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ABSTRACT

Large-scale metagenomic assemblies have uncov-
ered thousands of new species greatly expanding the
known diversity of microbiomes in specific habitats.
To investigate the roles of these uncultured species
in human health or the environment, researchers
need to incorporate their genome assemblies into
a reference database for taxonomic classification.
However, this procedure is hindered by the lack of
a well-curated taxonomic tree for newly discovered
species, which is required by current metagenomics
tools. Here we report DeepMicrobes, a deep learning-
based computational framework for taxonomic clas-
sification that allows researchers to bypass this limi-
tation. We show the advantage of DeepMicrobes over
state-of-the-art tools in species and genus identifica-
tion and comparable accuracy in abundance estima-
tion. We trained DeepMicrobes on genomes recon-
structed from gut microbiomes and discovered po-
tential novel signatures in inflammatory bowel dis-
eases. DeepMicrobes facilitates effective investiga-
tions into the uncharacterized roles of metagenomic
species.

INTRODUCTION

Shotgun metagenomic sequencing provides unprecedented
insight into the critical functional roles of microorganisms
in human health and the environment (1). One of the fun-
damental analysis steps in metagenomic data interpretation
is to assign individual reads to their taxon-of-origin, which
is termed taxonomic classification. Many of the large-scale
metagenomic assembly efforts have reconstructed thou-
sands of uncultivated novel species from metagenome sam-
ples (2–4), which hugely expands the known diversity of mi-
crobiomes in specific habitats like the human gut. Develop-
ing methods for investigating the role of these novel uncul-
tured organisms in the health state of their hosts remains an
important and unsolved challenge in microbiome research.

Incorporating these metagenomic species (MGS) into
reference databases for use with current metagenomics tools
for taxonomic classification proves difficult and time con-
suming. Metagenome-assembled genomes (MAGs) are typ-
ically highly fragmented compared to genomes obtained
using whole genome sequencing from cultures. This frag-
mentation degrades the effectiveness of traditional align-
ment tools. Tools using rare or unique short sequences (k-
mers) for classification also suffer performance losses with
the presence of unknown microbes. Kraken (5), for exam-
ple, builds a lowest common ancestor (LCA) database to
store k-mer information of each organism. Unfortunately,
this process relies on a well-curated taxonomic tree retrieved
from the taxonomy database maintained by National Cen-
ter for Biotechnology Information (NCBI). Many of the
newly discovered MGS do not have representative taxon
nodes in the database.

Machine learning techniques provide a possible solu-
tion to bypass the curation of a taxonomic tree. Previ-
ous machine learning algorithms for taxonomic classifica-
tion mainly utilize handcrafted sequence composition fea-
tures such as oligonucleotide frequency (6,7). These ap-
proaches either underperform alignment methods in terms
of precision and recall or require prohibitive running times
when processing large datasets (8). Deep learning is a class
of machine learning algorithms capable of modeling com-
plex dependencies between input data (e.g. genomic frag-
ments) and target output variables (e.g. species-of-origin) in
an end-to-end fashion (9). In addition, the fragmentation
of reference genomes become a negligible problem since
genomes are cut to the length of sequencing reads for train-
ing.

Here we describe DeepMicrobes, a deep learning-based
computational framework for taxonomic classification of
short metagenomics sequencing reads. To illustrate its ap-
plication in MGS investigation, we trained DeepMicrobes
on the previously defined complete bacterial repertoire of
the human gut microbiota (2). The repertoire is composed
of 2505 species, most of which are identified by metagenome
assembly of human gut microbiomes. The general usage
outline of DeepMicrobes is presented in Figure 1A. We
show that DeepMicrobes surpasses state-of-the-art taxo-
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Figure 1. Overview of DeepMicrobes. (A) DeepMicrobes facilitates taxonomic classification for cohorts of interest using newly discovered species in
large-scale metagenomic assembly studies. (B) The deep neural network architecture of DeepMicrobes. (C–E) The algorithm details of k-mer embedding,
bidirectional LSTM and the self-attention mechanism, respectively. LSTM, long short-term memory.

nomic classification tools in genus or species identification
and performs at least comparably in abundance estimation
on the gut-derived data. We reanalyzed a gut microbiome
dataset from the Integrative Human Microbiome Project
(iHMP) (10) using DeepMicrobes and discovered potential
uncultured species signatures in inflammatory bowel dis-
eases.

MATERIALS AND METHODS

Data for model training

We downloaded 2505 representative genomes of hu-
man gut species identified previously by a large-scaled
assembling study of human gut microbiomes, as well

as the taxonomy assigned to them above the species
level, from ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/
umgs analyses. This species collection is composed of 1952
unclassified metagenomic species (UMGS) and 553 gut
species from the human-specific reference (HR) database,
hereafter referred to as HGR (Supplementary Table S1).

We trained separate models for species and genus clas-
sification. The genomes were excluded from training the
genus model if they were not assigned at the genus level.
For each classification category, namely species or genus,
we simulated equal proportion of 150 bp reads with the
ART Illumina read simulator (11) using HiSeq 2500 er-
ror model (HS25), paired-end reads with insert size of 400
and standard deviation of 50 bp. The ART simulator au-

ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/umgs_analyses
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tomatically sampled reads from forward and reverse com-
plement genome strands. A pair of reads were treated as
two single-end reads during training. Reads of all the cat-
egories were shuffled before training. The number of reads
to simulate depended on how many training steps were re-
quired for models to converge. After simulation, we ran-
domly trimmed the reads from 3′ end to 75–150 bp in equal
probability. Each read was given a numerical label accord-
ing to the species or genus that it was simulated from. Reads
along with their labels were converted to the TensorFlow
format TFRecord, a binary format that facilitates reading
input instances into the learning model.

