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Abstract

Being able to learn word meanings across multiple scenes consisting of multiple words and 

referents (i.e., cross-situationally) is thought to be important for language acquisition. The ability 

has been studied in infants, children, and adults, and yet there is much debate about the basic 

storage and retrieval mechanisms that operate during cross-situational word learning. It has been 

difficult to uncover the learning mechanics in part because the standard experimental paradigm, 

which presents a few words and objects on each of a series of training trials, measures learning 

only at the end of training, after several occurrences of each word-object pair. Diverse models are 

able to match the final level of performance of the standard paradigm, while the rich history and 

context of the learning trajectories remain obscured. This study examines accuracy and uncertainty 

over time in a version of the cross-situational learning task in which words are tested throughout 

training, as well as in a final test. With similar levels of performance to the standard task, we 

examine how well the online response trajectories match recent hypothesis- and association-based 

computational models of word learning.eing able to learn word meanings across multiple scenes 

consisting of multiple words and referents (i.e., cross-situationally) is thought to be important for 

language acquisition. The ability has been studied in infants, children, and adults, and yet there is 

much debate about the basic storage and retrieval mechanisms that operate during cross-situational 

word learning. It has been difficult to uncover the learning mechanics in part because the standard 

experimental paradigm, which presents a few words and objects on each of a series of training 

trials, measures learning only at the end of training, after several occurrences of each word-object 

pair. Diverse models are able to match the final level of performance of the standard paradigm, 

while the rich history and context of the learning trajectories remain obscured. This study 

examines accuracy and uncertainty over time in a version of the cross-situational learning task in 

which words are tested throughout training, as well as in a final test. With similar levels of 

performance to the standard task, we examine how well the online response trajectories match 

recent hypothesis- and association-based computational models of word learning.B
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I. Introduction

Language acquisition, a problem that we all solve as infants and yet one that continues to 

baffle robots (not to mention researchers), may be better viewed–if perhaps not solved–as a 

constellation of problems including segmenting the continuous speech streams we hear into 

discrete words [1, e.g.], learning syntax [2, e.g.], and learning the referential intent (i.e., 

meanings–concrete or abstract) of words [3, e.g.,]. These various subproblems of language 

acquisition have in recent decades been investigated under the umbrella of statistical 

learning. As they inquire whether and how people extract regularities from their 

environment, studies of statistical learning often overlap in assumptions and interpretation 

with implicit learning studies [4]. The present study focuses on a particular problem in 

language acquisition: that of learning word-object mappings from a series of ambiguous 

situations containing multiple words and objects, a process referred to as cross-situational 

word learning [5]. In a typical cross-situational learning study of adults [3], a few unusual 

objects are presented on each trial and are then named in a random order. Thus, from a 

single trial participants can only guess which word refers to which object. However, since 

pairs occur on multiple trials spread across training, and appear with different concurrent 

pairs, people can learn some of the intended word-object pairings. As each word is heard on 

a trial, presumably interacting memory and learning processes drive attention to strengthen 

particular associations (or store particular hypotheses, in another view).

Previous research has shown young children are capable of learning cross-situationally [6], 

and in adults examined the impact of factors such as frequency and contextual diversity [7] 

and spacing of stimuli [8], as well as detailed analyses showing the impact of varied study 

and test contexts [9], [10]. A drawback of most extant studies is that learning is typically 

only measured at one point in time (i.e., at a final test), leaving the timecourse of learning 

unelaborated. Such knowledge would be quite informative for distinguishing different 

mechanistic accounts, as computational models with distinct assumptions can often mimic 

each other at a single point in time [11]. Moreover, it is of interest in human-robot 

interaction, where investigations of incremental word learning in robots are aimed at 

producing systems that adapt in order to communicate more effectively [12]. Achieving a 

better understanding of statistical language learning in people may therefore also allow us to 

create algorithms allowing robots to learn and communicate more like humans [13]. How 

are we to reveal the interactions of learning, memory, and attention mechanisms during 

training that produce differences in final learning outcomes? The present study compares a 

standard passive cross-situational training procedure–with four words-object pairs per trial–

to a response procedure, in which participants must respond to each word on a training trial 

by clicking on one of the objects or a “Don’t Know” button. Although this response 
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procedure alters the task, it also offers a glimpse into the ongoing learning during training 

that can grant greater insight into the mechanisms at play.

Consider the possible progress of learning on a couple of training trials with 3 words and 

objects, e.g. those shown in Figure 1. Suppose participants hear novel words bosa, manu, 
plimbi while viewing objects o1, o2, o3 on trial t. A few trials later (t + 3), hearing manu, 
stigson, bosa while seeing o3, o2, o4, what might the participant learn? There are two basic 

perspectives on how people learn word-object mappings. In the hypothesis-testing view, 

learners store only a single hypothesized referent for each word–randomly at first, 

discarding the hypothesis only if it is disconfirmed [14], [15]. This perspective typically 

views language acquisition as an inference problem to be solved by applying logical 

constraints [16]. In this view, a learner may have stored bosa − o1, bosa − o2, or bosa − o3–

but not more than one of these. Moreover, if bosa−o1 was stored, then o1 could not be stored 

as the referent for any other word on the trial–a strict mutual exclusivity (ME) constraint. 

Infants and adults are known to show a bias for learning mutually exclusive word-object 

mappings, although adults will adaptively relax the bias when given evidence of non-ME 

pairings [17]. On the latter trial, a hypothesis-tester would throw out any hypotheses 

inconsistent with the current data (e.g., manu − o1 would be thrown out). A hypothesis-tester 

would consider the second trial to be confirming evidence of bosa − o3 and manu − o2 – or 

vice-versa, depending on which hypotheses happened to be made on the first trial. Such a 

learner would not know that they should still be uncertain of which mapping is correct.

