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ABSTRACT

RNA sequencing (RNA-seq) is currently the stan-
dard method for genome-wide expression profiling.
RNA-seq reads often need to be mapped to a refer-
ence genome before read counts can be produced
for genes. Read trimming methods have been devel-
oped to assist read mapping by removing adapter
sequences and low-sequencing-quality bases. It is
however unclear what is the impact of read trim-
ming on the quantification of RNA-seq data, an im-
portant task in RNA-seq data analysis. In this study,
we used a benchmark RNA-seq dataset and simu-
lation data to assess the impact of read trimming
on mapping and quantification of RNA-seq reads.
We found that adapter sequences can be effectively
removed by read aligner via ’soft-clipping’ and that
many low-sequencing-quality bases, which would be
removed by read trimming tools, were rescued by
the aligner. Accuracy of gene expression quantifica-
tion from using untrimmed reads was found to be
comparable to or slightly better than that from using
trimmed reads, based on Pearson correlation with re-
verse transcriptase-polymerase chain reaction data
and simulation truth. Total data analysis time was re-
duced by up to an order of magnitude when read trim-
ming was not performed. Our study suggests that
read trimming is a redundant process in the quantifi-
cation of RNA-seq expression data.

INTRODUCTION

RNA-seq technology is a powerful tool for rapid and com-
prehensive profiling of gene expression at a genome scale
(1). The bioinformatic analysis of data generated from this
technology however requires significant amount of CPU
time and disk storage, due to vast amount of sequence reads

generated for even a small RNA-seq experiment. An RNA-
seq data analysis includes a number of steps, making it a
non-trivial task. There are continuous efforts in the field to
try to reduce the data analysis complexity and improve its
efficiency (2-5).

Read trimming tools have been developed to remove
adapter sequences and bases with low sequencing quality
from sequencing reads such as RNA-seq reads, in order to
help read aligners to achieve a better read mapping result
(6,7). Read trimming is the first operation in a sequencing
data analysis pipeline that modifies the read sequences pro-
duced by a sequencer. The changes it makes to the raw read
sequences may impact all the subsequent steps in the anal-
ysis pipeline.

An important step in analyzing RNA-seq data is the
quantification of RNA-seq reads, which assigns reads to
genes and counts the number of reads assigned to each gene
(8,9). RNA-seq quantification is required by many statis-
tical methods that were developed to discover genes with
significant expression changes (3,10-11). The accuracy of
RNA-seq quantification certainly affects the performance
of these methods and other downstream tools. However,
it is unclear how read trimming affects RNA-seq quan-
tification and if it can improve the accuracy of RNA-seq
quantification. Del Fabbro et al. reported that the total
number of reads mapping to annotated genes was reduced
when read trimming was performed (12). Didion et al. per-
formed a similar study but found that read trimming led to
more reads mapping to annotated genes (13). Williams ez al.
found that read trimming resulted in a reduced correlation
of RNA-seq data to the microarray data (14). To resolve
this long-standing issue, more rigorous investigations per-
formed directly on individual genes using data with ground
truth are required.

On the other hand, modern read aligners are known to be
able to ‘soft-clip’ read bases that cannot be mapped along
with the majority of bases in a read (15-17). Soft-clipped
bases are still included in the mapping results of the reads
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but are marked as ‘soft-clipped’. Both soft-clipping and
read trimming remove bases from the ends of the reads,
but soft-clipping is performed within the read mapping pro-
cedure whereas read trimming is performed prior to map-
ping as a standalone procedure. When performing read
trimming, a lot of parameters need to be specified such
as adapter sequences and threshold for quality filtering.
In contrast, soft-clipping is performed solely based on the
matching of read bases with reference sequences and it does
not require users to provide any parameters. It would be
really interesting to compare soft-clipping with read trim-
ming, however surprisingly no studies have been carried out
to do so to the best of our knowledge.

