli-
ability of the geneset. Finally, we select the optimal geneset
and use it for normalization.

Selection of a series of candidate genesets. ISnorm takes an
expression matrix as inputs. Selecting a set of IS genes from
a gene pool is the first step of ISnorm. As ISnorm simply ig-
nores zero counts in normalization, it may perform poorly
on genes with many zeros. Thus, genes with <90% (default
value) cells having nonzero expression are discarded. As-
suming we have n cells and two non-negative vectors of gene
expression X = (x1, x2, . . . , xn)T and Y = (y1, y2, . . . , yn)T,
we calculate the log-ratio vector between X and Y by zi =
log2xi − log2 yi , and define DoR as follows:

DoR (X, Y) =
√∑n

i=1 (zi − median (Z))2

n − 1
.

In ISnorm, zi is not included if either xi or yi is zero. The
only difference between DoR and square root of LRV (2) is
that we replaced the mean of Z by the median of Z, because
median values are more robust to outliers in scRNA-seq due
to undesirable variations. DoR is based on the assumption
that the LRV between two constantly expressed genes is al-
ways small (see Supplementary Note S1 for a detailed dis-
cussion on DoR and a brief comparison with its alternative
solutions). Consequently, most constantly expressed genes
(IS genes) will have small pairwise DoR values with each
other, and form a region of high density in high-dimensional
space. To identify densely clustered IS genes, we apply the
DBscan algorithm in R package dbscan (12) on the pairwise
distance matrix of DoR. Some tightly co-regulated genes
may also have small DoR values with each other and can-
not be easily distinguished from constantly expressed genes.
Here, we make the assumption that IS genes can outnum-
ber these specific co-regulated genes in most cases and as-
sign the genes in the largest cluster as IS genes. In DBscan
clustering, the scanning radius (ε) and the minimum num-
ber of points (minPts, in this case it means minimum num-
ber of genes) need to be specified manually to identify a
dense region, but there is no golden rule to choose these
two parameters. To overcome this problem, we feed a series
of ‘expected number of IS genes’ to ISnorm (the expected
number starts from 5, gradually increases with a step of 5
and stops when it reaches 20% of the gene pool, through-
out this study). ISnorm runs DBscan repeatedly with grad-
ually increased ε and predicts several candidate IS genesets
containing increasing number of IS genes. For simplicity,
minPts is set to 5 in all cases (the default setting of R pack-
age dbscan).

Calculation of size factor based on geneset. For each can-
didate geneset, we calculate a size factor for each cell by the
strategy provided by Lun et al. (13), with some modifica-
tions. Briefly, this strategy pools the information of all cells
together to create a pseudo-cell as reference and normalizes
each cell against it. Assuming we have n cells and one can-
didate geneset with m IS genes, the reference is defined as
follows:

refi =
∑n

j=1 ei jλ
−1
j

n′
i

, i = 1, 2, . . . , m,

where refi denotes the reference expression for gene i, eij
denotes the expression level of gene i in cell j, λj denotes
a cell-specific coefficient adjusting the weight of each cell,
which is the total counts of m IS genes in cell j divided by
the median value of total counts of m IS genes across all
cells, and n′

i denotes the number of cells having nonzero ex-
pression for gene i. Therefore, the reference can be consid-
ered as weighted average expression levels for all IS genes
across the whole cell population. By using n′

i instead of n,
we only consider nonzero expression when creating the ref-
erence. The size factor for cell j is calculated as follows (we
only consider nonzero values here):

sf j = median
(

e1 j

ref1
,

e2 j

ref2
, . . . ,

emj

refm

)
.
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Figure 1. Overview of ISnorm pipeline.

The size factor for each cell can be regarded as a median
estimate of actual (this individual cell) versus averaged ex-
pression (from all cells) for all IS genes.

Selection of optimal geneset as IS genes. Finally, we need
to select an optimized candidate geneset best representing
a set of true IS genes. If IS genes are correctly selected, we
expect that the reference expression should have a strong
linear relationship with the expression of IS genes in each
cell. We define instability score for cell j as follows:

