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ABSTRACT

RNA conformational alteration has significant im-
pacts on cellular processes and phenotypic varia-
tions. An emerging genetic factor of RNA conforma-
tional alteration is a new class of single nucleotide
variant (SNV) named riboSNitch. RiboSNitches have
been demonstrated to be involved in many ge-
netic diseases. However, identifying riboSNitches is
notably difficult as the signals of RNA structural
disruption are often subtle. Here, we introduce a
novel computational framework–RIboSNitch Predic-
tor based on Robust Analysis of Pairing probabili-
ties (Riprap). Riprap identifies structurally disrupted
regions around any given SNVs based on robust
analysis of local structural configurations between
wild-type and mutant RNA sequences. Compared
to previous approaches, Riprap shows higher ac-
curacy when assessed on hundreds of known ri-
boSNitches captured by various experimental RNA
structure probing methods including the parallel
analysis of RNA structure (PARS) and the selective
2′-hydroxyl acylation analyzed by primer extension
(SHAPE). Further, Riprap detects the experimentally
validated riboSNitch that regulates human catechol-
O-methyltransferase haplotypes and outputs struc-
turally disrupted regions precisely at base resolu-
tion. Riprap provides a new approach to interpret-
ing disease-related genetic variants. In addition, we
construct a database (RiboSNitchDB) that includes
the annotation and visualization of all presented ri-
boSNitches in this study as well as 24 629 predicted

riboSNitches from human expression quantitative
trait loci.

INTRODUCTION

RiboSNitch, an SNV located in an RNA that alters its
secondary structure, has the potential to influence RNA
biogenesis and regulation (1–5). RiboSNitch exists in di-
verse types of RNA sequences, including tRNAs (6,7), mi-
croRNAs (8–10), coding sequences (11–13), as well as 5′
and 3′ untranslated regions (UTRs) (14–18). RiboSNitch is
also emerging in genome-wide association studies (GWAS)
(17,19) or expression quantitative trait loci (eQTL) studies
(20). To uncover the locations and roles of riboSNitches in
the human genome, it is important to develop a systematic
method to identify and annotate them.

While experimental approaches to identifying ri-
boSNitches (21,22) are time-consuming, computational
prediction of riboSNitches is still challenging (23). The
general RNA folding algorithms, such as RNAfold (24) and
RNAstructure (25), combined with a dissimilarity metric,
can be applied to measure the structural difference between
two RNA sequences (23). In the dissimilarity calculation,
it has been reported that utilizing the base pairing proba-
bilities (BPPs) of RNA structure ensembles rather than the
binary output of paired or unpaired states from minimum
free energy RNA structures can achieve better performance
in riboSNitch prediction (19,23). Recently developed algo-
rithms that intrinsically compare RNA structures between
two RNA sequences improve the riboSNitch detection
accuracy (23). In particular, SNPfold (17) calculates the
Pearson correlation coefficient; remuRNA (26) compares
the relative entropies; and RNAsnp (19) provides both
Euclidian distance and Pearson’s correlation measurement.
In general, algorithms that consider local instead of global
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structural change perform better in the prediction (23).
Even though algorithms designed specifically for predicting
riboSNitches outperform general RNA folding algorithms,
the accuracy of riboSNitch prediction is far from perfect
(23). In addition, it has been reported that the design of
the metric used to measure RNA structural variation is
the reason of the better performance of the specialized
methods (23).

We introduce a novel method for riboSNitch identifica-
tion, named RIboSNitch Predictor based on Robust Anal-
ysis of Pairing probabilities (Riprap), which performs dif-
ferential analysis of local structural configurations between
wild-type (WT) and mutant RNA sequences. To demon-
strate its advantage, we systematically compare Riprap with
other existing methods on established experimental bench-
marks from various types of RNA structure probing assays
including parallel analysis of RNA structure (PARS) (22)
and SHAPE (21). We also apply Riprap to a specific dataset
of SNVs that regulate human catechol-O-methyltransferase
(COMT) haplotypes and verified that Riprap can de-
tect pathogenic riboSNitches. In addition, we present Ri-
boSNitchDB, a comprehensive database for annotation and
visualization of riboSNitches in human. Two groups of ri-
boSNitches with different confidence levels are deposited in
RiboSNitchDB that includes hundreds of PARS validated
riboSNitches in human, and tens of thousands of predicted
riboSNitches by applying Riprap to the human eQTLs.
We further annotate the riboSNitches by checking whether
they co-localize with RNA binding protein (RBP) bind-
ing sites, miRNA targeting sites, and N6-methyladenosine
(m6A) modification sites, as well as whether they are asso-
ciated with diseases in ClinVar database (27).