In this study, we first compared read trimming tools to
the soft-clipping implemented in the Subread aligner (2,16).
Then we assessed if read trimming can improve mapping
and quantification of RNA-seq reads. We used a bench-
mark RNA-seq dataset generated in the SEQC project (18)
in this evaluation. The SEQC project also produced real-
time polymerase chain reaction (PCR) data for >900 genes,
which were used as the truth in our evaluation of quantifi-
cation accuracy of gene expression.

MATERIALS AND METHODS
SEQC RNA-seq data and TagMan RT-PCR data

A benchmark RNA-seq dataset generated in the SEQC
project was used in this study. The SEQC project is the
third stage of the MAQC (MicroArray Quality Control)
project. Two reference RNA samples were sequenced in the
SEQC project: Universal Human Reference RNA (UHRR)
and Human Brain Reference RNA (HBRR). This study in-
cludes RNA-seq data generated from a UHRR library and
a HBRR library. A total of 15 million pairs of 100 bp reads
was generated from the sequencing of each library. These
data are part of the large SEQC dataset deposited into the
Gene Expression Omnibus database (GSE47774).

In the SEQC project, expression levels of >1000 genes
were validated by the TagMan RT-PCR technique and
949 of these genes have matched symbols with genes in
the RNA-seq data. RT-PCR expression levels of these 949
genes were used as the ‘truth’ of gene expression in the eval-
uation. The TagMan RT-PCR data are available from the
seqc Bioconductor package (19).

Simulation data

Three simulation datasets were generated to simulate differ-
ent levels of adapter contamination in RNA-seq data. A to-
tal of 15 million pairs of 100 bp reads were created for each
dataset based on human genome GRCh38/hg38. Reads
were extracted from RefSeq gene regions in the genome.
RPKM (reads per kilobases per million mapped reads) val-
ues were generated from an exponential distribution and
randomly assigned to genes. Number of read pairs that need
to extracted from each gene was then calculated based on
RPKM value of the gene, gene length and library size. Frag-
ment lengths were randomly generated according to a nor-
mal distribution with mean 200 and variance 30. The ex-
tracted read pairs may fall within exons or span exons.

Illumina TruSeq adapter sequences (version 3) were
added to the datasets at base percentages of 0.1, 0.5 and 1%,
corresponding to 1.1, 5.5 and 11.0% of adapter-containing
reads, respectively. Length of adapter sequences inserted to
the reads follows an exponential distribution (A = 0.1) to
simulate variable adapter lengths observed in the real data.

To make the simulation data as close to the real data as
possible, we also added biological variants and sequencing
errors to the data. Biological SNPs (single nucleotide poly-
morphism) and short indels (insertions and deletions) were
randomly introduced to the genome at the rates of 0.0009
and 0.0001, respectively, before RNA-seq read sequences
were extracted. Sequencing errors were simulated by alter-
ing read bases based on the Phred scores in each read in the
SEQC 100 bp paired-end data.

Software

Two read trimming tools, Trimmomatic and TrimGalore,
were included in this study. TrimGalore performs adapter
removal and quality filtering via calling the Cutadapt tool
(7). Trimmomatic has two trimming modes: ‘adapters and
SW’ mode and ‘adapters and MI” mode. In ‘adapters and
SW’ mode, a sliding window approach is used to remove
read bases that have a low sequencing quality. In ‘adapters
and MI’ mode, a maximum information quality filtering ap-
proach is applied for removing low quality bases. Adapter
sequences are detected and removed in both modes.

When running read trimmers, we tried to keep their
default settings where possible. TrimGalore was run
with parameters —illumina -j 8 —paired. The ‘adapters
and SW’ mode of Trimmomatic was run with parame-
ters PE -threads 8 -phred33 ILLUMINACLIP: TruSeq3-
PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDIN GW IN
DOW:4:15 MINLEN:36. The ‘adapters and MI” mode of
Trimmomatic was run with parameters PE -threads 8 -
phred33 ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 LEAD
ING:3 TRAILING:3 MAXINFO:50:0.5 MINLEN:36.