instability score for cell j = DoR
(

RE F , E j
)
,

where RE F = (ref1, ref2, . . . , refm)T and E j =
(e1 j , e2 j , . . . , emj )T. Unlike the DoR used to evaluate
the similarity between two genes above, the DoR in insta-
bility scores is used to evaluate the similarities between a
pseudo-reference cell and any individual cells present in real
scRNA-seq data. Generally, candidate sets of larger size
will result in higher instability scores for most cells, as more
genes inconsistent with others are included. So, a candidate
set of smaller size and lower instability scores normally
contains IS genes with higher confidence. However, includ-
ing slightly more IS genes can reduce the noises and lead to
more reliable results. Thus, we develop a strategy to select
an optimal candidate set while constraining the instability
scores of most cells to a reasonably low level. First, we
calculate the average instability score of all cells for each
candidate geneset and select the largest candidate geneset
with average instability score below a defined threshold.
This candidate geneset is used as baseline to measure the
intrinsic variation of dataset (the baseline geneset). We
set the threshold to 0.1, empirically drawn from the real
datasets investigated in this study. For some datasets of
high heterogeneity or noises, the average instability score of

all candidate sets may be >0.1. In these cases, we select the
candidate set with lowest average instability score as the
baseline geneset. Next, we test whether larger genesets with
more IS genes are still reasonably low on instability scores
compared to the baseline geneset. As the instability score
shares a close form of definition with SD, the instability
scores of baseline geneset and an alternative candidate
geneset are compared for each cell by the F-test, with
degrees of freedom to be the number of nonzero genes in
the baseline geneset and alternative geneset minus one.
One-tailed P-value is calculated to measure whether the
instability score of geneset with more IS genes is larger than
the one of the baseline geneset. The alternative geneset fails
to pass the test if the percentage of cells showing statistical
significance by the F-test exceeds the imposed level (e.g.
>5% cells with P-value <0.05). The largest candidate
geneset that meets the statistical threshold is selected as
the optimal geneset. If no candidate geneset meets the
threshold, the baseline geneset is selected.

Specifically, we found that few mitochondrial genes and
some external spike-ins (if added in experiment) may have
extremely low instability scores and would always be re-
ported. As relative abundances of mitochondrial genes in-
crease significantly when cells undergo apoptosis, we re-
moved them along with any external spike-ins before cal-
culating DoR (see the second paragraph in the ‘Discussion’
section for details).

RNA-seq data processing

In this paper, we used several public scRNA-seq data. For
datasets with raw counts, we used processed raw counts
from online database. For datasets lacking raw counts, we
implemented a common pipeline to obtain raw gene ex-
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pression count matrices. Raw reads were first processed
by Trim Galore (Babraham Institute) to remove adapters
and then aligned to Mus musculus transcriptome (Ensembl
v.38.89) or Homo sapiens transcriptome (Ensembl v.37.87)
merged with ERCC (External RNA Controls Consortium)
sequences if added in experiment using Bowtie v1.2.2 (14)
or Bowtie2 v2.3.4.1 (15), depending on the read length. Raw
counts and TPM values were estimated by RSEM-1.3.0
(16). Cells with <2000 detected genes were filtered out, in
addition to the Bach dataset and the human PBMC (periph-
eral blood mononuclear cell) dataset. We applied a more re-
laxed cell filtering step on the Bach dataset and the human
PBMC dataset (filtering cells with <1000 detected genes)
to test the computational efficiency of ISnorm. The effec-
tive library size was estimated by the summed expression of
all genes after normalization using different methods. The
absolute mRNA content was defined as the ratio between
summed counts of endogenous mRNA and ERCC spike-
ins. For comparison, the median value of normalized or ab-
solute mRNA content across all cells was scaled to the same
value.

Implementation of ISnorm and existing methods

Implementations of ISnorm, existing normalization meth-
ods and downstream analyses were carried out in R 3.4.3
unless otherwise noted. In DESeq2, Scran and SCnorm,
default parameters were used when estimating size factors.
Notably, user can specify the condition of each cell in Scran
and SCnorm to avoid normalizing a highly heterogeneous
cell population. However, we did not specify it as there was
no golden rule on how to set it. For library size normaliza-
tion, size factors were defined as total counts divided by the
median value of total counts of all cells.

Performance comparison on simulation dataset

We compared the performance of ISnorm with two bulk-
based methods, DESeq2 (17) and library size normaliza-
tion, and two single-cell methods, Scran (13) and SCnorm
(18), on the simulated datasets. All simulations were car-
ried out in R package Splatter (19). Splatter estimates hy-
perparameters from real data to set most basic characteris-
tics of simulated data. We estimated hyperparameters from
one scRNA-seq data of mouse embryonic stem cells by the
Smart-seq2 protocol (20) and one scRNA-seq data of K562
cells by the inDrop protocol (21) and simulated two datasets
based on these parameters (Smart-seq2 simulation and in-
Drop simulation). Dropout option was turned on in the
Smart-seq2 simulation and turned off in the inDrop simu-
lation to match the sparsity of real data. In the Smart-seq2
simulation, we also manually set common dispersion of bi-
ological coefficient of variation from 0.46 to 0.23 to match
the variation of real data. In each of two simulations, we
simulated two subpopulations, each having 100 cells. Thirty
percent of the genes were differentially expressed. The log
fold change of DE genes was sampled from a normal dis-
tribution (μ = 1, σ = 0.4). True size factors were defined
as the library size multiplied by the sum of cell mean of all
genes in the Splatter pipeline. Other simulation parameters
were set to default values if unmentioned.