In the associative learning view, learners approximately store word-object associations 

between all co-occurring stimuli [18], [19], [20], [17]. Such associative models assume that 

although every stimulus makes an impression, these associative memories compete with 

each other at test, causing retrieval failures. Moreover, some associative models apply 

attentional biases at learning so that not all co-occurrences are stored with equal strength. 

For example, [17] offers a model that has competing biases to attend to familiar word-object 

associations (i.e., strong from prior exposure), but also devotes storage more to stimuli with 

uncertain associates (e.g., novel stimuli). Importantly, this model assumes that learners are 

aware of their own state of (un)certainty about a word’s associates. On the first example 

trial, this model would spread attention to all of the word-object associations equally, since 

all are novel and have no prior association. If prompted with bosa after this trial, the model 

would select any of the three referents with equal probability–and is also aware of its own 

uncertainty via the entropy of the word’s associations, which is used to drive future 

attention. On the second example trial, this model’s familiarity bias would draw attention to 

strengthening all associations between manu, bosa and o2, o3–all of which are familiar, but 

all of which will remain equally probable. However, the greater novelty of stigson and o4 

also draw more attention to their conjunction (stigson − o4), yielding an associative form of 

mutual exclusivity. Little attention is given to associations between the familiar and novel 

stimuli (e.g., stigson−o2). This associative model shows a variety of trial order effects found 

in both word learning and associative learning studies, and thus may capture online learning 

[8], [20].

Since the standard cross-situational learning task only measures knowledge in a final test at 

the end of training, it is difficult to infer the trial-by-trial learning dynamics. In the present 
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study, we ask participants to indicate which object they believe each word refers to every 

time it occurs, allowing us to map out their developing knowledge over time. Of course, it is 

possible that this constant probing will affect task performance, but it is not a priori clear 

whether it will benefit or hinder learning. On the one hand, recognition memory research 

shows that being tested benefits memory more than a second study opportunity [21]. On the 

other hand, asking learners to make a guess even on the first trial–when they cannot yet be 

certain of anything–may be tedious, or worse, misleading. Thus, we also compare learning 

in the continuous responding task to performance in the passive cross-situational learning 

task.

II. Experiment

In this experiment, we compare the standard cross-situational word learning paradigm, in 

which participants are passively trained by observing object displays co-occurring with 

words, to a response training condition in which participants are asked to choose one of the 

objects on display–or a “Don’t Know” button–each time a word is heard during training. 

Although we use the same training statistics, it may be that performance on the two tasks 

will differ: it seems equally plausible that it is an advantage to be tested often, or that it may 

be a nuisance that distracts learners from remembering the co-occurrences. However, if 

performance on the two tasks is equal, it may be that the learning trajectories in the response 

condition can grant insight into the factors and mechanisms underlying cross-situational 

learning.

A. Participants

Participants in this experiment were 62 Indiana University undergraduate students who 

received course credit for their participation. None had participated in other cross-situational 

learning experiments.

B. Stimuli and Procedure

Verbal stimuli were 36 computer-generated pseudowords that are phonotactically-probable 

in English (e.g., “bosa”), and were spoken by a monotone, synthetic female voice. Objects 

were 36 photos of uncommon, difficult-to-name objects (e.g., unusual tools or objets d’art). 

These 36 words and objects were randomly assigned to two sets of 18 word-object pairings; 

one set for each study condition. The entire set of stimuli from which the words and objects 

were randomly drawn is available online: http://kachergis.com/downloads/stimuli.zip.

Each training trial consisted of a display of four objects shown while four pseudowords were 

played in succession (see Figure 2, though without the central “Don’t Know” button), and 27 

such trials were in each block. Although the words and objects in the two training conditions 

were different, their cooccurrence structure was the same: e.g., w1 and o1 appeared at the 

same trial indices and with the equivalent other stimulus pairs in both training conditions. In 

total, each of the 18 word-object pairs occurred 6 times during training.

Training trials began with the appearance of four objects, which stayed onscreen the entire 

trial as words were heard (1 s duration, randomly ordered) after 2 seconds of initial silence. 

In the passive training condition, words were separated by 2 s of silence, for a total duration 
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of 14 s per trial. Before training, participants were informed that they would see a series of 

trials with four objects and four alien words, and that their knowledge of which words refer 

to which objects would be tested at the end.

Participants in the response training condition were additionally instructed that for each 

word during training, they were to choose with the mouse the best object, or click on the 

“Don’t Know” button. In the response condition, after each word was heard the cursor 

appeared along with a “Don’t Know” button in the center of the screen, as in Figure 2, and 

participants were given unlimited time to click on one of the objects or the button. When a 

selection was made, the next word was presented.

After each training block, learners’ knowledge was assessed using 18-alternative forced 

choice (18AFC) testing: on each test trial a single word was played, and the participant was 

instructed to choose from a display of all 18 objects the most appropriate one. A within-

subjects design was used in order to see whether participants improved from one condition 

to the other. Condition order was counterbalanced.