We created evaluation sets for the species and genus mod-
els using the methods described above, except that we ran
ART and trimming using a random seed different from the
one used to generate the training sets and ran the mod-
els using paired-end mode. The evaluation sets were used
to search for optimal hyperparameters and decide when to
stop training. They were not seen during training to protect
against overfitting the models.

Benchmark datasets

Simulation of reads from gut-derived MAGs. We down-
loaded 3269 high-quality MAGs reconstructed from hu-
man gut microbiomes using the ENA study accession
ERP108418 (2) (Supplementary Table S2). We used the fol-
lowing criteria to select high-quality MAGs for benchmark:
>90% completeness, 0% contamination and 0% strain het-
erogeneity, which were determined with CheckM (12). The
genomes used to generate the training set had been ex-
cluded. We used the MAGs assignment method described
previously (2) to assign species label to the MAGs using the
scripts available at https://github.com/Finn-Lab/MGS-gut.
Briefly, the MAGs and training genomes were first con-
verted into a MinHash sketch with default k-mer and sketch
sizes respectively (13). The closest relative of each MAG in
the training set was then determined based on the lowest
Mash distance. Subsequently, each pair of genomes were
aligned with MUMmer 3.23 (14) to obtain the fraction
of the MAG aligned (aligned query, AQ) and average nu-
cleotide identity (ANI) between them. According to previ-
ously established standards for species delineation (15,16),
only MAGs with AQ >60% and ANI >95% were labeled as
the same species as their closest relatives. The pipeline was
also used to compute the similarity between each training
genome and its closest training genome in other species cat-
egories.

These gut-derived MAGs were used to generate the
benchmark datasets used to compare the performance of
different model architectures and the performance of the
best model on reads derived from different sequencing plat-
forms, respectively. To select the best model, we simulated 10
000 paired-end reads per MAG with ART simulator using
HiSeq 2500 error model with an insert size of 400 and stan-
dard deviation of 50 bp. We trimmed the 150 bp reads from
3′ end to 75–150 bp as described above. To simulate reads
with different lengths and error-profiles depending on se-
quencing platforms, we simulated five fixed-length datasets
comprised 10 000 paired-end reads per MAG using different
ART error models (-m 400, -s 50): 75 bp, GenomeAnalyzer

II; 100 bp, HiSeq 2000; 125 bp and 150 bp, HiSeq 2500; 250
bp, MiSeq v3.

Generation of mock communities from gastrointestinal
bacterial isolates. We downloaded 258 whole genome-
sequenced bacterial isolate sequencing data from the Hu-
man Gastrointestinal Bacteria Culture Collection (HBC)
(17) using ENA accession ERP105624 and ERP012217
(Supplementary Table S3). Any isolates ambiguously as-
signed at the genus level were excluded. For each of the ten
mock communities, we simulated relative abundances for
each isolate using a different random seed from a lognormal
distribution, as this method is widely used to model micro-
bial abundance distribution. We used the rlnorm function
in R for random generation with the mean set to 1 and the
standard deviation to 2 (18). We normalized the sum of the
random numbers to 1 by dividing each number by their sum
and randomly sampled 10 million paired-end reads in total
for each mock community. This dataset was used to com-
pare the performance of DeepMicrobes with the other tax-
onomic classification tools with regard to precision, recall,
abundance estimation, classification rate and speed. The
ground truth abundance profiles were generated by sum-
ming the relative abundances, which is the read count pro-
portion, of the isolates according to their genus or species
assignment. The ground truth profiles for genus and species
are available in Supplementary Table S4 and 5, respectively.

Simulation of reads from species absent from reference
databases. We downloaded the 7903 genomes previously
reconstructed from the metagenomes of a wide range of
habitats using NCBI BioProject accession PRJNA348753
(19). These genomes were then aligned to the reference
databases of different taxonomic classification tools using
the pipeline described above to determine their distance
(AQ and ANI) to the species included in each database.
For CLARK (20) and CLARK-S (21) the genomes auto-
matically downloaded via set targets.sh were taken as the
reference for genome alignment. To avoid disadvantaging
Kraken and Kraken 2 (which provide pre-built database in-
dexes), we excluded the genomes released after the update
dates of their pre-built databases from the RefSeq complete
prokaryotic genome database downloaded on 20 September
2019. For DeepMicrobes the 2505 genomes used to create
the training set were taken as the reference for genome align-
ment. We defined the absence of the species from the refer-
ence databases as genome alignments with both AQ <60%
and ANI <95% to their closest relatives in the databases.
We further retained the genomes whose AQ >10%, yielding
a total of 121 genomes whose species were absent from the
databases and prone to false positive classifications (Supple-
mentary Table S6). We simulated 1× coverage of paired-end
reads with length 150 bp using ART simulator (-ss HS 25, -f
1, -m 400, -s 50) for each of the 121 genomes and randomly
trimmed the reads to 75–150 bp.

Performance metrics

Species and genus level performances of DeepMicrobes
were benchmarked using the species and genus classifica-
tion models, respectively.

https://github.com/Finn-Lab/MGS-gut
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Read-level precision and recall. We use read-level preci-
sion and recall to determine the threshold for the con-
fidence score. For each model architecture we select the
threshold making read-level precision of species classifica-
tion >0.95 measured on the benchmark dataset simulated
from gastrointestinal-derived MAGs. For threshold selec-
tion, precision and recall are calculated considering the 32
690 000 paired-end reads as a whole dataset. The number
of total reads is 10 000 when measuring the metrics for each
MAG. The read-level precision and recall of genus classi-
fication are computed for each of the mock communities.
Formally, read-level precision and recall are defined as fol-
lows:

Precisionread = # reads classified correctly
# reads classified

Recallread = # reads classified correctly
# reads

Community-level precision and recall. Community-level
precision and recall describe whether the presence or ab-
sence of taxa (i.e. species or genus) in a microbial commu-
nity is correctly identified by a taxonomic classifier, where