Performance comparison on real datasets

To further evaluate the performance of ISnorm, we used five
datasets, mouse preimplantation embryos (22), mouse em-
bryogenesis (23), human embryogenesis (24), mouse preim-
plantation embryos’ ATAC-seq data (25) and glioblastoma
(26), to evaluate the impact of different normalization
methods on real datasets’ downstream analysis. Details for
the analysis of five datasets are described in the Supplemen-
tary Methods.

Bulk RNA-seq of CD3+ T cells and CD14+ monocytes

We conducted a bulk RNA-seq assay to validate the mRNA
content difference between T cells and monocytes. PBMCs
were isolated from healthy donors by Histopaque-1077
(Sigma #10771) according to the manufacturer’s instruc-
tions. Sorting of 500 000 T lymphocytes and monocytes
was done with BD FACSAria III indicated by specific
maker (Supplementary Figure S11), human CD3 (BioLe-
gend #300440) and human CD14 (BioLegend #325620).
Total RNA was isolated by TRIzol Reagent (Invitrogen
#15596026) and 1 �l 10× diluted ERCC RNA Spike-In
Control Mixes (Invitrogen #4456740) was added to each
sample for the cDNA library generation, sequencing library
construction and data analysis. Three replicates were con-
ducted for T lymphocytes and monocytes, separately.

High variable gene detection and motif enrichment analysis
on PBMCs and K562 cells

Highly variable gene (HVG) detection is important to un-
derstand the heterogeneity of cell population and may also
be affected by normalization. Here, we showed that IS-
norm improved performance of HVG detection compared
to other normalization methods in human PBMCs. To get
orthogonal evidence for benchmarking, we used the appear-
ance of TF motifs with highly variable activity around the
transcription starting sites (TSSs) of genes to measure their
variation of expression (Figure 5A). Although for one spe-
cific gene it is always unreliable to predict its expression
from epigenetic profiles, we considered that for a group of
genes the extent of enrichment of TF motifs with variable
activity near the TSSs could reflect the variation of genes
on average. HVGs inferred by better normalization meth-
ods were expected to have strong associations with vari-
able TF motifs. In order to get a list of highly variable TF
motifs, we applied chromVAR (22) to a single-cell ATAC-
seq (scATAC-seq) dataset of human PBMCs and obtained
a set of TF motifs that had the largest variation of chro-
matin accessibility across all cells. As the variations of sin-
gle peaks cannot be inferred from nearly binary scATAC-
seq data, chromVAR aggregated the reads from peaks con-
taining the same motif to measure the activity level and
variation of corresponding TF motif. After obtaining vari-
able motifs, we estimated the enrichment of motifs by cal-
culating the percentage of ATAC peaks containing a spe-
cific motif around the TSS of inferred HVGs using ISnorm
and other normalization methods. For each motif, the en-
richment was measured by comparing frequency of its ap-
pearance in HVG-associated peaks with the frequency in all
peaks near TSS regions.
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The processed UMI count matrix of the scRNA-seq
dataset and count matrix of the scATAC dataset of human
PBMCs were downloaded from 10X Genomics Chromium
website. We divided cells into CD3+ T cells, CD14+ mono-
cytes and CD19+ B cells following the result of K-means
clustering provided by 10X Genomics Chromium and man-
ually checked it through the expression or the accessibility
of promoter of several cell type-specific markers. SCnorm
failed to normalize the matrix within 24 h and was not re-
ported. For HVG detection on scRNA-seq datasets, we first
applied a pre-filtering step to remove genes that were de-
tectable in <50% cells, considering that dropouts could be
a major source of variation for these genes. HVG detec-
tion was conducted using a decomposition method from
R package Scran (13) (trendVar and decomposeVar func-
tions), which fitted a mean-variance trend to the normal-
ized log-expression values of all endogenous genes and sub-
tracted the technical variance from total variance. Given
that there are only ∼800 genes left after the pre-filtering
step, the top 100 genes with lowest false discovery rate
(FDR) values were selected as HVGs.