MATERIALS AND METHODS

Overview of the Riprap framework

Riprap contains three steps for riboSNitch identification
(Figure 1): first, we employ general RNA folding algorithms
to generate BPPs representing RNA conformation profiles
of a given pair of WT and mutant RNAs that differ by an
SNV. The RNA folding algorithms we use include RNAfold
(24), RNAstructure (25) and UNAFold (28). Riprap pro-
vides the option for users to select one of the three afore-
mentioned folding algorithms in calculating the BPPs. Sec-
ond, we perform differential analyses of the BPPs between
the WT and mutant RNAs for all possible local regions
around the SNV. The local regions we consider are from a
window of three bases to the full sequence length, where the
minimum size of the window is adjustable. Third, we derive
structural disruption scores (named as Riprap scores) based
on the differential analyses, and report the largest score
and the corresponding local region. The detailed workflow
is described in the following subsections. The Riprap soft-
ware is implemented in Python (2.7) and is freely avail-
able at http://people.umass.edu/ouyanglab/riprap and http:
//github.com/ouyang-lab/Riprap.

Calculation of base pairing probabilities

We calculate the BPPs for individual bases in both the WT
and mutant RNAs from the BPP matrices (BPPMs) pro-

   WT    …TGACCTTTAATGGCTTTACGGCAAAG… 
Mutant …TGACCTTTAATGACTTTACGGCAAAG… 

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50

−5
0

−4
0

−3
0

−2
0

− 1
0

0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Selected region 

B
P

P 
Position relative to SNV Right boundary 

Le
ft 

bo
un

d a
ry

 
6 

Region score 
0 

−20 −10 0 10 20
0.00

0.25

0.50

0.75

1.00

WT
Mutant

Input RNA sequence pair

Select one RNA folding algorithm

W
T 

B
P

P 

Position relative to SNV 
−20 −10 0 10 20

0.00

0.25

0.50

0.75

1.00

−20 −10 0 5 10 20
0.00

0.25

0.50

0.75

1.00

M
ut

an
t B

P
P 

Position relative to SNV 

Output structure disrup�on score and region

Generate RNA base pairing probability

e.g., RNAfold, UNAfold, RNAstructure, etc.

Figure 1. Flowchart of the Riprap program for a pair of WT and mutant
sequences differing by an SNV. The heatmap indicates the Riprap score
of structural disruption in all possible regions that contain the SNV. The
structurally disrupted region selected by Riprap is highlighted in gray.

duced by general RNA folding algorithms, e.g. RNAfold
(24), RNAstructure (25) and UNAFold (28). For a specific
base i in an RNA sequence, its BPP is given by:

pi =
n∑

j=1

pi j (1)

where pi j denotes the probability that the ith base is paired
with the jth base (the value on the ith row and the jth col-
umn in the BPPM), and n is the length of the sequence. We
generate the vectors of BPPs for both the WT and mutant
RNAs, respectively.

The magnitude and statistical significance of structural dis-
ruption of a local region

In Riprap, we propose a robust measurement for character-
izing structural disruption of a local region. Without loss
of generality, the coordinate of the SNV site is assumed to
be 0. For a given region [a, b] (a ≤ −1, b ≥ 1) that covers
the SNV, we assess the structural disruption by comparing

http://people.umass.edu/ouyanglab/riprap
http://github.com/ouyang-lab/Riprap
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the BPPs of the WT and mutant RNAs. Specifically, we em-
ploy the following steps. First, we calculate the magnitude
of structural disruption defined as the fold change of the
median BPPs of the WT and mutant RNAs in the local re-
gion:

FC [a, b] = max
(

mwt [a, b]
mmut [a, b]

,
mmut [a, b]
mwt [a, b]

)
, (2)

where m[a, b] is the median pi within the local region [a, b].
The median BPP provides a robust measurement of the
structural accessibility of a local region, Thus, FC[a, b]
measures the magnitude of structural disruption in terms
of the change in structural accessibility in the local region
[a,b]. Second, we define the statistical significance P[a, b]
of structural disruption as the P-value of the Kolmogorov–
Smirnov test of the BPPs defined in Equation (1) of the
WT and mutant RNAs in the local region [a, b]. The
Kolmogorov–Smirnov test is a robust approach to assess-
ing whether two samples come from the same population
without assuming the distributions of the datasets. Third,
we develop a summarizing score by combining the magni-
tude and the statistical significance of the structural disrup-
tion of the local region:

S[a, b] = FC[a, b] · (−log10(P[a, b])). (3)

Corley et al. (23) stated that designing the metric used
to measure structure differences is the key to riboSNitch
prediction algorithms. So we aim to construct an effective
score to measure the difference. The combination of the
magnitude and significance of the measured difference has
been demonstrated to be robust in selecting differentially
expressed genes by the work of Xiao et al. (29). So, we bor-
row the idea from Xiao et al. to construct the score shown
in Equation (3). The above structural disruption score can
be measured for any local region.

Selection of the focal region of structural disruption induced
by an SNV

For a specific SNV, the Riprap algorithm is designed to re-
port a region with the maximum structural disruption score
(or Riprap score) over all possible local regions covering the
SNV: [

aopt, bopt
] = argmaxa,b S [a, b] . (4)

Specifically, we first search the WT and mutant RNAs
with scanning windows of varying lengths (ranging from
three bases to the full length of the sequence) covering the
SNV, where the minimal scanning window size is adjustable.
Then, we identify the RNA region with the maximal struc-
tural disruption score at the single nucleotide resolution.
The Riprap algorithm does not need training datasets or
contain tuning parameters.