C. Results

1) Passive vs. Response Conditions—Seven of the 62 participants were excluded 

for failing to perform above chance at the final test of either condition (18AFC chance 

performance = .056). Mean accuracy at the final test in the passive training condition for the 

remaining 55 participants was .31 (95% Confidence Interval [.25, .37], which was not 

significantly different than mean accuracy in the response condition: .35 (95% CI [.30, .41]; 

t(54) = 1.03, p = .31). Because these two conditions result in nearly equal performance and 

have the same statistical structure despite the major difference of responding throughout 

training, it may be that we can predict performance in one condition from performance in 

the other. As a first look at this, we examined the correlation between individual subjects’ 

performance in the two conditions, but it was not significantly correlated (r = .04, t(53) 

= .30, p = .77). However, it turned out that there was a condition order effect: subjects 

showed worse performance in the first training condition, regardless of which condition it 

was (response mean: .27 vs. passive mean: .24), than in their latter training condition 

(response: .40 vs. passive: .43). This general improvement from one condition to the next 

makes it unsurprising that there is little correlation between subjects’ performance in the two 

conditions. It also suggests that the tasks are similar enough that practice on the earlier helps 

the latter–whatever the order. There was also no significant correlation between the 

performance on statistically-equivalent test items (word-object pairs) in the two conditions (r 
= −.21, t(16) = −.84, p = .41). The maximum accuracy for an item (.51) was in the response 

condition, and the minimum (.24) was achieved by a unique item in each condition. This 

lack of consistency between the passive and response conditions could result from different 

strategies/mechanisms being used in each condition, or simply because the random learning 

trajectory taken by each learner varies too much.

The remainder of our analyses focus on the response condition data, which allow us to 

investigate several additional interesting questions, such as: Of the pairs that were known on 

the final test, how many repetitions were required for learning? Was there evidence that 

Kachergis and Yu Page 5

IEEE Trans Cogn Dev Syst. Author manuscript; available in PMC 2020 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



some well-learned pairs were forgotten at the final test? How many pairs were typically 

learned on a given training trial–in general, and over time?

2) Training Responses—The median time to make a response after word onset on a 

training trial was 1869 ms (mean: 2416 ms), similar in duration to the 2000 ms between 

words on a training trial in the passive condition. 42% of the responses during training were 

incorrect, 38% were correct, and 20% were “Don’t Know” responses. On average, learners’ 

median response times were fastest on correct responses (1745 ms), faster than incorrect 

responses (2117 ms; paired t(54) = 5.49, p < .001), which were faster than “Don’t Know” 

responses (2830 ms; paired t(54) = 2.84, p < .01). The fact that the uncertain responses are 

slowest may indicate that participants use this option when they realize that none of the 

presented objects are strongly associated with the given word, or in the hypothesis-testing 

view, that learners failed to retrieve a hypothesized meaning for that word.

The first time each word was heard, participants were more likely to use the “Don’t Know” 

button (proportion on first occurrence: .37 vs. all later occurrences: .17, t(54) = 5.83, p 
< .001), showing some awareness that they had no basis on which to hypothesize a meaning 

for that word. The first four training trials contained 16 unique items. Only when the 

remaining two items first appeared could learners could in principle use novelty-based 

inference to make a principled hypothesis. The mean proportion of correct and incorrect 

responses on the first occurrence was .20 and .44, respectively–showing that many 

participants are willing to guess, even when they cannot yet know the correct meaning. On 

the second occurrence of each word, we investigated the conditional probability of correct, 

incorrect, and uncertain responses as a function of their response on the first occurrence of 

the word. Table I shows the probability of each response on the second occurrence of each 

pair, conditioned on the first response. We had two hypotheses in mind: 1) that they would 

be more likely to be correct on the second response if they were previously correct, and 2) 

that even for incorrect or uncertain responses, they may be more likely to select the correct 

referent–since they have acquired some knowledge.

Learners who were correct on the first occurrence were correct on the second occurrence for 

50% of the items, greater than the 20% that were correct on the second after being uncertain 

on the first (Welch’s t(78.3) = 5.30, p < .001) or than the 29% that were correct after being 

incorrect on the first (Welch’s t(85.05 = 3.29, p = .001). This matches a result in a somewhat 

differently-structured paradigm in [15], which found that learners were at chance when 

selecting a referent for a word they had been wrong about on the previous occurrence. 

Among other differences (e.g., familiar objects were used), that paradigm did not allow 

learners to choose a “Don’t Know” option. Nonetheless, it is good to replicate this result in 

our response paradigm.

To see if this pattern of results holds for successive responses, in general, we calculated the 

probability of each response type (on occurrence 2 through 6) given the previous response 

type (on occurrence 1–5). Shown in Table II, these conditional probabilities are quite similar 

to those calculated for the first and second responses alone: learners who were correct on the 

previous response were quite likely to respond correctly on the current response (0.66, 

compared to 0.27 after an incorrect response). Analogously, responding incorrectly was most 
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likely to yield an incorrect next response (0.58), with a 30% chance of transitioning to a 

correct response. Now that we have examined the overall transition probabilities in 

responding during training, we compare learning trajectories for pairs that were known at the 

final 18AFC test to those that were not finally known.

3) Learned vs. Not Learned Pairs—In the response condition, what patterns of 

responses during training separate pairs that were known at the final 18AFC test from those 

that were not known? We measured a few statistics for each pair, and measured their 

correlation with accuracy for that pair on the final test across all subjects. The statistics we 

included for each pair are: the occurrence when its object was first correctly chosen (1–6, 7 

if never; First Learned), how many times the correct object was selected for that word (0–6; 

Correct), the number of times an incorrect object was selected for that word (0–6; Incorrect), 

and the number of times “Don’t Know” was selected for the word (0–6; Don’t Know). These 

item-level statistics concerning responses during training were averaged for each subject and 

correlated with accuracy on the final 18AFC test for those items in the response condition. 

Figure 3 shows that mean accuracy on the final 18AFC test increased the more often a 

word’s referent was correctly selected during training (Correct; r = .66, t(310) = 15.37, p 
< .001), and that all other measures were negatively correlated. Selecting the incorrect object 

more often resulted in lower accuracy on the final test (r = −.58, t(290) = 12.13, p < .001). 