In scATAC datasets, peaks regions were obtained from
10X Genomics Chromium website for PBMCs or called by
MACS2 (27) on merged data of single cells for K562 cells.
Peaks that were detectable in >10% cells in the scATAC
dataset and within 10 kb upstream and downstream re-
gions of the TSS sites of HVGs were considered as asso-
ciated peaks with HVGs detected in previous steps. The
top 20 TF motifs with highest variances calculated through
chromVAR (28) from the scATAC dataset were selected as
highly variable TF motifs. The location of motifs was ob-
tained through R package JASPAR2016. Then, we exam-
ined whether these highly variable TF motifs were more
likely to appear in HVG-associated peaks, which gave the
evaluation of HVG detection on scRNA-seq data. The en-
richments of other motifs were similar for all normalization
methods and thus were not shown.

To confirm that the motif enrichment analysis described
above did not introduce any overfitting problems, we also
analyzed single-cell data of K562 cells that were supposed to
be homogeneous. As expected, ISnorm performed similarly
to other normalization methods and the enrichment pat-
terns were globally weak for all TFs (Supplementary Figure
S7D).

RESULTS

ISnorm correctly estimates true size factors in simulated
datasets

We first compared the performance of ISnorm with two
bulk-based methods, DESeq2 (17) and library size normal-
ization, and two single-cell methods, Scran (13) and SC-
norm (18), on the simulated datasets. We conducted two
simulations in R package Splatter (19) to mimic real data
from two scRNA-seq protocols, Smart-seq2 (29) and in-
Drop (21), respectively (Smart-seq2 simulation and inDrop
simulation). Each simulated dataset contained two subpop-
ulations and 30% DE genes between two subpopulations,
which represented a typical strong DE case. SCnorm failed
to calculate a normalized matrix in the inDrop simulation

and was not reported. This may be due to the fact that SC-
norm is not designed to handle data with high sparsity as
described in its manual. We found that ISnorm provided the
best estimate of true size factors and most genes selected
by ISnorm were constantly expressed (non-DE) across all
cells when constraining the instability score of most cells in
low level (Figure 2A–G and Supplementary Figure S1A–
G). In the Smart-seq2 simulation, candidate genesets with
337 and 652 IS genes contained large proportion of DE
genes (Figure 2F and G) and led to biased results similar
to other methods (Figure 2B and C). However, these two
candidate genesets also showed significantly higher insta-
bility scores compared to the optimal geneset with 105 IS
genes (Figure 2D), which suggested that our method was
quite effective in excluding undesirable IS genes (such as DE
genes). All other existing methods provided larger estimates
of size factors for cells in the first subpopulation, exhibiting
subpopulation-based biases (two populations clearly sepa-
rate from each other on the scatter plots in Figure 2H–K
and Supplementary Figure S1H–J).

ISnorm can detect drastic changes of cellular mRNA abun-
dance in a mixed population

To further evaluate the performance of ISnorm, we exam-
ined the impact of different normalization methods on sev-
eral real datasets. The first dataset contains scRNA-seq data
of mouse preimplantation embryos from Deng et al. (22), a
developmental process with drastic transcriptome changes.
Normalized expression matrices were calculated by ISnorm
and other normalization methods. We only analyzed cells
from middle two-cell to blastocyst stage as we found that
cells from zygote or early two-cell stages showed signifi-
cantly higher instability scores and thus did not share com-
mon IS genes with other cells (Supplementary Figure S2).
We first estimated the effective library size (mRNA content
after normalization) to show the overall trend of differential
expression. ISnorm and DESeq2 suggested a clear decrease
in effective library size from middle two-cell to eight-cell
stage (Figure 3A). The decrease of mRNA content through
early embryogenesis has been demonstrated by scRNA-seq
data with external spike-ins (23) (Supplementary Figure
S3). Scran normalization failed to reveal this pattern. We
next evaluated the impact of different normalization meth-
ods on DE gene detection using DESeq2 (17). Differential
expression analysis based on ISnorm detected more down-
regulated genes than other methods from middle two-cell
to eight-cell stages, which was consistent with the decrease
in mRNA content (Figure 3B). It is usually difficult to de-
cide a gene to be up- or downregulated by computational
methods, but it is known that genes with a silenced epige-
netic state are less likely to be upregulated. Thus, we selected
665 genes with high expression but closed chromatin state
in two-cell and four-cell stages (these genes are usually re-
ferred to as maternal genes that go through maternal clear-
ance during embryogenesis) by the combined information
of scRNA-seq data (22) and ATAC-seq data (25) of mouse
preimplantation embryos (Supplementary Figure S4) for
benchmarking. As expected, ISnorm controlled the number
of upregulated maternal genes. DESeq2 also showed similar
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Figure 2. Performance of ISnorm and other existing methods in the Smart-seq2 simulation. (A–C) Size factors estimated by ISnorm. (D) Instability scores
of cells for each candidate set. (E–G) Distribution of log2 fold change of IS genes in each candidate set. (H–K) Size factors estimated by other existing
methods. Black and gray dots represent cell population 1 and cell population 2, where 30% genes in population 2 are differentially expressed.
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Figure 3. ISnorm detects drastic transcriptomic changes in the Deng dataset of embryogenesis. (A) Effective library size estimated by ISnorm, Scran and
DEseq2. (B) Number of genes detected as DE genes using DESeq2 by feeding size factors from ISnorm and other existing methods. (C) Number of
maternal genes with log2 fold change >0 and 0.05 < FDR < 0.15 (light red) and number of maternal genes with log2 fold change >0 and FDR < 0.05
(dark red) inferred by feeding DESeq2 with size factors from ISnorm and other existing methods.
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results with ISnorm, while other methods always suggested
more maternal genes to be upregulated (Figure 3C).