Receiver operating characteristic (ROC) analysis

The ROC analysis is performed with the R package pROC
version 1.16.1 (30). We followed the work by Corley et al.

(23) to define the ROC curve’s ‘best’ point as the point clos-
est to the top left corner of the graph. Based on the thresh-
old yielding the best point, we report the accuracy, speci-
ficity, and sensitivity values in Supplementary Table S1.

Datasets collection

We evaluate the prediction performance of Riprap and
other existing algorithms using both benchmarks from the
PARS (22) and the SHAPE (31) studies. The PARS study
includes a dataset of non-redundant riboSNitches and non-
riboSNitches compiled by Corley et al. (23) in a family trio
of human lymphoblastoid cell lines (22). The PARS dataset
contains rigorously validated subsets of 11 ‘probed’, 63
‘validated’ and 223 ‘symmetric’ riboSNitches. The ‘probed’
subset contains the most rigorously validated riboSNitches
that were confirmed using chemical probing, an orthogo-
nal RNA structure mapping method. The ‘validated’ subset
includes those validated by allele-specific mapping of the
family trio. The ‘symmetric’ subset represents those con-
gruously detected as riboSNitches in each of the pairwise
comparisons between the father, the mother and the child
in the family trio. The dataset also contains 835 ‘asym-
metric’ riboSNitches that are differently indicated as ri-
boSNitches in each of the pairwise comparison between
the father, the mother and the child. We don’t use ‘asym-
metric’ riboSNitches in our study because of this con-
tradictory result. The equal numbers of top ranked non-
riboSNitches are used as the negative control sets. For
each of the SNVs studied, we extract the sequence of 50
bases upstream and downstream of the SNV site as the
input sequence. No extracted sequences contain multiple
SNVs. We used the hg19 assembly as the annotation in our
analysis.

The SHAPE dataset is composed of SNVs in five RNAs
(the human ferritin light chain (FTL), the Vibrio vulnificus
adenine riboswitch, the Vibrio cholera glycine riboswitch,
the cyclic dimeric guanosine monophosphate riboswitch
and the P4P6 domain of the Tetrahymena thermopile group
I intron) compiled by Ritz et al. (21). In total, the dataset in-
cludes 462 sequences, each of which contains a single-point
mutation. In particular, two sequences contain two SNVs
(nucleotide U to G at position 22 and nucleotide A to U at
position 56) that are within the 5′ UTR of the FTL mRNA
are associated with the hyperferritinemia cataract syndrome
(17,32–33). It was proposed that the two SNVs disrupt the
structure of the iron response element and then affect the
binding of the iron response protein, which causes the ab-
normal regulation of FTL (34,35).

We collect the COMT dataset from the study of Nack-
ley et al. (12). The major human COMT haplotypes are
formed by four SNVs: rs6269, rs4633, rs4818 and rs4680.
rs6269 does not contribute to pain phenotype, so we remove
it from the dataset. COMT gene has four transcript iso-
forms, among which one transcript encodes soluble COMT
(S-COMT) protein and the other three encode membrane-
bound COMT (MB-COMT) protein. We use the longest
transcript, NM 000754 in hg19 Refseq annotation down-
loaded from the UCSC Table Browser (36), among the three
MB-COMT transcripts in our analysis.
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The experimental disruption score and the predicted disrup-
tion score

The structural disruption coefficient (SDC) was proposed
to measure the global structural disruption of an SNV
on the entire RNA sequence (21). The experimental SDC
(eSDC), calculated from the SHAPE probing reactivities
of the entire RNA sequence, has been used to evaluate the
ability of existing RNA folding algorithms for detecting ri-
boSNitches. It is shown that the predicted SDC (pSDC),
based on in silico BPPs of the entire RNA sequence, has in-
sufficient accuracy of predicting eSDCs (21).

Here, we define the experimental score (eRiprap) as the
structural disruption score of Riprap applied to SHAPE
probing reactivities, and the predicted score (pRiprap) as
the structural disruption score of Riprap applied to in sil-
ico BPPs. We calculate the pRiprap and pSDC scores using
the same predicted BPPs from the RNA folding algorithm
RNAfold in the ViennaRNA Package 2.0 (37). Similarly, we
use the same SHAPE reactivity dataset as described above
to calculate the eRiprap and eSDC scores.

To modify SDC for measuring the structure disruption
locally, we calculated the local eSDC and the local pSDC as
the largest eSDC and pSDC value among those of all the
subsequences of the input sequence, respectively.

RiboSNitch database

We design a database for riboSNitch annotation and vi-
sualization, called RiboSNitchDB, which can be accessed
via http://people.umass.edu/ouyanglab/ribosnitchdb/. Ri-
boSNitchDB includes not only all the experimentally
validated riboSNitches presented in this study, but also
the in silico predicted riboSNitches in human eQTL
datasets. We collect the annotation of the deposited ri-
boSNitches based on the following databases: RBP bind-
ing sites downloaded from POSTAR2 (38) (http://lulab.
life.tsinghua.edu.cn/postar/), miRNA targeting sites down-
loaded from UCSC Table Browser (https://genome.ucsc.
edu/cgi-bin/hgTables), N6-methyladenosine (m6A) modifi-
cation sites downloaded from m6AVar (39) (http://m6avar.
renlab.org/), and clinical significance downloaded from
ClinVar (27) (https://www.ncbi.nlm.nih.gov/clinvar/).