Similarly, choosing the “Don’t Know” button more often was correlated with lower test 

accuracy (r = −.29, t(203) = 4.33, p < .001). Correctly selecting the object earlier (First 

Learned; occurrence 1–6, or 7 if never) resulted in higher test accuracy (r = −.35, t(324) = 

6.77, p < .001).

4) Clustering Item Response Profiles—Given that these aggregate statistics of 

online responding are predictive of final 18AFC accuracy, we chose to look for types of 

response profiles by clustering the individual items according to these item-level statistics 

(i.e., first learned, correct selections, incorrect selections, and “Don’t Know” selections), and 

then investigating the discovered clusters to see if their final accuracy differed. Partitioning 

around medoids [22] found four response profiles, with the number of clusters being 

estimated by the optimum average silhouette width method [23]. Shown in Table III, items 

in three of the clusters (2–4) have fairly low final 18AFC performance (cluster 2: 0.25, 

cluster 3: 0.19 and cluster 4: 0.14). In terms of their online response characteristics, these 

low-performing item clusters have a low number of average correct responses (2.03, 0.78, 

and 0.40, respectively) and a late average First Learned occurrence (2.71, 5.75, and 6.51). 

The average item in cluster 4 was not even correctly chosen once during training (because 

the mean is greater than 6.51), whereas cluster 2 actually had a mean first-learned index of 

2.71–and a higher final accuracy (0.25 compared to cluster 4’s 0.14). In contrast, cluster 1’s 

252 items–with 78% final 18AFC accuracy–were first-learned by occurrence 1 or 2 (mean: 

1.71), and were correctly responded to a mean of 4.73 times during training. In summary, 

although the item clusters do not perfectly predict final 18AFC accuracy, the three clusters 

with below-chance performance (clusters 2, 3, and 4) generally contained items with late-

learned, and either oft-incorrect or oft-uncertain responses, whereas the cluster with high 

final performance (cluster 1) mostly consisted of early-learned, never-forgotten pairs.
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Motivated by the existence of high- and low-performing clusters, as selected solely by their 

response patterns during learning, we chose to examine and model mean response 

trajectories, occurrence-by-occurrence, split by finally-learned and finally-unknown items. 

Shown in Table IV, and in Figure 4, these response trajectories show stark differences for 

finally-correct vs. finally-incorrect items. Finally-correct items (35% of the items) start at 

chance correctness on the first training occurrence, and then exhibit steadily-increasing 

correct responding across training. In contrast, the finally-incorrect items have incorrect 

responses half the time across training, consistently from the first through the last 

occurrence. Nonetheless, some of the finally-incorrect items show increasing correct 

responses over training.

By testing theoretically-derived computational models of learning, we can determine which 

underlying mechanisms are capable of explaining human behavior in this task. Namely, the 

key features of the behavioral data are: 1) learning looks incremental, and 2) responses 

during training reflect what learners know moment by moment – including what they know 

they don’t know. In the next section, we fit two models—representing the hypothesis and 

associative views of word learning—to the mean training response proportions (correct, 

incorrect, and uncertain for both finally-correct and finally-incorrect items; shown in Table 

IV) and final 18AFC accuracy (0.345), to see which mechanisms better account for the 

results.

III. Models

We compare recent models representing competing intuitions about word learning. As 

discussed in the introduction, the hypothesis-testing view holds that learners only store a 

single hypothesized meaning for each word [14], [15]. Hypotheses are chosen from available 

objects on a trial, but only if that referent is not already linked to another word. In the purely 

associative view, multiple possible meanings for a word accumulate in memory, on each trial 

[24], [18, e.g.,]: each word can become associated with all of the presented objects, although 

perhaps not equally [17]. At test, a given word’s associations with multiple objects compete, 

making recall probabilistic. After describing two hypothesis-testing models and two versions 

of the biased associative model, we test how well each model is able to fit the proportion of 

correct, uncertain, and incorrect responses humans made at each occurrence of a word, split 

by finally-correct and finally-incorrect items (as shown in Table IV and in Figure 4), as well 

as the proportion correct for each pair on the final 18AFC test (mean = 0.345).

A. Hypothesis Testing Models

[14] laid out the assumptions of a class of hypothesis testing models:

“(i) learners hypothesize a single meaning based on their first encounter with a 

word; (ii) learners neither weight nor even store back-up alternative meanings; and 

(iii) on later encounters, learners attempt to retrieve this hypothesis from memory 

and test it against a new context, updating it only if it is disconfirmed. Thus, they 

do not accrue a “best” final hypothesis by comparing multiple episodic memories 

of prior contexts or multiple semantic hypotheses.” (p. 3)
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1) Guess-and-Test Model—We test a guess-and-test model based on the above 

assumptions stated by [14] that we previously implemented in [25]. This model is also quite 

similar to the model tested in simulations of learning a full-sized vocabulary by [26], with 

differences noted below. In the guess-and-test model, when word w is heard during training 

the guess-and-test model retrieves the stored hypothesis w − oh with probability 1 − f. With 

probability f, w − oh fails to be retrieved and is forgotten. If w − oh is retrieved but oh is not 

on the trial, the hypothesis is erased. After a given trial’s retrieval attempts are completed, 

objects on that trial that are not part of an existing hypothesis are randomly assigned without 

replacement to any words now without a hypothesis, effecting a local mutual exclusivity 

constraint. Each new hypothesis is successfully stored with probability s. Thus, the free 

parameters in the model govern probabilistic storage (s) and forgetting (f) of hypotheses.1 

The final 18AFC test is straightforward: the model simply chooses the hypothesized object 

for each word, and chooses randomly from objects that have no name if there is no 

hypothesis stored for the current word. Responses during training are handled similarly (i.e., 

the currently-stored hypothesis for each word is chosen, resulting in correct and incorrect 

responses), except that an uncertain response is made with probability proportional to an 

additional parameter, γ, that we add in order to model learners’ usage of the “Don’t Know” 

button. Since the stored hypotheses gain weight if they are verified, the fixed value of γ can 

result in a dropping rate of uncertain responding. Few other mechanisms for making 

uncertain responses in the propose-but-verify model can be implemented, since each word 

has only one hypothesis stored at a given time.