We also tried ISnorm on several other studies to exam-
ine whether ISnorm could reliably detect cellular mRNA
content differences due to strong differential expression. IS-
norm generated similar decreased patterns in effective li-
brary size for another dataset of mouse embryogenesis (23)
and one dataset of human embryogenesis (24), while other
methods including DESeq2 failed to do so (Supplementary
Figure S5A and B). In human PBMCs, ISnorm suggested
higher mRNA content of CD14+ monocytes than CD3+ T
cells, agreeing with total UMI counts of single cells, which
was a precise estimate of mRNA content when samples were
sequenced to saturation (7). We also validated this result
through a bulk RNA-seq assay with ERCC spike-ins (Sup-
plementary Figure S5C; see the ‘Materials and Methods’
section for details). In mouse hematopoietic stem and pro-
genitor cells (30), we found an unexpected pattern of hetero-
geneity, where few cells have significantly larger library size
compared to their size factors estimated by ISnorm, sug-
gesting that they might have higher mRNA content than
the majority of cells (Supplementary Figure S5D). The in-
creased mRNA content of these outlier cells could also be
validated by ERCC spike-ins.

A previous study indicated that cells in G2/M stages have
higher mRNA content than those in G1 and S stages (7).
However, ISnorm did not detect higher mRNA content for
cells in G2/M stages in the Leng dataset (31) (Supplemen-
tary Figure S5E). We argue that this is so because ISnorm
accounts for mRNA content difference due to partial tran-
scriptome change (as far as the IS genes are not affected) but
normalizes mRNA content difference due to whole tran-
scriptome change (e.g. cellular volume increase in G2/M
stage). Thus, unlike external spike-ins, no further normal-
ization is required to account for the difference in cellular
volumes, which affect the global transcriptional output (32).
This also helps explain the fact that ISnorm could not fully
capture the change of mRNA content estimated by external
spike-ins for embryogenesis (Supplementary Figure S3).

ISnorm improves the performance of downstream analysis in
a case study of tumor tissue

As cells in cancer tissues show much stronger heterogene-
ity, we wonder whether ISnorm performs well for com-
plex cell populations such as cancer. To address this ques-
tion, we evaluated the performance of ISnorm on a case
study of glioblastoma (26). We only showed results from
patient MGH31 as it contained two tumor clones and non-
malignant cells (Supplementary Figure S6A), which can
serve as ground truth. We found that PCA upon ISnorm,
DESeq2 and SCnorm roughly distinguished malignant cells
from normal cells by PC1 and PC2, while Scran and li-
brary size normalization failed to do so (Figure 4A). In-
stead, the number of detected genes (cellular detection rate,
CDR) of single cells was a dominant factor revealed by
PCA upon Scran and library size normalization (R2 ≥ 0.6;
CDR was also a dominant factor in PCA upon SCnorm
but did not affect the classification of cells), suggesting
that the first two PCs based on these normalization meth-