To detect riboSNitches in eQTLs, we download the eQTL
datasets from the Genotype-Tissue Expression (GTEx)
database (40) (https://www.gtexportal.org/home/) and the
hg19 Refseq annotation from the UCSC Table Browser
(https://genome.ucsc.edu/cgi-bin/hgTables). After exclud-
ing SNVs with multiple substitutions, we filter out the
eQTLs in intronic and intergenic regions and keep those
eQTLs that are located in mRNAs, which result in 44 170
eQTLs in total. We download the genomic region anno-
tation of the SNVs from the dbSNP database (41) (https:
//www.ncbi.nlm.nih.gov/projects/SNP/).

RESULTS

Riprap improves the accuracy and resolution of riboSNitch
detection

We evaluated the performance of Riprap on three bench-
mark datasets collected from the PARS study (22) (see the

Table 1. The AUCs of the ROC curves for the prediction of riboSNitches
by different methods

Method Probed Validated Symmetric

Riprap 0.868 0.642 0.585
Simple 0.686 0.596 0.579
RNAsnp P-value 0.777 0.583 0.568
RNAsnp dmax 0.769 0.593 0.571
classSNitch** 0.347 0.504 0.542
remuRNA* 0.736 0.557 0.543
SNPfold* 0.703 0.581 0.571

*The values for the methods were directly extracted from Corley et al. (23).
**The lower performance may result from the fact that classSNitch was
trained on the experimental SHAPE data instead of BPP profiles.

‘Datasets collection’ subsection in the ‘Materials and Meth-
ods’ section for detailed description): ‘probed’, ‘validated’
and ‘symmetric’ riboSNitches. Each of the datasets con-
tains a ‘non-riboSNitch’ set of matched size (23). We chose
RNAfold (version 2.1.6 in the ViennaRNA Package 2.0)
(37), which is the default folding algorithm in Riprap, to
generate the input BPPMs of the WT and mutant mRNA
sequences in these datasets. We compared Riprap with five
other existing methods for riboSNitch identification. The
first method we considered is based on the simple Euclidean
distance of the BPPMs, denoted by ‘Simple’. The second
method we considered is RNAsnp (19) (version 1.1), which
is based on the largest Euclidean distance of the BPPs of all
regions that are larger than 10 bases (we used -l 10). To ac-
curately measure the structure disruption, we used the dmax
output of RNAsnp (19) as the score to be compared. The
third method is classSNitch (42) (version 1.0), which builds
a classifier based on training data from SHAPE datasets
using features that imitate the judgement of human beings
on structural change. The fourth and fifth methods are re-
muRNA (26) and SNPfold (17) (version 1.01) tested in Cor-
ley et al. (23). We listed the commands for each method in
Supplementary Table S2. We applied the proposed Riprap
approach and the five existing methods to aforementioned
benchmark datasets. We generated the ROC curves and cal-
culated the area under curve (AUC) values for the six meth-
ods being compared on the three datasets (Table 1). One
can see that Riprap has the highest AUC values among all
the methods being compared on all the three benchmark
datasets. The AUCs of Riprap differentiate the benchmark
datasets with increased values in the order of ‘symmetric’,
‘validated’ and ‘probed’ riboSNitches, which are consistent
with the increasing levels of rigorousness in constructing
these benchmark datasets (23). To test whether the predic-
tion performances are better than random guessing (AUC
= 0.5), we employed the Mann–Whitney test for statistical
significance. The AUCs of Riprap on the ‘probed’ (0.868),
‘validated’ (0.642) and ‘symmetric’ (0.585) datasets are sig-
nificantly higher than 0.5 with much lower P-values com-
pared to those of Simple, RNAsnp and classSNitch (Fig-
ure 2A–C). Since RNAsnp also outputs an empirical P-
value for the distance score, we examined the performance
of the P-value as well. We found that Riprap outperforms
RNAsnp no matter which metric in RNAsnp was used (Ta-
ble 1). If we apply the conventional P-value cutoff 0.05 to
RNAsnp for the riboSNitch detection, the method fails to

http://people.umass.edu/ouyanglab/ribosnitchdb/
http://lulab.life.tsinghua.edu.cn/postar/
https://genome.ucsc.edu/cgi-bin/hgTables
http://m6avar.renlab.org/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.gtexportal.org/home/
https://genome.ucsc.edu/cgi-bin/hgTables
https://www.ncbi.nlm.nih.gov/projects/SNP/
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Figure 2. ROC analysis of Riprap, RNAsnp (dmax), Simple and classSNitch on riboSNitch benchmarks. (A–C) Shown are ROC curves for Riprap,
RNAsnp, Simple and classSNitch on ‘probed’, ‘validated’ and ‘symmetric’ riboSNitches, respectively. The ROC curves for Riprap are highlighted as solid
lines, those for RNAsnp are highlighted as dashed lines, those for Simple are highlighted as dotted lines and those for classSNitch are highlighted by
dotdash lines. The colors of the curves represent the significance of the test; the null hypothesis of the test is that the AUC equals to 0.5. According to the
color bars of P-values in the plots, the warmer the color is, the more significantly different the AUC is from 0.5.