Precisioncommunity = # taxa identified correctly
# taxa identified

Recallcommunity = # taxa identified correctly
# taxa in the truth set

To assess the community-level precision and recall given
an abundance cutoff, we normalize the read count at the
genus level of each taxonomic classifier to sum of 1. We ap-
plied two abundance cutoffs (0.01% and 0.0001%) on the
profiles and only consider predicted genus above the cut-
offs when calculating community-level precision and recall.
Community-level precision and recall are not computed at
the species level, because a large fraction of the isolates rep-
resent unclassified novel species and only a small fraction
of the species is shared between our training set and the
databases of the other taxonomic classification tools. When
comparing the number of identified species for each simu-
lated dataset, we require at least one supporting reads for
the identification of a species.

Classification rate. We do not perform filtering by abun-
dance or read count for the classification rate and abun-
dance estimation benchmarks. We define the classification
of reads in this paper as confidence score >0.50. In our test-
ing, this confidence threshold results in both the species and
genus classification models achieving read-level precision
>0.95 on both the gastrointestinal-derived MAGs and the
mock communities simulated benchmarks. DeepMicrobes
provides the confidence score as an adjustable parameter for
users to modify depending on their different requirements.

Tools like Kraken output hierarchical read counts that
are the sum of assignments at least made at a specific taxon
level. For tools that do not output these values, we gener-
ate them by summing up the number of assignments at and
below the level. For example, we summed up the number of

hits at the level of genus, species, subspecies, and leaf to cal-
culate the number of reads classified by Centrifuge (22) at
the genus level.

Abundance estimation. To generate the abundance profiles
for each taxonomic classifier, we divided each taxon sum by
the total number of reads classified at the species or genus
level yielding an abundance vector summing to one. A previ-
ous abundance estimation benchmark study adopted the L2
(Euclidean) distance for use with taxonomic classification
tools (23). The L2 distance between predicted and ground
truth abundance vectors was calculated using the norm
function implemented in R package PET (https://CRAN.
R-project.org/package = PET). For species quantification
based on the 14 species shared by the database/training set
of all classifiers, we generated species abundance profiles for
each classifier as described above, but only the abundance of
these species was considered when calculating L2 distance.

Model architectures

In this section, we provide the technical details of the deep
learning algorithms used and give the mathematical de-
scription of the network layers and computational mod-
ules. This includes descriptions of the sequence encoding
schemes and the network models tested. The architecture
of DeepMicrobes is described below and a schematic rep-
resentation is presented in Figure 1B. The technical details
of the other tested architectures are available in Supplemen-
tary Material.

One-hot encoding and k-mer embedding. We tried two
strategies to encode DNA sequences into numeric matrices,
namely one-hot encoding and k-mer embedding. For one-
hot encoding we convert DNA into 4 × L matrix, where A
= [1, 0, 0, 0], C = [0, 1, 0, 0], G = [0, 0, 1, 0] and T = [0, 0,
0, 1]. Specifically, the convolutional model, hybrid convolu-
tional and recurrent model, and seq2species (24) model take
as input one-hot encoded DNA, whereas embedding-based
models utilize k-mer embedding as the first layer of deep
neural networks (DNNs). For k-mer embedding, we split a
DNA sequence of length L into a list of substrings of length
K with a stride of one, yielding L – K + 1 substrings. The
length of K is chosen to reach balance between the model’s
fitting capacity and computational resources since the vo-
cabulary size grows exponentially in K by 4K (Supplemen-
tary Table S7). We use 12-mers unless otherwise stated. No-
tably, we confirmed that the final best architecture using 12-
mers performs much better than the variants using 8-mers
to 11-mers (Supplementary Figures S7 and 11).

The k-mer vocabulary is constructed using Jellyfish (25).
We only retain canonical k-mers as representatives (-C pa-
rameter of Jellyfish), which downsizes the vocabulary. We
include a word symbol <unk> in the vocabulary to rep-
resent k-mers with Ns. Each k-mer is indexed with a pos-
itive integer V according to its lexical order in the vocab-
ulary (V = [1, 2, . . . , i]). The position of 0 is reserved to
denote zero-padding for variable-length sequences, because
the TensorFlow input pipeline require that all sequences in a
mini-batch should be in the same length. The padding does
not affect the performance of the final best model, because

https://CRAN.R-project.org/package
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its dynamic long short-term memory (LSTM) layer auto-
matically dismisses the padding regions and outputs fixed-
length feature maps.

The embedding layer of the DNN utilizes these indexes
(for fast look-ups in the implementation) to map each k-mer
to a dembed dimensional dense vector (hereafter referred to
as k-mer embedding vector). See below for details.

Embedding-based recurrent self-attention model (Embed +
LSTM + Attention). Suppose we have a DNA sequence,
which is composed of n k-mers, represented in a sequence
of k-mer embedding vectors (Figure 1C).

S = (w1, w2, . . . wn)

where w i is a vector standing for a dembed dimensional k-
mer embedding for the i -th k-mer (wn ∈ R

dembed ). S is a 2-D
matrix concatenating all the k-mer embedding vectors to-
gether. S has the shape dembed-by-n.

We use a bidirectional LSTM to process the 2-D em-
bedding matrix S generated with the embedding layer (Fig-
ure 1D). Let the hidden unit number of each unidirectional
LSTM be dlstm. Formally,

−→
ht = −−−−→

LSTM
(
wt,

−−→
ht−1

)

←−
ht = ←−−−−

LSTM
(
wt,

←−−
ht+1

)

We concatenate each
−→
ht and

←−
ht to obtain the hidden state

as hi = [
−→
ht ,

←−
ht ]. For simplicity, we denote all the hi out-

put from the bidirectional LSTM as H who has a shape of
2dlstm-by-n.