ods may mainly capture the technical signals. However,
all normalization methods successfully distinguished ma-
lignant cells from normal cells by three PCs (Supplemen-
tary Figure S6B). A previous study suggested that varia-
tion in CDR can easily overwhelm true biological infor-
mation and should be controlled (33). As ISnorm controls
the technical noises better, we assume that genes contribut-
ing to PC1 and PC2 may capture more biologically rele-
vant genes. Further investigation on genes with high load-
ings in PC1 or PC2 upon ISnorm showed that 21 of them
overlapped with the known oligodendrocyte markers from
the MSigDB database (Figure 4A). Other methods showed
similar pattern but with fewer overlapped genes. Moreover,
we found that PC1 upon ISnorm explained more variations
than other methods (Figure 4A) and mainly reflected the ef-
fective library size of tumor cells estimated by ISnorm (R2 =
0.47; Figure 4B). Coincidently, cells from one tumor clone
had significantly lower levels of effective library size com-
pared with other cells (Figure 4C). We also tested the vari-
ation of CDR between three types of cells but found no sig-
nificant difference (Figure 4D). These results suggested that
PC1 might capture the differences in cellular RNA abun-
dance among tumor cells. Lacking external spike-ins, we
could not validate the mRNA content estimated by ISnorm.
However, we found that it was highly consistent with li-
brary size of single cells (Supplementary Figure S6C), which
might reflect the amount of starting mRNA materials, and
thus the mRNA content for each cell (see Supplementary
Note S2 for more details). These facts together indicated
that PCA upon ISnorm captures the true biological vari-
ation rather than technical noises. Additionally, we found
that DESeq2 performed similarly as ISnorm in this case
study, except for less variation explained than ISnorm on
PC1.

ISnorm improves performance of HVG detection in human
PBMCs

In PBMCs, we found that motifs with variable activity
showed significant enrichment patterns around the TSSs of
HVGs upon all normalization methods, proving that our
hypothesis on the enrichment of variable motifs around
TSSs of HVGs was true (34). Among all normalization
methods, HVGs upon ISnorm showed the most significant
enrichment patterns for motifs with high variations (Figure
5B), suggesting that the HVGs upon ISnorm agreed better
with epigenetic profiling of single cells. We also divided the
PBMCs into three more homogeneous populations, CD3+

T cells, CD14+ monocytes and CD19+ B cells, and applied
the motif enrichment analysis to test whether ISnorm still
performed better. We found that ISnorm showed improve-
ments for some of the motifs for T cells but performed
equally for monocytes and B cells compared to other meth-
ods (Supplementary Figure S7A–C). These findings also
agreed with the fact that ISnorm showed strong confliction
with library size for PBMCs but less inconsistency for T
cells, monocytes and B cells separately (Pearson’s correla-
tion coefficient of size factors between ISnorm and library
size: PBMCs, 0.69; T cells, 0.79; monocytes, 0.93; B cells,
0.84).
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A

B C D

Figure 4. ISnorm improves the performance of PCA on the Patel dataset. (A) The results of first two PCs inferred by PCA on normalized matrices.
Malignant cells (circle) and normal cells (triangle) are colored according to the number of detected genes in each cell. The results of linear regression (CDR
∼ PC1 + PC2) are shown by an arrow on top left. The separation of malignant and normal cells is more obvious in results based on ISnorm, SCnorm
and DESeq2. (B) The same results of PCA based on ISnorm. Cells are colored according to log-transformed effective library size estimated by ISnorm.
Comparison of (C) effective library size calculated by ISnorm and (D) number of detected genes for normal cells and two tumor clones. The P-value is
calculated by ANOVA.

ISnorm identifies cell-specific constantly expressed genes

One advantage of ISnorm is that it can predict a set of con-
stantly expressed genes as IS genes. We applied ISnorm to
different datasets and multiple tissues in the same dataset to
examine generalizability of selected IS genes (Supplemen-
tary Tables S2 and S3). Although in most cases housekeep-
ing genes were selected as IS genes, we also found a set of

tissue-specific IS genes (e.g. in brain, kidney and liver ep-
ithelial cells; Supplementary Table S3). These findings may
help researchers discover population-specific constantly ex-
pressed genes that can be used in other applications such
as single-cell qPCR. However, we also noted that for the
dataset containing diverse cell types, ISnorm may fail due
to the fact that there are no common IS genes shared by all
cells.
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Figure 5. ISnorm improves performance of HVG detection in the PBMC
dataset. (A) The schematic view of motif enrichment analysis. TFs with
highly variable activity should be enriched in the regulatory elements of
HVGs compared to non-HVGs. (B) The motif enrichment patterns of top
20 TF motifs with highest variability using ISnorm and other normaliza-
tion methods. The upper part shows the percentage of HVG-associated
peaks containing specific motif based on ISnorm and other normalization
methods and the lower part shows the point estimates and error bars of
accessibility variation of motifs from scATAC data.