detect any riboSNitch in the ‘probed’ dataset (Supplemen-
tary Table S1), which suggests that it might not be a good
strategy to call riboSNitches based on the P-value provided
by RNAsnp. To note, classSNitch was originally designed
for analyzing SHAPE data instead of the BPP profiles, so it
is as expected that we have observed the lower performance
in classSNitch on this dataset.

As expected, Riprap and RNAsnp, taking advantage of
the local measurement, both outperform the other methods
on the most rigorously validated benchmark dataset. The
better performance of Riprap compared to RNAsnp pre-
sumably results from the combination of both the magni-
tude and the statistical significance in the differential anal-
ysis, which is shown in Supplementary Figure S1. We then
investigated why Riprap achieves better performance than
RNAsnp as a local measurement by dissecting the identi-
fied regions by Riprap and RNAsnp. To call riboSNitches,
we established a cutoff similar to Corley et al. (23). Specif-
ically, we used the point closest to the top left corner on
the ROC curve for the ‘probed’ dataset. If the calculated
Riprap score is not less than the cutoff, we report the cor-
responding SNV as a riboSNitch. We compared the false
negatives (FNs) and false positives (FPs) of Riprap with
those of RNAsnp. Riprap has only one FN and two FPs,
which were also wrongly predicted by RNAsnp. As compar-
ison, RNAsnp has three more FNs and one more FPs than
Riprap (Figure 3A). One can see that Riprap identified the
three-base region around rs1050818, indicating its ability to
detect the structurally disrupted regions of riboSNitches at
base resolution (Figure 3B). In rs1047993 and rs1051677,
although the magnitudes of the structural change are sub-
tle, they were captured by Riprap as the significance test P-
values of the regional structural change were small (3.0e-3
and 8.1e-7) (Figure 3C and D). It indicates the advantage of
taking both the magnitude and statistical significance into
consideration for riboSNitch detection. Furthermore, the
disrupted regions called by Riprap are generally more fo-
cal than those by RNAsnp, especially on those missed by

RNAsnp (Figure 3A). A focal region would be more infor-
mative than a relatively larger one in guiding the study of the
consequences induced by a riboSNitch. In sum, Riprap’s
improvement confirms that local measurement and distance
metric design are two essential factors in the riboSNitch de-
tection.

Assessing the robustness of Riprap

To further assess the advantage of combining the magni-
tude and the statistical significance of structural disrup-
tion, we applied the two components to the benchmark
datasets individually. We found that neither of them can
achieve as high AUCs as the combined Riprap score (Figure
4A). Interestingly, we found that using the Riprap’s statisti-
cal significance of structural disruption alone outperforms
RNAsnp in the ‘probed’ dataset.

To test the robustness of Riprap, we then examined dif-
ferent parameters used in Riprap. First, we tested whether
it affects the performance to use different minimum win-
dow size in Riprap. The consistently good performance of
Riprap with various minimum window sizes demonstrated
the robustness of Riprap score (Figure 4B). In addition,
we assessed the performance of Riprap when given BPPMs
from different RNA folding algorithms as input. We named
the Riprap algorithm applied on the BPPMs from RNAfold
(version 2.1.6), UNAFold (version 3.8) and RNAstruc-
ture (version 5.4) as Riprap-RNAfold, Riprap-UNAfold
and Riprap-RNAstructure, respectively. The AUC values
of the ROC curves consistently increase with the rigor-
ousness of the benchmark dataset in the order of ‘sym-
metric’, ‘validated’ and ‘probed’ riboSNitches for all three
methods (Supplementary Figure S2a–c). Riprap-RNAfold
achieved relatively better performance compared to Riprap-
UNAfold and RNAstructure in the ‘probed’ riboSNitches
(Supplementary Figure S2a) while gained similar perfor-
mance in the other benchmark datasets (Supplementary
Figure S2b and c), which resembles the patterns of per-
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Figure 3. Riprap identifies the focal regions of structurally disrupted by RiboSNitches. (A) Shown are the barplot of the structural disrupted regions
predicted by Riprap and RNAsnp on ‘probed’ riboSNitches. The X-axis shows the relative position of the region boundaries to the SNV sites; The Y-
axis shows the ids of the 11 ‘probed’ riboSNitches. Disrupted region predicted by Riprap and RNAsnp are highlighted in red and blue, respectively. The
predictions made by Riprap and RNAsnp are listed at the left side of the barplot, where a tick and a cross means prediction as a riboSNitch and a
non-riboSNitch, respectively. (B) rs1050818. (C) rs1047993. (D) rs1051677. The X-axis represents the relative position to the identified riboSNitch, where
negative numbers indicate the positions at the 5′ direction of the riboSNitch, and positive numbers indicate the positions at the 3′ direction. The Y-axis
represents the BPPs. The blue curve is for the WT RNA, while the red curve is for the mutant RNA. The finally selected region by Riprap is highlighted in
gray.

formance from using these RNA folding algorithms as re-
ported in Corley et al. (23). Thus, we make RNAfold as the
default folding algorithm in the Riprap program and we rec-
ommend selecting RNAfold in the Riprap usage.