2) Propose-but-Verify Model—More recently, [15] introduced the propose-but-verify 
model, another formalism of the same hypothesis-testing assumptions. The propose-but-

verify model of cross-situational learning begins by guessing and storing a single 

hypothesized object for each word on a trial. When a word appears again, the previous guess 

is recalled with some probability α0. If the recalled hypothesis is present on the trial, α0 is 

increased by an amount αr. If the object fails to be recalled, or is recalled but not present, a 

new referent is selected–but only from objects that are not currently linked to a word.

The propose-but-verify model assumes that learners store a list of word-object pairs, with 

only up to one object stored for a given word. At the beginning of training, this list is empty. 

On each training trial, for each presented word w the learner retrieves the hypothesized 

object oh with probability α0 (or α0 + αr, if w − oh has been previously retrieved). If oh fails 

to be retrieved, the hypothesis w-oh is forgotten. If oh is retrieved, but is not present on the 

trial, the hypothesis w-oh is erased. For any words on a trial now without a hypothesis (wN), 

new hypothesized objects are chosen2 from those objects that are not part of a hypothesized 

pairing. Thus, the model can bootstrap: if three of four objects on a trial are successfully 

retrieved, the final object will be assigned to the word that has no hypothesized meaning. An 

additional parameter (γ) was used to threshold uncertain responses, exactly as in the guess-

and-test model.

1[26] assumed for ease of analysis that learners do not suffer failures at storage or retrieval.
2Randomly without replacement–a local mutual exclusivity constraint.
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B. Associative Models

An unbiased associative model might simply strengthen associations between all presented 

words-object pairings on a trial by a constant amount, essentially tracking co-occurrences in 

a word × object associative memory matrix. Here we instead consider the biased associative 

model introduced by [17], which assumes that learners do not attend equally to all presented 

word-object pairings. Thus, although all co-occurrences are registered to some extent in 

memory, greater attention and storage is directed to pairings that have previously co-

occurred. Moreover, this bias for familiar pairings competes with a bias to attend to stimuli 

that have no strong associates (e.g., novel stimuli). Familiar associations demand more 

attention than pairings that have not been associated before. However, attention is also 

pulled individually to novel stimuli because of the high uncertainty of their associations (i.e., 

they have diffuse associations with several stimuli). The level of uncertainty is quantified by 

the entropy of a stimulus’ association strengths, and attention is allocated to objects and 

words in proportion to these entropies.

Formally, given n words and n objects to be learned over a series of trials, let M be an n 
word × n object association matrix in which associations accumulate during training. Cell 

Mw,o will be the strength of association between word w and object o. Strengths are 

augmented by viewing the particular stimuli. M is initialized with zeros. On each training 

trial t, a subset S of m word-object pairings appears. If there are any new words and objects 

are seen, new rows and columns are first added. The initial values for these new rows and 

columns are k, a small constant (here, 0.01).

Association strengths are allowed to decay, and on each new trial a fixed amount of 

associative weight, χ, is distributed among the associations between words and objects, and 

added to the strengths. The rule used to distribute χ (i.e., attention) balances a preference for 

attending to ‘unknown’ stimuli with a preference for strengthening already-strong 

associations. When a word and referent are repeated, extra attention (i.e., χ) is given to this 

pair—a bias for prior knowledge. Pairs of stimuli with no or weak associates also attract 

attention, whereas pairings between less-known objects and more-known words, or vice-

versa, do not attract much attention. To capture how well-known a stimulus is, strength is 

allocated using entropy (H), a measure of uncertainty that is 0 when the outcome of a 

variable is certain (e.g., a word appears with one object, and has never appeared with any 

other object), and maximal (log2n) when all of the n possible object (or word) associations 

are equally likely (e.g., when a stimulus has not been observed before, or if a stimulus were 

to appear with every other stimulus equally). In the model, on each trial the entropy of each 

word (and object) is calculated from the normalized row (column) vector of associations for 

that word (object), p(Mw,·), as follows:

H(w) = − ∑
i = 1

n
p(Mw, i) ⋅ log(pMw, i)) (1)

As in [17], the trial-to-trial update rule for adjusting and allocating strengths for a presented 

word-object (w, o) pair is:
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Mw, o, t + 1 = αMw, o, t + χ ⋅ eλ ⋅ (H(w) + H(o)) ⋅ Mw, o, t
∑w ∈ W ∑o ∈ Oeλ ⋅ (H(w) + H(o)) ⋅ Mw, o, t

(2)

In Equation 2, α is a parameter governing forgetting, χ is the weight being distributed, and 

λ is a scaling parameter governing differential weighting of uncertainty (H(·); roughly 

novelty) and prior knowledge (Mw,o,t; familiarity at trial t). As λ increases, the weight of 

uncertainty (i.e., the exponentiated entropy term, which includes both the word and object’s 

association entropies) increases relative to familiarity. The denominator normalizes the 

numerator so that exactly χ associative weight is distributed among the potential 

associations on the trial. For stimuli not on a trial, only forgetting operates. After training 

and prior to test, a small amount of noise (c = .01 here) is added to M. At test, learners 

choose one referent for each word from the m alternatives, in proportion to their associative 

strengths to the word.