The computation time and resource requirements of ISnorm

To confirm that ISnorm is generally applicable to large
droplet-based datasets, we test the computational efficiency
of ISnorm on two datasets with >10 000 cells generated by
10X Genomics Chromium platform, one dataset of mam-
mary epithelial cells from Bach et al. (35) (∼20 000 cells)
and PBMC dataset (∼10 000 cells). As the running time of
ISnorm depends on the number of input genes as well as
the number of cells, we tried two gene inputs (genes hav-
ing nonzero expression in >90% and >70% cells). The re-
ported IS genes were identical from two gene inputs (Sup-

plementary Table S2). The running time of ISnorm was al-
ways within minutes. Detailed information on the size of
datasets and running time is provided in Supplementary Ta-
ble S4. Analyses were performed on an I840-G25 compu-
tation workstation with Intel® Xeon® E7-8880v3 proces-
sors, under one thread and 8 GB RAM limitations.

DISCUSSION

Through benchmarking on simulated datasets, we
found that all existing normalization methods showed
subpopulation-specific biases under strong DE case.
However, in the Deng dataset of embryogenesis and the
Patel dataset of glioblastoma, the results upon DESeq2
normalization were similar with ISnorm and were better
compared to other methods. A previous study suggested
that high sparsity of the data had a strong effect on DE-
Seq2, as the calculation of the pseudo-sample that served
as a reference was only well defined on a limited number
of genes that were detected in all cells, which might be
problematic (7). However, in scRNA-seq data, genes with
high expression level are less affected by dropouts and
with lower coefficients of variation (1), which may provide
more reliable estimate on the size factor of the cell than
low expressed genes. Actually, our work suggested that a
small set of constantly expressed genes was enough for
robust normalization. Thus, the improved performance
of DESeq2 on the case study datasets mentioned above
can be explained by the usage of nonzero count genes,
which also happen to exhibit features of IS genes. However,
by applying existing normalization methods on several
datasets of embryogenesis, we found that the nonzero
count genes used in DESeq2 normalization did not always
behave as IS genes, and failed to reflect the true patterns of
transcriptomic changes. Thus, the performance of DESeq2
relies on the percentage of IS genes used to calculate
the reference and may vary significantly among different
datasets.

ISnorm selects a set of constantly expressed genes to nor-
malize the data. However, we found that normally there
was no clear boundary between constantly expressed genes
and DE genes in real datasets. Thus, the strategy for iden-
tifying IS genes is based on researchers’ preferences: fewer
genes with lower variance or more genes with higher vari-
ance. In most cases, we found different selecting strategies
did not affect the results much as the size factors estimated
by different candidate genesets were highly consistent given
they always shared many common genes (Supplementary
Figures S8 and S9). However, we did find that in some
datasets different candidate genesets might share no com-
mon genes and generated fairly different results (e.g. P0205
and P0508 in the Zheng dataset, Supplementary Figure S9;
Leng dataset, Supplementary Figure S10). For P0205 and
P0508 in the Zheng dataset, we thought the optimal gene-
set containing HLA genes was more likely to be true IS
genes given the fact that ISnorm reported the same genes
in HLA family in other three patients (Supplementary Fig-
ure S9 and Supplementary Table S2). Additionally, the in-
stability scores of two non-optimal genesets were consid-
erably higher and showed strong deviance from an empir-
ical null distribution (see Supplementary Note S3 for de-
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tails). However, given such few IS genes, the results of IS-
norm did not prove to be reliable. For the Leng dataset,
five mitochondrial genes were reported and showed incon-
sistency with other nuclear candidate genesets (Supplemen-
tary Figure S10). There is no surprise that some mitochon-
drial genes may have low internal variance with each other
given their important biological functions. As mitochon-
drial genes are different from nuclear genes in transcription,
they might easily lead to gene-specific bias. Unlike P0205
and P0508 in the Zheng dataset, we found that the insta-
bility scores of other nuclear candidate genesets with much
more genes were still low enough to be considered as good
IS genes (Supplementary Figure S10). Given these results,
we thought that instability scores proved to be a good indi-
cator of true IS genes and constraining the instability scores
of IS genes in a reasonably low level could prevent both
gene-specific bias and selection of HVGs. However, if the
optimal geneset contained few genes and showed inconsis-
tency with other non-optimal genesets, it might mean that
there were few or no IS genes shared by cells. In these cases,
it is safer to choose the geneset with lower instability scores,
but the results should be treated carefully.