Riprap shows advantages to evaluate the structure disruption
in SHAPE data

To further demonstrate the practical merit of our method,
we compared Riprap with SDC on 437 SNVs with SHAPE
reactivity data (31). SDC is a global approach based on
whole sequence correlations between the WT and mutant
structural profiles (21) (described in ‘Materials and Meth-
ods’ section), which cannot determine the boundaries of
structurally disrupted regions. We calculated the eSDC
score and predicted SDC score (pSDC) (21), as well as the
experimental Riprap score (eRiprap) and predicted Riprap
score (pRiprap) for these SNVs (described in ‘Materials
and Methods’ section). The eSDC and eRiprap scores of
these 437 SNVs served as the benchmarks for their pSDC
and pRiprap scores, respectively. We first specified exper-

imentally true positive and true negative sets with equal
size of n based on eSDC and eRiprap scores for SDC and
Riprap, respectively. We then generated ROCs using pSDC
and pRiprap scores. Next, we calculated the correspond-
ing AUCs for multiple choices of n. As shown in Figure
5A, the prediction performance of pRiprap on eRiprap in-
creases as n decreases, suggesting the higher validity of the
top riboSNitches measured by eRiprap. This pattern is ex-
pected when pRiprap is consistent with eRiprap. However,
the AUCs of pSDC fluctuate when n increases, suggesting
that pSDC is less consistent with eSDC (Figure 5A). In
addition, pRiprap has much better prediction accuracy on
eRiprap than pSDC on eSDC for the top riboSNitches (Fig-
ure 5A), which shows the advantage of measuring SNV-
induced structural disruption by local metrics embedded
in Riprap. As stated by Corley et al. (23), local predic-
tors of structural changes perform in general better than
global approaches. Therefore, to further investigate the per-
formance of SDC, we constructed a local SDC metric (de-
scribed in ‘Materials and Methods’ section) to measure the
structure disruption. As expected, we found that the local
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Figure 4. AUC of ROC barplots in Riprap with magnitude or significance only and AUC of ROC line chart of Riprap using different minimum window
size. (A) Shown are the barplot of the AUC values of ROC analysis for Riprap, Riprap-FC and Riprap-p applied to ‘probed’, ‘validated’, ‘symmetric’,
‘asymmetric’ and ‘all’ datasets, respectively. The corresponding ROC curves for Riprap, Riprap-FC and Riprap-p are indicated by red, blue and green bars,
respectively. (B) Shown are the line chart of the AUC values of ROC analysis for Riprap with different minimum spanning window size. The X-axis is the
minimum window size and the Y-axis is the AUC value of ROC analysis. Riprap applied to ‘probed’, ‘validated’ and ‘symmetric’ are highlighted by red,
blue and green, respectively. Riprap-FC, score based on the fold change of median BPPs. Riprap-p, score based on significance test.

pSDC has much worse prediction accuracy on the local
eSDC (Supplementary Figure S3) compared to the global
pSDC on eSDC (Figure 5A) possibly due to deviation from
of its original design. These results confirm again the ad-
vantage of the Riprap score as a local structure disruption
metric.

Furthermore, we applied Riprap to two SNVs that were
associated with the hyperferritinemia-cataract syndrome
and were probed by SHAPE (21) (Figure 5B and C). The
two SNVs are located in the 5′ UTR of the FTL gene close
to the known iron response element (IRE). Strikingly, al-
though the coordinates of both SNVs do not overlap with
the IRE, the structurally disrupted regions predicted by
Riprap for both SNVs covered and centered on the IRE
(Figure 5B and C). As a negative control, we also applied
Riprap to another SNV which was demonstrated to have
no structural change effect on FTL (20). We found that
this mutation is predicted as a non-riboSNitch by Riprap,
which is validated by the similar profiles between the WT
and mutant sequences in terms of both SHAPE reactivi-
ties and BPPs (Figure 5D). This analysis supported a pro-
posed mechanism that mutations outside of the IRE may
disrupt its structure and subsequent interaction with the
IRE-binding protein (20).