To make responses during training, after updating associations on the trial according to 

Equation 2, the model chooses an object for each word with probability proportional to the 

strength of the word’s association with that object, or chooses the uncertain response with 

probability proportional to the word’s uncertainty (Shannon entropy, as defined above, but 

only for the objects on the trial), scaled by parameter γ. The γ parameter is thus only used to 

make “Don’t Know” responses during training, scaling the relative influence of stimuli’s 

association entropies relative to the association strengths–not playing any role in learning. 

This is analogous to the mechanism we employ in the propose-but-verify model for making 

uncertain responses during training, except that the underlying representation of the 

associative model is richer: to guide learning, the model has multiple graded associations 

and an awareness of its uncertainty across these associations.

It should be noted that the associative model above describes trial-level learning, capturing 

the relative attention given to particular word-object pairings on a trial. At a more detailed 

level, as they hear words learners are no doubt making eye movements to particular objects, 

sampling from the available word-object pairings (perhaps according to the familiarity of the 

pairing and the stimulus uncertainty). Because the data we are considering is now closer to 

this level of granularity, we chose to test two versions of the associative model. Exactly as 

defined above, the associate all referents updates associations between each presented word 

and all appearing objects. In the associate one referent model, a single association for each 

presented word per trial is sampled (with replacement, and with probability proportional to 

the association strength) from the memory matrix. Thus, both models use the same update 

strength- and uncertainty-biased update rule, but now the associate one referent version of 

the model is only updating a single association per word, per trial.

IV. Model Results

Using a differential evolution search algorithm [27] we sought optimal3 parameter values for 

both models in order to minimize the discrepancy between the models’ and humans’ 

proportion of correct, incorrect, and uncertain responses across training, shown in Table IV, 

along with the final proportion correct for each of the 18 word-object pairs at test (mean = 
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0.345). The disparity between model-predicted and observed response proportions was 

measured using log-likelihood. BIC, a criterion for model selection based on fit with a 

penalty for the number of free parameters, was used to select the best model.

The best-fitting parameters values found for all four models are shown in Table V, along 

with BIC values and the models’ predicted final test (18AFC) accuracy. The propose-but-

verify model had the worst BIC = 87.01, and a final 18AFC accuracy of 0.41. The best-

fitting parameter values found for the guess-and-test model were s = .17 and f = .37–a quite 

low storage probability and moderate rate of forgetting–and γ = .37, with BIC = 86.29, and 

final 18AFC accuracy of .36. Shown in Figure 5, the guest-and-test model’s response 

trajectories are similar to humans’, but with two notable exceptions: 1) correct responding to 

finally-correct items reaches ceiling in the model, and 2) correct responding to finally-

incorrect items stays flat (or even decreases), whereas humans show gradual increase. 

Accuracy on final 18AFC test of the guess-and-test model does closely match humans (0.36 

to people’s 0.345), while the propose-but-verify model’s final accuracy was higher (0.41). 

BIC strongly prefers the biased associative model that updates a single referent per word 

(BIC = 79.16) over either hypothesis-testing model, despite its additional parameter. The 

associative model that updates all referents per word is also preferred (BIC = 82.30) over the 

hypothesis-testing models, but fits less well than the one-referent associative model, 

predicting little difference between finally-correct and finally-incorrect items, whereas 

humans show much slower learning for finally-incorrect items. As seen in Figure 5, all but 

the associate-all-referents model match the response trajectories for finally-correct items 

fairly well, although note that for finally-incorrect items (right panels), the propose-but-

verify model (top right) shows a marked drop–to 0–in correct responses at the final training 

occurrence, which is not present in the human data. Like humans, the associate-one-referent 

model’s finally-incorrect items show slow but increasing correct responding, including at the 

final training occurrence.

In summary, the associative model achieves a better quantitative and qualitative fit to the 

data than the propose-but-verify model offered by [15], or by the earlier guess-and-test 

account based on the assumptions of [14]. In conclusion, we note that even slightly different 

formal models–propose-but-verify and guess-and-test stem from the same intuitions, and 

quite similar verbal descriptions–can result in quite different learning trajectories during 

training, helping us distinguish models. Thus, in addition to fitting final accuracy with a low 

chance baseline (e.g., 18AFC, as in the present study), it is useful to leverage trial-to-trial 

responses during training to additionally constrain model selection.

V. Discussion

This paper presented a modification of the cross-situational word learning task that enables 

us to measure learning as it proceeds by collecting a response after each presentation of a 

word. Overall, participants showed the same final accuracy in this response task as they 

displayed in the passive learning task. Even the time spent during training was roughly 

3Note that although differential evolution optimization is not guaranteed to converge on optimal values, in our experience it has found 
better and more stable estimates than other search algorithms, many of which require assumptions about the problem being optimized 
(e.g., differentiability) that cognitive models rarely meet.
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equal: although learning was self-paced in the response condition, the median time to 

respond was very close to the 2 s spacing between words in the passive condition. Although 

there was no item-level correlation between the two conditions, the similar performance on 

the two conditions–and the observed improvement from one condition to the next, regardless 

of order–allows the possibility that responding during training may not significantly alter the 

strategies used for cross-situational learning. At the very least, the effectiveness of strategies 

used did not significantly differ, by condition: people in both conditions were subjected to 

the same degree of ambiguity per trial, overall memory load, and identical word-object co-

occurrences. Thus, we examined the continuous testing during the response condition in 

order to gain insight into the learning mechanisms. Various measures of performance during 

training all predicted final accuracy, further showing that these online responses can show us 

the moment-to-moment timecourse of learning. A cluster analysis of item response profiles 

identified a cluster containing the majority of the finally-learned items, as well as three 

clusters that had quite low final accuracy, which differed mostly on their degree of 

uncertainty responding. Given that the learning trajectories of finally-correct and finally-

incorrect items look drastically different, we chose to investigate what mechanisms might 

produce them by fitting them with recent computational models of word learning. We chose 

four recent models of word learning to compare: two representing the hypothesis-testing 

account, and two versions of a biased associative model (one sampled and updated a single 

association per word per trial, while the other update all available associations).