Trimmed reads and untrimmed reads were mapped to the
human reference genome GRCh38/hg38 using the ‘align’
function in Rsubread package (2). ‘align’ is an R wrap-
per function for the Subread aligner (16). Soft-clipping is
automatically performed by Subread. Reads counts were
generated for genes using the featureCounts tool (9). The
Rsubread inbuilt annotation for human genes (2), which is
an modified version of NCBI RefSeq gene annotation, was
used in the quantification of gene expression. Read counts
for each gene were converted to log,-RPKM expression val-
ues and then compared against the RT-PCR gene expres-
sion data which is also at log, scale.

All software tools were executed with eight CPU threads
on a CentOS 6 Linux server with 24 Intel Xeon 2.60 GHz
CPU cores and 512 GB of memory. Versions of these soft-
ware tools are: Trimmomatic v0.39, TrimGalore v0.6.2 and
Rsubread v2.0.0.

RESULTS

Using RNA-seq data generated in the SEQC project, we
compared read trimming performed prior to read mapping
to soft-clipping that was carried out during read mapping at



Table 1. Percentages of mapped read bases with or without read trimming
prior to mapping

Method UHRR (%)  HBRR (%)
No trimming + Subread 86.4 85.5
Trimmomatic-adapters and SW + 82.4 81.7
Subread

Trimmomatic-adapters and MI + 83.2 82.3
Subread

TrimGalore + Subread 85.1 84.2

Subread was used for mapping of untrimmed or trimmed reads.

base level, read level and gene level. We used RT-PCR data
generated for 949 genes to assess the impact of read trim-
ming on the accuracy of gene expression quantification.

Base-level comparison

We found that 2.3-4.6% of all read bases included in each li-
brary were trimmed off, and Trimmomatic removed twice as
many bases as TrimGalore (Supplementary Table S1). Total
number of successfully mapped bases was reduced by 1.3—
4.0% when trimming was applied (Table 1). Subread was
found to soft-clip 18-29% of bases that were trimmed off
by read trimmers, indicating that a large number of trimmed
bases were rescued during read mapping. Out of those com-
monly removed bases by Subread and a trimmer, 10-27%
were found to be adapter sequences and the rest were low-
quality bases (Supplementary Table S1). Subread was able
to soft-clip almost all adapter sequences (94%) reported and
removed by Trimmomatic (Supplementary Table S2). Trim-
Galore reported about six times more adapter sequences
than Trimmomatic, however TrimGalore is likely to have
a high false positive rate in adapter calling because a lot
of adapter sequences it called are very short. Nonetheless,
~30% of adapter sequences reported by TrimGalore were
soft-clipped by Subread. Put together, Subread was found
to be able to effectively remove adapter sequences from the
raw reads and rescue a lot of bases with relatively low se-
quencing qualities which would otherwise be removed by
read trimmers. This has led to a non-trivial increase in the
number of successfully mapped read bases.

Read-level comparison

We then examined the impact of read trimming on read
mapping results. Read trimming may cause a slight change
to the mapping location of a read or cause a read to map to
a different exon of the same gene, but this normally would
not change the quantification of expression of the gene be-
cause the read still overlaps the same gene. We therefore
call a read as a concordantly mapped read if read trimming
only results in a <100 bp change in its mapping location
or results in the read mapping to an alternative exon from
the same gene. We found that >98% of reads were concor-
dantly mapped when comparing mapping of TrimGalore
trimmed reads and untrimmed reads (Supplementary Table
S3). Mapping concordance between Trimmomatic trimmed
reads and untrimmed reads was ~97%. Mapping concor-
dances between reads trimmed by different trimmers were
also found to be ~97%. The mapping analysis shows that
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read trimming only affects the mapping of a very small frac-
tion of reads in a library and that the mapping difference be-
tween trimmed and untrimmed reads is similar to the map-
ping difference between reads that were trimmed by differ-
ent trimmers.