Riprap identifies functional riboSNitch in human Catechol-
O-Methyltransferase haplotypes

Nackley et al. reported that human COMT haplotypes, as-
sociated with pain sensitivity, regulate protein expression

by altering mRNA secondary structure (12). The authors
found there are two synonymous (rs4633 and rs4818), and
one non-synonymous (rs4680) SNVs that contribute to pain
sensitivity phenotypes by modulating the COMT enzymatic
activity and protein expression. Specifically, rs4818, one
of the synonymous SNVs that can alter the mRNAs’ sec-
ondary structure, results in the largest reduction among the
haplotypes in both enzymatic activity and protein expres-
sion. This study encouraged us to evaluate Riprap in differ-
entiating these well-studied SNVs. We applied Riprap to the
three SNVs within two COMT mRNAs that encodes two
distinct proteins: S-COMT and MB-COMT (Figure 6A, see
details in ‘Materials and Methods’ section). We found that
rs4818 obtained significantly higher Riprap score compared
to rs4633 and rs4680, with P-value equal to 0.04 and 0.05,
respectively (Figure 6B), which shows that Riprap success-
fully captured this experimentally-validated riboSNitch. In
addition, Riprap identifies that the structural disruption re-
gion of rs4818 is from the 635th to the 699th nucleotide and
from the 2nd to the 490th nucleotide in MB-COMT and
S-COMT, respectively (Figure 6C and Supplementary Fig-
ure S4). Nackley et al. experimentally demonstrated that the
critical region whose secondary structure contributes to the
largest difference in COMT haplotypes is from the 625th
to the 701st nucleotide and from the 403rd to the 479th
nucleotide in MB-COMT and S-COMT, respectively (12),
which significantly overlap with those reported by Riprap
(hypergeometric test P-value equal to 2.1e-114 and 1.6e-50
for MB-COMT and S-COMT, respectively). These results
not only validate Riprap’s predictions experimentally, but
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Figure 5. Comparisons between the local metric Riprap score S and the global metric SDC and assessments on SHAPE data. (A) AUC values of ROC
analysis on the top and bottom n SNVs ranked by eSDC and eS scores, respectively. The red solid curve and blue dashed curve represent the AUCs of
pSDC on eSDC, and pS on eS, respectively. (B) The SHAPE reactivities and the ‘1-BPP’ signals for the WT and mutant RNAs for the SNV U22G in the
human FTL 5′ UTR. The X-axis represents the position on the sequence. The WT RNA is highlighted with blue and the mutant RNA is highlighted with
red. The finally selected region of structural disruption by Riprap is highlighted with a gray box. A vertical black line highlights the position of the SNV on
the sequence. (C) Plots similar to (B) for the SNV A56U in the human FTL 5′ UTR. (D) Plots similar to (B) for the SNV G4A in the human FTL 5′ UTR,
which shows no structure change from the mutation. No vertical black line was shown for the SNV position because the SNV is outside the boundary of
this visualization. The schematic diagram of the human FTL 5′ UTR with the IRE indicated in blue is above the plots. BPP: base pairing probability.
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Figure 6. Riprap detects the riboSNitch in COMT haplotypes. (A) A schematic diagram showing COMT gene and SNV positions. (B) Barplot of the
Riprap scores gained by rs4633, rs4818 and rs4680. Y-axis is the Riprap score. n = 2 (Riprap scores in MB-COMT and S-COMT) for each SNV and
the error bars are indicated in the plots. *P ≤ 0.05 in one-sided Student’s t-test. (C) BPP curves of rs4633, rs4818 and rs4680 in MB-COMT. The X-axis
represents the nucleotide position on the mRNA. The Y-axis represents the BPPs. The blue curve is for the WT RNA, while the red curve is for the mutant
RNA. The SNV position is highlighted by a red star and a black vertical line. The finally selected region by Riprap is highlighted in gray.

also indicate that Riprap is potentially applicable to detect-
ing pathogenic riboSNitches in the human genome.

Database of riboSNitches with annotation and visualization

Based on our knowledge, even though certain riboSNitch
prediction web server exists (19), there is no such an exist-
ing database consisting of both the experimentally validated
and precisely predicted riboSNitches with annotation and
visualization functions. For example, RBP-Var (43) only
contains riboSNitches that are predicted by RNAsnp (19).
To fill this gap, we constructed a comprehensive database,
RiboSNitchDB, for the inquiry, annotation and visualiza-
tion of riboSNitches (Figure 7). RiboSNitchDB includes
all the examined riboSNitches in this study as well as tens-
of-thousands of predicted riboSNitches by Riprap. We in-
cluded the information of RBPs’ binding peaks, microRNA
(miRNA) target sites, m6A RNA methylation sites, and the
disease association as the annotation for each deposited
riboSNitch (Supplementary Table S3). These annotations
can reveal the potential consequences of the disrupted RNA
structure by the riboSNitches and the disease-related an-
notation also makes it available to study human diseases
from a RNA secondary structure perspective. For exam-
ple, rs1051677 is detected as a riboSNitch in PARS, and it
is associated with radiation complications and rectal can-
cer (44,45). We show that there are 35 distinct RBPs in
12 different cell lines that bind within upstream 100 nt to
downstream 100 nt around the position of rs1051677 (Sup-
plementary Figure S5a), which reveals the possibility that
this riboSNitch affects the RBP binding via altering the