For the best-fitting parameters we found, neither the propose-but-verify model [15] nor the 

guess-and-test model [14], which store only a single hypothesized object for each word, fit 

as well as either associative model. Both hypothesis-testing models misfit the learning 

trajectories of finally-incorrect items, in particular. While humans show gradual increase in 

correct responding, even for items that are incorrect at final test, the hypothesis-testing 

models show constant or even increasingly incorrect responding; due to their storage of only 

a single hypothesis at any given moment, there is no gradual emergence of a correct 

mapping from among competing associations in memory, as there is in the associative 

model. In contrast, the biased associative model [17] accounts for the human training 

responses–for both finally-correct and finally-incorrect items–and matches human 

performance seen on the final test (model’s final performance: 0.37 vs humans: 0.345). This 

complements earlier findings of simple hypothesis-testing models being unable to capture 

human cross-situational learning behavior: our model built from the assumptions of [14] has 

been shown to be unable to reproduce the shape of some individuals’ block-to-block 

learning trajectories, whereas the familiarity- and uncertainty-biased associative model can 

[25]. However, the associative model that samples and updates the association of only a 

single referent for each presentation of a word outperformed the associative model that 

updated all possible word-object pairings on a trial (a ‘pure’, trial-level associative model). 

In a sense, this is a hypothesis-building version of the associative model: it still uses the 

strength- and familiarity-biased associations in memory to choose which association to 

attend to for a given word (analogous to a memory-guided eye movement), but it only 

strengthens the word’s association to a single referent to attend to. Thus, by sampling over 

the series of trials, it builds up a sparser but still continuous-valued set of associations, and 

shows humanlike patterns in both finally-correct items–with strong learning, and finally-
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incorrect items, with weak learning. However, this sampling version of the associative model 

remains starkly different than the hypothesis-testing models: it does not guarantee formation 

of mutually-exclusive associations, nor completely forget any association it has at some 

point stored. This finding is consistent with recent modeling evidence that neither pure 

single-referent hypotheses nor fully-spread associations can account for human behavior in a 

simple cross-situational word learning task [28].

In terms of the associative model’s biases, it is not unreasonable to assume that learners have 

access to both stimulus familiarity and novelty in order to guide their attention. Familiarity 

judgments are a critical function of episodic memory, and memory has been linked to word 

learning in children [29]. Novelty has been shown to have an effect on activation in some 

regions in the brain, even when participants were unaware of the novelty [30]. In 

competition with each other, these biases can produce both inference-like behaviors: for 

example, devoting attention to pairing a novel word with a novel object when in the presence 

of other familiar pairs [17], as well as capturing the bootstrapping of low-frequency words 

from co-occurrences with more frequent stimuli [7]. An important part of developing lexical 

knowledge is to learn the context surrounding words–something that cannot be captured by 

single, mutually exclusive hypotheses, but that comes naturally to an associative model. This 

study implies that competition at test, likely from these extra accumulated associations, 

contributes significant noise at test. We gained this insight by employing both a continuous 

online measure of learning during training and a harder final test, with seemingly little effect 

on strategy. We encourage other researchers to combine these different measures to further 

illuminate the memory-guided attentional processes underlying word-learning.

Acknowledgments

This paper is an extended and modified version of a paper that originally appeared at the IEEE Conference on 
Development and Learning [31].

This work was in part funded by National Institute of Health Grants R01HD056029 and R01HD074601.

References

[1]. Saffran J, Newport E, and Aslin R, “Word Segmentation: The Role of Distributional Cues,” 
Journal of Memory and Language, vol. 35, no. 4, pp. 606–621, 1996.

[2]. Reber AS, “Implicit learning of artificial grammars,” Verbal Learning and Verbal Behavior, vol. 5, 
no. 6, pp. 855–863, 1967.

[3]. Yu C and Smith L, “Rapid word learning under uncertainty via cross-situational statistics,” 
Psychological Science, vol. 18, pp. 414–420, 2007. [PubMed: 17576281] 

[4]. Perruchet P and Pacton S, “Implicit learning and statistical learning: One phenomenon, two 
approaches,” Trends in Cognitive Sciences, vol. 10, no. 5, pp. 233–238, 2006. [PubMed: 
16616590] 

[5]. Gleitman L, “The structural sources of word meaning,” Language Acquisition, vol. 1, pp. 3–55, 
1990.

[6]. Suanda SH, Mugwanya N, and Namy LL, “Cross-situational statistical word learning in young 
children,” Journal of Experimental Child Psychology, vol. 126, pp. 395–411, 2014. [PubMed: 
25015421] 

[7]. Kachergis G, Yu C, and Shiffrin RM, “A bootstrapping model of frequency and contextual 
diversity effects in word learning,” Cognitive Science, 2016.