Gene-level comparison

Finally we investigated if read trimming will affect the quan-
tification of gene expression in RNA-seq data. For both
trimmed and untrimmed data, we counted the number of
mapped reads assigned to each gene using the feature-
Counts program (9). Read counts were then converted to
log,-RPKM expression values for each gene. The SEQC
RNA-seq benchmarking study validated the expression of
~1000 genes using TagMan RT-PCR technique (18). 949 of
these genes matched the RefSeq genes and were included in
this evaluation. We used RT-PCR expression values of these
949 genes as the truth to assess if read trimming is bene-
ficial to the quantification of gene expression in RNA-seq
data. In addition to the original 100 bp paired-end SEQC
data, we also generated a 50 bp single-end SEQC data by
extracting the first reads (R1 reads) from the 100bp paired-
end SEQC data and then truncating them to 50 bp long.
The first 50 bases were removed from each R1 read so that
adapter bases and low-quality bases (usually more abun-
dant at the 3’ end of the [llumina reads) can be kept allowing
us to evaluate the impact of trimming these bases on gene
expression quantification.

Table 2 shows that performing read trimming before read
mapping does not improve the correlation of gene expres-
sion values with true values. In fact, the correlation has a
slight decrease when the reads were trimmed by TrimGa-
lore or Trimmomatic ‘adapters and SW’ mode.

We have also generated simulation data to assess if read
trimming is helpful for RNA-seq expression quantification.
We generated three simulation RNA-seq datasets with dif-
ferent levels of adapter contamination. Sequencing errors
were introduced to the simulation data based on the error
profiles of the 100 bp paired-end SEQC data to make the
simulation data as close to the real data as possible (see ‘Ma-
terials and Methods’ section for more details). We ran all
the methods on the simulation data and computed the coef-
ficients of Pearson correlation between log,-RPKM expres-
sion values of genes calculated from each method and the
true logy-RPKM expression values of genes we generated
in the simulation. In line with the evaluation results from
the SEQC data, read trimming was also found to make no
discernible difference in the quantification accuracy in the
simulation (Supplementary Table S4).

Taken together, our evaluation results from using both
real data and simulation data clearly showed that using
untrimmed reads to quantify expression levels of genes
yielded comparable or slightly better quantification accu-
racy than using trimmed reads.

Running time and disk usage

Performing read trimming was found to result in a signif-
icant increase in data analysis time (Figure 1). The total
running time for producing mapped reads was increased
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Table 2. Correlation of trimmed and untrimmed RNA-seq data with the TagMan RT-PCR data

100 bp PE 50 bp SE
Method UHRR HBRR UHRR HBRR
No trimming + Subread 0.851 0.870 0.848 0.870
Trimmomatic-adapters and SW + Subread 0.850 0.870 0.848 0.869
Trimmomatic-adapters and MI + Subread 0.850 0.871 0.849 0.869
TrimGalore + Subread 0.850 0.870 0.849 0.869

Shown are the coefficients of Pearson correlation between log2 expression values of 949 genes measured by the TagMan RT-PCR technique and their
RNA-seq expression levels generated from using each method (log2-RPKM). ‘100 bp PE’ in the table denotes the 100 bp paired-end SEQC dataset. First
reads (R1 reads) in this dataset were extracted and truncated to 50 bp long to generate the 50bp single-end dataset used here (‘50 bp SE’).

8 ]
Al
O trimming
B mapping
o _|
—~ «
(%)
]
s
2
.é 2 _
v
£
+~ o _|
o —
£
C
c
g ©
./

No trimming
+ Subread
+ Subread
TrimGalore
+ Subread

adaptor and SW
+ Subread
adaptor and MI

Trimmomatic

Figure 1. Time cost of different methods running on a UHRR RNA-seq
dataset that includes 15 million 100 bp read pairs. All software tools were
run with eight CPU threads. Input data to trimming and mapping tools are
in gzipped FASTQ format which is the standard format of data generated
by Illumina sequencers.

by more than an order of magnitude when using TrimGa-
lore for trimming, compared to no trimming performed.
Trimming by Trimmomatic increased the running time by
nearly five times. Furthermore, the amount of disk stor-
age required increased by ~40% due to the need to store
trimmed read data (Supplementary Table S5). Read trim-
ming has become a significant computational burden in the
analysis of RNA-seq expression data.