H = (h1, h2, . . . hn)

We apply a self-attention mechanism (26) between the
bidirectional LSTM and fully connected layers (Figure 1E).
The self-attention mechanism computes a linear combina-
tion of the n LSTM hidden vectors in H and outputs a vec-
tor of attention weights a. Formally,

a = sof tmax
(
tanh

(
HTWs1

)
ws2

)
where Ws1 is a weight matrix sized 2dlstm-by-da (da is a hy-
perparameter that can be set arbitrarily) and ws2 is a weight
vector sized da.

To allow the model to focus on multiple components in a
DNA sequence, we perform r rows of attention (i.e. generate
r different attention weightings over length of the DNA se-
quence) and form the multi-head attention matrix A whose
shape is n-by- r . Thus,

A = sof tmax
(
tanh

(
HTWs1

)
Ws2

)
where Ws1 and Ws2 are both weight matrices of the linear
transformations and Ws2 is extended into a da-by-r matrix.
Here softmax function (see ‘Model Training’ section for de-
tails) is performed along the rdimension of the input to en-
sure each column of attention scores sum up to 1. The atten-
tion scores indicate the relative importance of each k-mer.

These importance scores are then used to weight the
LSTM hidden vectors generated from each k-mer. This al-
lows the model to pay attention to some specific parts of a

DNA sequence which might contribute most to classifica-
tion. To this end, we multiply the LSTM hidden states H
and the attention matrix A. The resulting matrix M has a
shape of 2dlstm-by-r that is irrelevant to the input sequence
length n.

M = HA

M is passed through a three layer fully connected classi-
fier and softmax function that converts output activations
to class probabilities (see ‘Model Training’ section below for
details of softmax function; a fully connected layer is also
known as a dense layer). The fully connected classifier, also
termed multilayer perceptron (MLP), consists of three lin-
ear transformations with ReLU activations in between. For-
mally,

MLP (x) = ReLU (ReLU (xW1 + b1) W2 + b2) W3 + b3

where the dimensions of W1 and W2 are tunable hyperpa-
rameters and the dimension of W3 depends on the number
of output classification categories.

Model training

The DNNs were implemented using the TensorFlow frame-
work. We used NVIDIA Tesla P40 24GB GPU to accelerate
computation. We trained the models until they converged
on the evaluation set. For each architecture of DNN, we
performed random search to pick the optimal combination
of hyperparameters. In detail, we randomly sampled 30 can-
didate hyperparameters setting from the search space and
picked the models which performed best on the evaluation
set. The optimal hyperparameters for each model are listed
in Supplementary Table S8.

For the final best architecture, namely the embedding-
based recurrent self-attention model, we used a batch size of
2048 and initialized training using a learning rate of 0.001
with a decay rate of 0.05. We did not use regularization
methods like dropout or L2 normalization.

We used Adam as the optimizer and minimized the objec-
tive function, which is the cross-entropy loss computed be-
tween softmax activated prediction output and one-hot en-
coded ground truth label. The softmax function takes as in-
put a C-dimensional vector x and outputs a C-dimensional
vector y of values between 0 and 1. More formally, the soft-
max function computes

y = softmax (x) =
[

ex1∑
i exi

, . . . ,
exC∑
i exi

]

where C is the number of classification categories (i.e.,
species or genus). The denominator

∑
i

exi makes sure that∑
i

yi = 1. Thus, y can be seen as the probability distribu-

tion of prediction over all the categories. The cross-entropy
loss objective is defined as

objective = −
C∑

c = 1

tc log (yc)
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where yc is the probability that the input DNA sequence
is of taxon c and tc is the binary value (0 or 1) indicates
whether taxon c is the correct assignment.

Software versions and databases of other taxonomic classi-
fiers

We compared the performance of DeepMicrobes with
Kraken, Kraken 2, Centrifuge, CLARK, CLARK-S, Kaiju
(27), DIAMOND-MEGAN and BLAST-MEGAN (28).
These tools were run with default options. The tools were
run in paired-end mode, except for DIAMOND-MEGAN
and BLAST-MEGAN. For paired-end data we averaged
the softmax probability distributions generated by Deep-
Microbes for two ends of reads. We ran Kraken (v1.0) us-
ing the pre-built MiniKraken 8GB database included com-
plete bacterial, archaeal and viral genomes in RefSeq (as
of 18 October 2017). We ran Kraken 2 (v2.0.6) using pre-
built MiniKraken2 v1 8GB database including RefSeq bac-
teria, archaea and viral libraries (available on 23 April
2019). Centrifuge (v1.0.3) was run using pre-built NCBI
nucleotide non-redundant sequence database (updated on
3 March 2018). The bacteria (and archaea) database for
CLARK and CLARK-S (v1.2.5) was downloaded via the
set targets.sh script (on 25 August 2018). Kaiju (v1.5.0)
was run using pre-built microbial subset of the NCBI
nr database (as of 16 May 2017). To run DIAMOND-
MEGAN, we queried unpaired reads using DIAMOND
(v0.9.22.123) against nr database downloaded from NCBI
(on 27 August 2018). To run BLAST-MEGAN, we queried
unpaired reads using BLAST executable (v2.6.0+) against
nt index downloaded from NCBI (on 25 August 2018) with
Megablast mode and an E-value of 1e-20. After database
query, we ran MEGAN (v5.3.11) on the tabular files gener-
ated with DIAMOND and BLAST to summarize the LCA
taxon for each read.