structure. Users can also visualize the nucleotide sequence,
BPPM and the MFE structure of both the WT and mutant
sequence, as well as the structure-disrupted region (Sup-
plementary Figure S5b–d). In addition to the riboSNitches
detected experimentally, we also included the predicted ri-
boSNitches that are associated with gene expression. To
identify them, we used Riprap on 44 170 transcriptomic
eQTLs from the GTEx (46) database (see ‘Materials and
Methods’ section). With the aforementioned Riprap score
cutoff, we identified 24 629 riboSNitches, a major (56%)
subset of transcriptomic eQTLs. By including eQTLs with
their Riprap scores, RiboSNitchDB provides a comprehen-
sive resource of not only the known riboSNitches but also
the riboSNitch candidates that are potential targets in the
future study. RiboSNitchDB also provides the searching
function via SNP id and genomic location for the users who
have their interested riboSNitches to investigate. In sum,
we constructed the first database that associates experimen-
tally and computationally predicted riboSNitches with the
information of gene expression regulation, RBP binding,
miRNA targeting, m6A modification and clinical signifi-
cance together by a large-scale application of Riprap, which
will be helpful for interpreting the genetic variants from a
novel perspective.

DISCUSSION

We have developed Riprap, a new method for identifying
RNA structural disruption induced by SNVs. Riprap max-
imizes a novel structural disruption score over all possible
local regions around an SNV. We compared Riprap with
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Figure 7. RiboSNitch database construction.

existing computational methods on established riboSNitch
benchmark datasets. We demonstrated improved perfor-
mance of Riprap on identifying known riboSNitches. In ad-
dition, we showed that Riprap can detect the focal regions
of structural disruption by applying Riprap to the dataset
of human COMT haplotypes.

Riprap provides a novel metric by combining the mag-
nitude and statistical significance of structural differences,
which detects the consistent changes of BPPs in focal re-
gions. We showed that measuring the consistent structural
alterations of consecutive bases outperforms summarizing
the differences of individual bases as did in other exist-
ing methods. Although the PARS benchmarks were con-
structed by comparing the PARS score in 5 nt around the
SNVs (22), we found the performance of Riprap is robust
at different minimum window size settings. Even though
the difference of the accuracies for Riprap, Simple and
RNAsnp on the ‘validated’ and ‘symmetric’ riboSNitches
is not as high as that on the ‘probed’ riboSNitches, the fact
that the difference follows the rigorousness of the bench-
mark datasets demonstrates the ability of Riprap on iden-
tifying high-confident riboSNitches. In the current version
of Riprap, we implemented the score cutoff determined in
the dataset that includes the most rigorously validated ri-
boSNitches (‘probed’ dataset in PARS data) as the thresh-
old to call a riboSNitch. The performance of Riprap with
the score cutoff is similar to that with the threshold deter-
mined by the method of Corley et al. (23) in both ‘validated’
and ‘symmetric’ riboSNitches (Supplementary Table S1),
which indicates the robustness of the score cutoff.

The structural disruption scores and regions outputted
by Riprap are consistent for computationally and exper-

imentally derived base pairing measurements. It suggests
that Riprap may be used to leverage existing RNA folding
algorithms (e.g. RNAfold, UNAFold (28), RNAstructure
(25) and Sfold (47), etc.), as well as experimental measure-
ments (e.g. SHAPE (21), PARS (22,48) and their derivatives
(49,50)) to detect riboSNitches and structurally disrupted
regions. In addition, reconstructed RNA structures from
high-throughput experimental assays (51,52) can be incor-
porated into Riprap to further improve the identification of
riboSNitches.

Riprap focuses on detecting the focal regions around
riboSNitches that disrupt RNA structures. Some ri-
boSNitches may cause long-range changes in RNA struc-
ture. For example, a newly discovered, clinically relevant ri-
boSNitch in the 3′ UTR of FKBP5 was reported to alter the
structure and the efficiency of microRNA binding located at
∼140 bases upstream regions (53). The current implemen-
tation of Riprap is designed to detect the focal region of
structural disruption using scanning windows that include
the SNV position. This design scheme will likely decrease
the disruption score of a long-distance structure change by
including the unchanged regions between the region and
the SNV site. We will extend Riprap to accurately detect
distantly located structure alteration regions related to a ri-
boSNItch in future studies.

Riprap can be applied to analyze SNVs genome-wide. In
addition, Riprap can be used to link SNVs with RNA func-
tions, such as stability, degradation, translation or splic-
ing. Riprap can also be incorporated into GWAS studies to
provide functional annotation, interpretation, and prioriti-
zation of genetic variants associated with diseases, behav-
iors, and other phenotypes. Our database, RiboSNitchDB,
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consists of both experimentally validated and predicted ri-
boSNitches, which is a comprehensive resource for future
study in RNA secondary structure. We will keep updating
our database when new public riboSNitch datasets are avail-
able and include further large-scale applications of Riprap
to the SNVs in different species.

DATA AVAILABILITY

Riprap was implemented in Python (version 2.7.10). The
source code of Riprap can be freely downloaded at
http://people.umass.edu/ouyanglab/riprap or http://github.
com/ouyang-lab/riprap. The database RiboSNitchDB can
be freely accessed at http://people.umass.edu/ouyanglab/
ribosnitchdb.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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