DISCUSSION

In this study we demonstrated that the reference-based soft-
clipping implemented in the Subread aligner can effectively
remove adapter sequences introduced by sequencers, a ma-
jor goal that read trimming tools try to achieve. Subread’s
soft-clipping was also found to successfully rescue a lot of
low-quality bases. Subread makes use of both sequencing
quality scores and reference sequences to make a informed
decision on whether low-quality read bases should be re-

moved from the read sequence, whereas read trimming tools
only rely on the sequencing quality scores for the trimming
of such bases. Read bases can be over-trimmed or under-
trimmed by trimming tools when different quality thresh-
olds are used. Over-trimming is particularly problematic
because read bases lost during trimming cannot be recov-
ered by read aligner. It is very difficult to determine the best
threshold for quality trimming just based on the sequencing
quality scores alone.

Although we expect that most state-of-the-art RNA-seq
aligners are capable of identifying and removing adapter
sequences and low-quality bases, Subread has an unique
advantage in doing so thanks to its highly flexible and
powerful ‘seed-and-vote’ mapping paradigm. Under this
paradigm, a large number of seed sequences (16 bp mers)
are extracted from each read and then mapped to the refer-
ence genome concurrently to determine the candidate map-
ping locations of the read. Because the extracted seed se-
quences cover the entire read sequence and the number of
seeds is large, the presence of adapter bases and/or low-
quality bases is unlikely to cause the read to fail to map
as long as there are enough mappable bases existing in the
read. Seed-and-vote is therefore more tolerant of adapter
and low-quality bases for read mapping than the conven-
tional seed-and-extend paradigm.

The Subread mapping comprises of two passes. In its first
pass, it utilizes the consensus mapping of seed sequences ex-
tracted from each read to determine the initial mapping lo-
cations of all the reads including exon-spanning reads. It
also detects short indels (insertions and deletions) and as-
sociated breakpoints in this pass. In the second pass, Sub-
read finalizes the alignment of each read by maximizing the
largest mapping region in each read and by utilizing the
breakpoint data collected in the first pass. The read bases
that cannot be mapped along with the rest of the read are
also soft-clipped in the second pass. This two-pass proce-
dure allows a reliable detection of adapter sequences and
sequencing errors in the reads. It also maximizes the oppor-
tunity to confidently include more bases in the final map-
ping results, enabling more useful data to be provided to
downstream analyses such as differential expression analy-
sis and variant analysis (e.g. detection of single nucleotide
variant and gene fusion). Subread is the first aligner that im-
plemented this two-pass mapping strategy, which was later
adopted in many other aligners.

We compared Subread to the popular RNA-seq aligner
STAR (15) on the accuracy of gene expression quantifica-
tion, using untrimmed SEQC 100 bp paired-end data. We
ran STAR with default setting or with the end-to-end map-



ping setting (‘-alignEndsType EndToEnd’) to disable soft-
clipping. Subread was found to yield better Pearson correla-
tion between RNA-seq data and RT-PCR data than STAR
in both of its two settings (Supplementary Table S6). Also as
expected, running STAR with end-to-end mapping setting
resulted in a reduced correlation of RNA-seq data with RT-
PCR data due to the failure to soft-clip adapter sequences
and low-quality bases, compared to using its default setting
(Supplementary Table S6). These results demonstrate that
soft-clipping improves the quality of read mapping, which
leads to the improvement of gene expression quantification
and that the soft-clipping approach implemented in Sub-
read should contribute to its better quantification results.

In conclusion, we found that read trimming performed
prior to Subread mapping did not improve read mapping
results and consequently the accuracy of gene expression
quantification was not improved either. The quantification
accuracy was actually found to be slightly higher when read
trimming was not performed. Total RNA-seq quantifica-
tion time was also found to be reduced by up to an order of
magnitude for the datasets used in this study, without read
trimming being performed. Our study suggested that RNA-
seq reads do not need to be trimmed prior to mapping for
the purpose of quantifying expression levels of genes.
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