We created a custom database for Kaiju with the
2505 genomes of human gut species used to train
DeepMicrobes. Protein sequences were predicted with
Prodigal (29) (v2.6.3) using the default single mode
as previously described (2). We assigned a different
pseudo species-level taxonomic identifier to each species.
These taxonomic identifiers did not duplicate any ex-
isting NCBI taxonomic identifiers. The parent nodes
of each species were retrieved from taxonomy hgr.tab
and taxonomy umgs.tab available at ftp://ftp.ebi.ac.uk/pub/
databases/metagenomics/umgs analyses. The custom Kaiju
index was created using kaiju-mkbwt and kaiju-mkfmi.

Computational environment

DeepMicrobes and other taxonomic classifiers were bench-
marked on a compute node having 256 Gb of memory and
two Intel E5–2650 v4 processors, each of which with 12
cores (24 threads). DeepMicrobes was further accelerated
utilizing a NVIDIA Tesla P40 24GB GPU during both
training and testing. Specifically, CPUs extract and trans-
form the training and testing data and then feed it to a
model running on a GPU. We parallelized the data prepa-
ration across 8 CPU cores using the num parallel calls ar-
gument of the TensorFlow input pipeline. The run-time of

DeepMicrobes includes the time used for TFRecord con-
version. The computational time benchmark for other clas-
sifiers was measured by running a single instance of each
classifier provided all 48 threads and memory. We also tried
running other classifiers provided 8 threads and all memory
and compared the time with 48 threads.

Uncultured species signatures of inflammatory bowel diseases

We downloaded the gut metagenome samples from 106 sub-
jects with or without inflammatory bowel diseases (Crohn’s
disease or ulcerative colitis) using SRA BioProject accession
PRJNA398089 (10), which is part of the Integrative Human
Microbiome Project (iHMP). We randomly chose one sam-
ple as representative if multiple samples for a subject were
available. The dataset is composed of 26 healthy subjects, 50
subjects with Crohn’s disease and 30 subjects with ulcerative
colitis. The samples were quality controlled using Trimmo-
matic (v0.36) (30) with minimum read length 75 bp. Host
reads were further removed using KneadData (v0.6.1). We
then analyzed the samples using the species model of Deep-
Microbes with confidence score 0.50 and generated species
abundance profiles using the method described above. We
used LEfSe (31) to determine the species most likely to ex-
plain differences between the three subject groups. Briefly,
we used the non-parametric factorial Kruskal–Wallis sum-
rank test to detect species with significant abundance (P
< 0.05) with respect to each group. The resulting subset
of species was used to build a linear discriminant analy-
sis (LDA) model to estimate the effect size of each differ-
entially abundant species. The species whose LDA effect
size >2.0 were retained and ranked according to the effect
size.

RESULTS

A deep learning architecture for taxonomic classification

Deep learning has been applied for the classification of 16S
rRNA reads (24) and representation learning from metage-
nomic reads longer than 1 kb (32). However, taxonomic
classification of short shotgun sequencing reads is more
challenging. The model should learn genome-wide patterns
during training, whereas only information from a short ge-
nomic fragment is available during application.

To determine what kind of deep neural network (DNN) is
suitable for modeling the taxonomic signatures of shotgun
metagenomic sequencing reads, we presented a systematic
exploration of DNN architectures with different combina-
tions of network architectural building blocks, DNA encod-
ing schemes and other hyperparameters. To train the mod-
els for species classification, we simulated equal proportion
of variable-length reads between 75 and 150 bp for each of
the 2505 gut species (2) (‘Materials and Methods’ section).
To test the models, we simulated variable-length reads from
a held-out set of 3269 MAGs reconstructed from human
gut microbiomes (‘Materials and Methods’ section), which
represent phylogenetic diversity within the gut ecosystem
spanning multiple populations. The distribution of read-
level precision and recall across these MAGs is used as the
metric for model selection. The confidence threshold to de-
cide whether reads are classified or not is determined by

ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/umgs_analyses
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benchmarking a gradient of confidence score with a stride
of 0.05 on the whole test set (i.e. reads simulated from all the
MAGs are considered as a single set). The minimum confi-
dence scores ensuring >0.95 read-level precision are chosen
for each architecture (Figure 2; Supplementary Figures S6
and 7).

We first tried three DNNs that take as input one-hot
encoded DNA matrices, including a ResNet-like convolu-
tional neural network (CNN), a hybrid DNN of CNN and
bidirectional long short-term memory (LSTM), and the
seq2species model proposed for short 16S rRNA read clas-
sification (‘Materials and Methods’ section). The ResNet-
like CNN (Supplementary Figures S1) and the hybrid DNN
(Supplementary Figures S2) are representative of architec-
tures that achieved state-of-the-art performance in predict-
ing the impact of mutations (33) and transcription factor
binding (34), respectively. However, the accuracy and over-
all prediction confidence of the three DNNs are low, with
seq2species performs best relatively, followed by the hybrid
DNN (Figure 2A; Supplementary Tables S9 and 10). This
implies that taxonomic classification for short metagenomic
reads requires a distinct deep learning scheme.

One likely reason for the low performance of the
DNNs above may be one-hot encoding. Apart from being
information-sparse, such encoding scheme represents com-
plementary strands of a DNA sequence as two unrelated
matrices. To overcome these limitations, we make an anal-
ogy between k-mers and words and used k-mer embedding
to represent DNA sequences (Figure 1C), which is a com-
mon practice in natural language processing (NLP). Re-
verse complement k-mers are treated as the same word. To
assess the contribution of this encoding scheme to model
performance, we trained a baseline model whose only train-
able parameters are the weights in the embedding layer
(Supplementary Figure S3). In addition, we trained two
variants of the baseline model by applying CNN or bidirec-
tional LSTM after the embedding layer, respectively (Ma-
terials and Methods; Supplementary Figures S4 and S5).
We found that the baseline model outperforms previous
DNNs that use one-hot encoding, which indicates that the
k-mer embedding layer is capable of embedding taxonomic
attributes in each k-mer vector. Interestingly, the CNN vari-
ant performs worse than the baseline, though it contains
more trainable parameters. In contrast, the LSTM variant
further improves the baseline (Figure 2A; Supplementary
Tables S9 and 10).