Through benchmarking in this study, we found that in
most cases all normalization methods provided similar es-
timates of size factors, except for ISnorm. This is no sur-
prise as they all share similar underlying assumptions that
the majority of transcriptome remains constant. However,
with a different underlying assumption that only IS genes
need to be constantly expressed, ISnorm showed strong
conflict with other methods for some datasets. We then
consider that ISnorm is not just a technical improvement
in normalization but changes the basic concept of how to
choose the baseline for gene expression measurement. We
found that such difference in assumption would mainly af-
fect the results of DE analysis, but it is hard to directly de-
cide which assumption is more appropriate. However, we
demonstrated that ISnorm showed higher consistency with
epigenetic profiling for heterogeneous cell population (in
mouse embryogenesis and human PBMC dataset) and im-
proved the performance PCA and subsequent informative
gene extraction when the whole transcriptome underwent
significant changes (Patel dataset of glioblastoma). These
results implied that ISnorm would help reveal new biologi-
cal patterns from single-cell data.

From the results above, ISnorm proved to be most use-
ful when the cellular total RNA abundances exhibited dras-
tic variations among the cell population. Such changes can
be observed in cells during different stages of development
(Figure 3A), cells at different states (Supplementary Figure
S5D) and cells from different cell types (Supplementary Fig-
ure S5C). Moreover, internally dysregulated cellular tran-
scription program by genetic or epigenetic mechanisms in
cancer may alter global RNA abundances (Figure 4C). In
addition to relying on prior biological knowledge, it is also
possible to infer global RNA abundance changes from the
data alone. When available, a UMI total count per cell in
general is a good read out of cellular total RNA abundance.
Otherwise, an ISnorm normalized total library size can be
used. Thus, if the major clusters of cell populations showed
significant differences in cellular total RNA abundances in
the form of either UMI counts or ISnorm normalized li-

brary sizes (Figures 3A and 4C, and Supplementary Figure
S5C and D), ISnorm may give an alternative view on, and
in many cases improve accuracies on the detection of, DE
genes or HVGs.

Our results also demonstrated that the assumption of IS-
norm might be violated in cases where distinct sets of IS
genes were identified in different cell subpopulations. For
example, mouse liver mostly consists of hepatocytes, but
also a small number of non-hepatocyte cells. IS genesets
identified in hepatocytes and non-hepatocyte cells did not
overlap (10× protocol in Supplementary Table S3). Because
hepatocyte is the dominant cell type, IS genes identified
for liver tissue (>95% hepatocytes) were consistent with IS
genes for hepatocyte. Applying the same IS geneset learned
from hepatocytes to non-hepatocytes did not fulfill the as-
sumption of ISnorm, and thus would lead to incorrect size
factor estimates for these cells (Supplementary Figure S12).
Generally, the number of genes and the instability scores of
optimal geneset are also good indicators of the reliability
of ISnorm. If the number of IS genes is very low (e.g. <10)
or the instability score of optimal geneset is very high (e.g.
>0.2), ISnorm may easily fail given there are no good IS
genes. Moreover, users should also be cautious against the
cells having significantly high instability scores (see the in-
stability scores of zygotes and cells in early two-cell stage in
Supplementary Figure S2). Extreme high instability scores
suggest that IS genes identified in the whole population do
not behave similarly in these cells. Alternatively, extremely
high instability scores can serve as an indicator that further
separation of cell population is needed.

In summary, we introduced ISnorm to normalize
scRNA-seq data based on a set of IS genes learned from in-
put data. Our method to identify proper IS genes built upon
a DoR (a modified version of LRV from compositional data
analysis) calculation to evaluate distances between genes,
suggesting that it is worthwhile to explore the potential ap-
plication of compositional data analysis methodology in
the field of NGS analysis, especially for the noisy single-
cell data. Our approach is based on a relaxed assumption
compared to existing methods that only a small number
of genes are constantly expressed in a mixed cell popula-
tion. Evaluation on simulated datasets indicated that IS-
norm correctly identified constantly expressed genes and
provided unbiased estimate of size factors in the case of
strong differential expression. By applying ISnorm on sev-
eral case study datasets, we demonstrated that our approach
not only reveals the heterogeneity of gene expression and
cellular mRNA abundance among individual cells, but also
improves the performance of downstream analyses.
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