We also proposed a third variant (Figure 1B), where a
self-attention mechanism (26) is applied to the hidden states
generated by the LSTM variant (Materials and Methods).
Self-attention enables the model to focus on specific regions
of an input DNA sequence and generate sequence-level rep-
resentation. The self-attention variant achieves higher read-
level precision (mean = 0.942) and recall (mean = 0.428)
than the second-best LSTM variant (read-level precision
mean = 0.893, read-level recall mean = 0.155). Although
we chose different confidence thresholds for different mod-
els, we observed that both the read-level precision and re-
call of the self-attention variant are better than the LSTM
variant and the baseline model across a series of confidence
scores (Figure 2B), surpassing other DNNs utilizing con-
volution (Supplementary Figure S6). Therefore, this self-

attention augmented embedding-based recurrent model is
selected for DeepMicrobes.

The diversity of the MAGs used to create the test set fur-
ther provides us with the opportunity to explore what fac-
tors affect the performance of DeepMicrobes (Supplemen-
tary Table S2). As expected, the degree of similarity between
tested MAGs and the representative genomes in training set
is the major factor that affects the read-level recall (Sup-
plementary Figure S8). In addition, species with relatively
small genomes tend to be high in recall, as their genomic
features could be easier to grasp than species with large
genomes, given a theoretical upper bound on the model’s
total capacity. What affects the read-level precision most
is the similarity between different categories (i.e. species).
In general, DeepMicrobes achieves near-perfect precision
when the aligned proportion <50% between a pair of most
similar categories (Supplementary Figure S9). We did not
observe a clear relationship between performance and spe-
cific taxonomic groups (Supplementary Figure S10).

The test set we mentioned above is comprised of variable-
length reads. To investigate the impact of sequencing plat-
form on performance, we simulated five additional test sets,
each of which represents read length and error profile of
a specific next-generation sequencing platform (‘Materials
and Methods’ section). Generally, the read-level precision
of DeepMicrobes is high for reads ≥ 100 bp and from the
commonly-used HiSeq and MiSeq platforms (Supplemen-
tary Figure S11 and Tables S11-12). The results also show
that both the read-level precision and recall are higher for
longer reads, even when the read length is not seen during
training. This implies that DeepMicrobes generalizes well
and performs even better on MiSeq reads with length, for
example, 300 or 400 bp.

Comparison of DeepMicrobes with other taxonomic classifi-
cation tools

We next evaluate whether the DeepMicrobes, which is
trained on a bacterial repertoire of the human gut micro-
biota, has an advantage over state-of-the-art metagenomics
tools for taxonomic classification of gut metagenome se-
quences. Although it is the most ideal choice to benchmark
on genuine metagenomic reads, such data would not pro-
vide us with read-level and community-level ground truth
for taxon identification and abundance estimation. One
common alternative is to create mock communities by com-
bining real reads obtained from whole genome sequencing
for microbial isolates (5,22). Thus, we created 10 such mi-
crobial communities by random sampling reads from the
isolates cultured from human fecal samples (Supplementary
Table S3), many of which represent candidate novel species
yet to be named (‘Materials and Methods’ section).

The lack of overlap in reference databases of different
tools at the species level lead us to focus our comparisons
on genus-level performance. We classified each mock sam-
ple using DeepMicrobes and other taxonomic classification
tools, including Kraken, Kraken 2, Centrifuge, CLARK,
CLARK-S, Kaiju, DIAMOND-MEGAN and BLAST-
MEGAN. The confidence threshold for the genus model is
determined according to read-level classification accuracy
measured on these real reads (Supplementary Table S13).



8 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

Figure 2. Performance of different DNN methods. (A) The read-level precision and recall of different models on simulated reads from the gut-derived
MAGs. Each point represents the metric measured on a MAG. (B) The read-level precision and recall of the three of the best models across a series of
confidence score. The minimum confidence threshold where precision >0.95 is selected for each model.

We observed that the genus model achieves a read-level pre-
cision of 0.969 and a recall of 0.866 on average using thresh-
old 0.50, which is the default setting for DeepMicrobes.

We benchmarked the performance of genus identification
using two abundance cutoffs, 0.01% and 0.0001%, repre-
senting two analysis scenarios. The first scenario is useful
for detecting high-abundance taxa (e.g. studies in metabolic
disorders), and the second favors high sensitivity for de-
tecting low-abundance taxa (e.g. pathogen detection). In
general, a low abundance cutoff increases the community-
level recall at the cost of precision. We found that only
DeepMicrobes succeeded in identifying all the genera us-
ing abundance cutoff 0.01% (Figure 3A). The genomes of
microorganisms living in a specific habitat might be diver-
gent from their representatives in standard databases like
RefSeq and NCBI non-redundant databases. This may par-
tially explain the poor performance of other tools. Although
Kaiju, DIAMOND-MEGAN and BLAST-MEGAN iden-
tified all the genera using cutoff 0.0001%, their community-
level precision decreased dramatically (Figure 3A). Deep-
Microbes also surpasses the other tools in community-level
precision under the low-abundance cutoff and ranks second
after BLAST-MEGAN under the high cutoff. In addition,
the classification speed of DeepMicrobes is acceptable (Sup-
plementary Figure S12).

Next, we compared DeepMicrobes with other taxonomic
classification tools with respect to the accuracy of abun-
dance estimation. Our results show that DeepMicrobes out-
performs other tools in genus quantification (Figure 3B and
Supplementary Figure S13). Moreover, the genus model of
DeepMicrobes classified on average 89.40% of the reads in
the mock communities, much higher than the second most
sensitive tools, Kaiju, which classified on average 68.27%
of the reads (Figure 3C). In addition, we sought to com-
pare the performance of species quantification using the
14 species shared by all the reference datasets, though they
only represent a limited fraction of the whole communi-
ties. We found that DeepMicrobes is at least comparable
to other tools in species-level abundance estimation (Fig-
ure 3D). The proportion of reads classified by the species
model of DeepMicrobes is slightly lower than Kraken and
CLARK (Figure 3E). However, the proportion of false pos-
itive classifications might vary among different tools.

To separate the source of performance increase with
the habitat specific database that contains MAGs and the
deep learning algorithm, we compared DeepMicrobes with
Kaiju, which is one of the best competitor tools especially
in genus-level quantification and classification rate, using
the same reference database. We created a custom Kaiju
database composed of the genomes used to train Deep-



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 9

Figure 3. Benchmark results of DeepMicrobes and other taxonomic classification tools on the ten mock communities. (A) Genus-level precision and recall
measured at the community level using abundance cutoff 0.01% and 0.0001%. Each point represents a mock community. A random jitter of 0.005 is added
on the recall to reduce overplotting. (B) Distance between the genus abundance profile for each tool compared with the true composition. (C) Genus-
level classification rate for each tool. (D) Distance between the species abundance profile for each tool compared with the true composition. These results
consider the 14 species included in the reference databases of all the tools in abundance estimation. (E) Species-level classification rate for each tool. The
error bars represent standard error.

Microbes (‘Materials and Methods’ section). We observed
that the custom Kaiju classified on average 83.25% of the
reads at the genus level and correctly recalled more gen-
era than the original Kaiju that uses the microbial subset
of the NCBI nr database (Supplementary Figure S14). This
demonstrates that both the deep learning algorithm and the
MAG-containing database contribute to the improvement

in sensitivity. Surprisingly, the performance of genus quan-
tification of the custom Kaiju is worse than the original
Kaiju, which implies that the improvement in abundance
estimation should be mostly attributed to the deep learn-
ing algorithm. In addition, the community-level precision
of Kaiju greatly improved using the gut specific reference
database. Notably, the community-level precision of custom
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Figure 4. Species-level false positive classification and identification measured on the species absent from the databases. Each point represents the pro-
portion of misclassified reads at the species level or the number of misidentified species measured for a simulated dataset of one species-absent genome.
The ANI between each genome and its closest genome in database and the proportion of each genome aligned to its closest genome in database (i.e. the
proportion of genome used for ANI calculation) are calculated with MUMmer.

Kaiju is comparable to DeepMicrobes using abundance cut-
off 0.0001%. This suggests that the habitat specific database
is the major contributor to precise taxon identification from
the metagenomes of the corresponding habitat.

The absence of a species from the reference database
could be a major source of false positives. We assessed
how such species affect the community-level precision of
DeepMicrobes and other tools in terms of the propor-
tion of misclassified reads and the number of misidentified
species from that species. Here we benchmarked with the
four tools (Kraken, Kraken 2, CLARK and CLARK-S)
that performed best apart from DeepMicrobes by taking
taxa identification, abundance estimation, and also classifi-
cation speed into consideration. We used 121 genomes (19),
whose species is absence from all the databases, spanning
different degrees of relationship to the closest genome in the
databases. We simulated 1× coverage variable-length reads
for each genome (‘Materials and Methods’ section). Gen-
erally, other tools misclassify more reads and misidentify
more species as the relationship gets closer, except that less
misidentifications are produced when ANI is higher due to
more concentrated distribution of misclassified reads (Fig-
ure 4 and Supplementary Table S6). In contrast, the species
model of DeepMicrobes produces far fewer false positives
than other tools regardless of different degrees of similarity
that were tested. This indicates that DeepMicrobes is higher
in species-level precision than other tools, especially when
the microbial communities harbor many unknown species.

Taken together, DeepMicrobes outperforms state-of-the-
art taxonomic classification tools in genus and species iden-
tification and achieves better or at least comparable accu-
racy in abundance estimation. Therefore, DeepMicrobes is
ready to serve as a relatively reliable tool to help us explore
the important but yet to be discovered roles of novel MGS,
which complements results generated with other taxonomic
classification tools using standard and universal databases.

Discovery of uncultured species related to inflammatory
bowel diseases

We used the species model of DeepMicrobes to classify
reads from 106 gut metagenomes sequenced as part of the
iHMP (10) (‘Materials and Methods’ section). The fecal
samples were collected from healthy subjects and patients
with inflammatory bowel diseases (IBD) including Crohn’s
disease (CD) and ulcerative colitis (UC). The previous study
used MetaPhlAn2 for taxonomic analysis and identified a
series of species that are differentially abundant in CD or
UC (10). However, the species included in MetaPhlAn2
database are mainly well-defined ones (35). To determine
whether the uncultured species, which are newly discovered
by genome reconstruction from gut microbiomes, possess
unexplored associations with IBD, we analyzed the species
abundance profiles generated by DeepMicrobes with LEfSe
(‘Materials and Methods’ section). The result show that
most of the identified candidate biomarkers are unclassified
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Figure 5. Potential uncultured species biomarkers of IBD identified with LEfSe. The group names (Crohn’s disease, Ulcerative colitis and Non-IBD) for
each species are assigned by LEfSe. The P-values (Kruskal–Wallis test) calculated by LEfSe are shown. The assigned taxa for each species in the highest
resolution are indicated in brackets. (A) The LDA scores for 10 of the most differentially abundant species. The species are ranked using LDA scores. (B)
Relative abundance distribution for UMGS368, as a ratio of the median relative abundance in non-IBD individuals. (C) Relative abundance distributions
for UMGS37 and UMGS41, as a ratio of the median relative abundance in non-IBD individuals.

MGS (UMGS) defined previously (2) (Figure 5A and Sup-
plementary Table S14).

We observed that some of the identified species are new
members of the taxa whose correlation with CD or UC
has been reported. For example, the previous study found
that Alistipes species, such as Alistipes shahii, Alistipes fine-
goldii and Alistipes putredinis are depleted in IBD (10). Here
we identified another Alistipes species, UMGS368, whose
abundance also decreases in CD and UC (Figure 5B). In ad-
dition, we identified some uncultured species whose genera
have not been found to increase in UC, such as UMGS37
and UMGS41, which are Lachnospira and Anaeromas-
silibacillus species, respectively (Figure 5C). These results
complement previous findings and might potentially pro-
vide new insight into the diagnosis and treatment of IBD.

DISCUSSION

Metagenomic assembly efforts so far have greatly expanded
the known diversity of uncultured microorganisms living
in specific habitats. For example, the human microbiome
harbors a large fraction of species without any representa-
tives in standard reference databases which mainly include
genomes obtained using culture-dependent approaches.
These species might encode a number of newly identi-
fied protein families which possess distinctive metabolic
functional capacities (2). Furthermore, the pan-genomes of
species in specific environments might diverge from their
representatives in universal databases (4).

In this study, we present DeepMicrobes, a deep learning-
based computational framework that aims to facilitate ef-
fective utilization of the new taxonomic knowledge ac-
quired in large-scale metagenomic assemblies into tools
for microbiome research. We can train a model to classify
metagenomic reads at any taxonomic rank provided with
any collection of training genomes representing different
categories. Specifically, we are allowed to bypass the labo-

rious and time-consuming curation of a taxonomic tree,
which is required by other taxonomic classification tools
like Kraken for database creation.

One limitation of our current framework is that adding
new species requires retraining the entire deep neural net-
work. Future efforts to address this issue may include incre-
mental learning. The goal of incremental learning is to re-
tain the knowledge acquired from the old classes and mean-
while learn the new classes (36). This could allow continu-
ous learning as new classes (e.g. new species) of data arrive
(37).

Accurate taxonomic classification of short shotgun
metagenomic reads requires a distinct DNA encoding ap-
proach and DNN architecture. We found that k-mer embed-
ding significantly boosts model performance. Interestingly,
k-mer embedding has recently been showed to surpass one-
hot encoding in predicting transcription factor binding (38).
This suggests the general applicability of k-mer embedding
in other biological fields. Notably, the k-mer length we used
in this study is optimized for typical data volume of thou-
sands of genomes generated in large-scale metagenomic as-
sembly projects. We suggest that researches who may want
to use k-mer embedding in other scenarios should try dif-
ferent k-mer lengths (e.g. 6–12 bp) to finally find a balance
between underfitting and overfitting, especially when train-
ing on only a few categories.

Our finding that LSTM surpasses CNN highlights the
importance of order and context of oligonucleotides in tax-
onomic classification. Given the evidence from image clas-
sification, CNNs might not take into account the spatial
ordering of local motifs (39). This can have little impact
on tasks where only the occurrence of a few nucleotides is
the key to classification (e.g. transcription factor binding
site detection). However, it is more complex to model tax-
onomic signatures, such as single-nucleotide variants and
insertions and deletions especially for short microbial se-
quencing reads. In contrast, LSTM understands a k-mer
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better with the help of knowledge from the previous and
next k-mer. Hence, ordering and contextual information are
retained and passed to the next layer.

To our knowledge, DeepMicrobes is the first deep learn-
ing architecture that incorporates self-attention mecha-
nisms for DNA sequence analysis. The better performance
of DeepMicrobes than the other embedding-based mod-
els implies that the model should focus on some specific
parts of a DNA sequence rather than treat the whole se-
quence equally. In addition to boosting performance, atten-
tion scores potentially provide simple and straightforward
method for identifying the regions of the DNA sequences
that contribute most to prediction making the algorithm
more interpretable than black-box approaches. Other atten-
tion architectures, such as hierarchical attention networks
(40) and the Transformer (41), take up too much memory
to be feasible in our task. Nonetheless, their applications
on genomic sequences are promising for investigation. An-
other bonus of the self-attention mechanism is that it en-
ables the model to encode variable-length DNA sequences
into a fixed-size representation. As a result, DeepMicrobes
can be directly applied to longer DNA sequences such as
those generated using long-read sequencing platforms with-
out any modification in the model architecture. However,
here we focus on next-generation sequencing reads and re-
training might be required to adapt to reads whose lengths
and error profiles are strongly different.

We trained DeepMicrobes on the complete bacterial
repertoire of human gut microbiota defined previously.
The benchmark results on real sequencing reads show
that DeepMicrobes outperforms state-of-the-art taxonomic
classification tools in species and genus identification.
Specifically, the algorithm of DeepMicrobes produces far
fewer false positives than other tools. As for abundance esti-
mation, DeepMicrobes surpasses other tools in genus quan-
tification and performs comparably to them in species quan-
tification.

We reanalyzed the IBD gut metagenome dataset and dis-
covered potential signatures related to CD, UC or healthy
state within these uncultured species, some of which cor-
roborate previous findings at the genus level while others
constitute novel findings. This suggests that the uncultured
members in gut microbiome might have underappreciated
roles in human health and disease. We believe that DeepMi-
crobes, together with other taxonomic classification tools,
will provide a comprehensive picture of microbiome struc-
ture and pave the way for the discovery of the functional
roles of uncharacterized MGS.

DATA AVAILABILITY

The DeepMicrobes program, trained model parameters,
hyperparameters and the implementation of the other
DNN architectures are provided at GitHub (https://github.
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