Kachergis and Yu Page 14

IEEE Trans Cogn Dev Syst. Author manuscript; available in PMC 2020 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[8]. Kachergis G, Yu C, and Shiffrin R, “Temporal contiguity in cross-situational statistical learning,” 
in Proceedings of the 31st Annual Meeting of the Cognitive Science Society, Taatgen N and van 
Rijn H, Eds. Austin, TX: Cognitive Science Society, 2009, pp. 1704–1709.

[9]. Suanda SH and Namy LL, “Detailed behavioral analysis as a window into cross-situational word 
learning,” Cognitive Science: A Multidisciplinary Journal, vol. 36, no. 3, pp. 545–559, 4 2012.

[10]. Vouloumanos A, “Fine-grained sensitivity to statistical information in adult word learning,” 
Cognition, vol. 107, no. 2, pp. 729–742, 2008. [PubMed: 17950721] 

[11]. Yu C and Smith LB, “Modeling cross-situational word-referent learning: Prior questions,” 
Psychological Review, vol. 119, no. 1, pp. 21–39, 2012. [PubMed: 22229490] 

[12]. Lopes LS and Chauhan A, “How many words can my robot learn? an approach and experiments 
with one-class learning,” Interaction Studies, vol. 8, no. 1, pp. 53–81, 2007.

[13]. Lyon C, Nehaniv CL, and Saunders J, “Interactive language learning by robots: The transition 
from babbling to word forms,” PLOS ONE, vol. 7, no. 6, pp. 1–16, 06 2012 [Online]. Available: 
http://dx.doi.org/10.1371%2Fjournal.pone.0038236

[14]. Medina T, Snedeker J, Trueswell J, and Gleitman L, “How words can and cannot be learned by 
observation,” Proceedings of the National Academy of Sciences, vol. 108, pp. 9014–9019, 2011.

[15]. Trueswell JC, Medina TN, Hafri A, and Gleitman LR, “Propose but verify: Fast mapping meets 
cross-situational word learning,” Cognitive Psychology, vol. 66, no. 1, pp. 126–156, 2013. 
[PubMed: 23142693] 

[16]. Siskind JM, “A computational study of cross-situational techniques for learning word-to-meaning 
mappings,” Cognition, vol. 61, pp. 39–91, 1996. [PubMed: 8990968] 

[17]. Kachergis G, Yu C, and Shiffrin RM, “An associative model of adaptive inference for learning 
word–referent mappings,” Psychonomic Bulletin and Review, vol. 19, no. 2, pp. 317–324, 2012. 
[PubMed: 22215466] 

[18]. Yu C, “A statistical associative account of vocabulary growth in early word learning,” Language 
Learning and Development, vol. 4, no. 1, pp. 32–62, 2008.

[19]. Fazly A, Alishahi A, and Stevenson S, “A Probabilistic Computational Model of Cross-
Situational Word Learning,” Cognitive Science, vol. 34, no. 6, pp. 1017–1063, 5 2010. [PubMed: 
21564243] 

[20]. Kachergis G, “Learning nouns with domain-general associative learning mechanisms,” in 
Proceedings of the 34th Annual Conference of the Cognitive Science Society, Miyake N, Peebles 
D, and Cooper RP, Eds. Austin, TX: Cognitive Science Society, 2012, pp. 533–538.

[21]. Carrier M and Pashler H, “The influence of retrieval on retention,” Memory and Cognition, vol. 
20, pp. 633–642, 1992. [PubMed: 1435266] 

[22]. Hennig C, fpc: Flexible procedures for clustering, 2014, r package version 2.1–7. [Online]. 
Available: http://CRAN.R-project.org/package=fpc

[23]. Rousseeuw P, “Silhouettes: a graphical aid to the interpretation and validation of cluster 
analysis,” Computational and Applied Mathematics, vol. 20, pp. 53–65, 1987.

[24]. Smith LB, “How to learn words: An associative crane,” in Breaking the Word Learning Barrier, 
Golinkoff R and Hirsh-Pasek K, Eds. Oxford: Oxford University Press, 2000, pp. 51–80.

[25]. Kachergis G, Yu C, and Shiffrin RM, “Cross-situational word learning is better modeled by 
associations than hypotheses,” in IEEE Conference on Development and Learning-EpiRob 
(ICDL), 2012.

[26]. Blythe RA, Smith K, and Smith ADM, “Learning Times for Large Lexicons Through Cross-
Situational Learning,” Cognitive Science, vol. 34, no. 4, pp. 620–642, 2010. [PubMed: 
21564227] 

[27]. Ardia D, Mullen KM, Peterson BG, and Ulrich J. (2015) ‘DEoptim’: Differential Evolution in 
‘R’. Version 2.2–3. [Online]. Available: http://CRAN.R-project.org/package=DEoptim

[28]. Yurovsky D and Frank MC, “An integrative account of constraints on cross-situational word 
learning,” Cognition, vol. 145, pp. 53–62, 2015. [PubMed: 26302052] 

[29]. Vlach HA and Sandhofer CM, “Fast mapping across time: Memory processes support children’s 
retention of learned words,” Frontiers in Developmental Psychology, vol. 3, no. 46, pp. 1–8, 
2012.

Kachergis and Yu Page 15

IEEE Trans Cogn Dev Syst. Author manuscript; available in PMC 2020 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1371%2Fjournal.pone.0038236
http://CRAN.R-project.org/package=fpc
http://CRAN.R-project.org/package=DEoptim


[30]. Berns GS, Cohen JD, and Mintun MA, “Brain regions responsive to novelty in the absence of 
awareness,” Science, vol. 276, pp. 1272–1275, 1997. [PubMed: 9157889] 

[31]. Kachergis G and Yu C, “Continuous measure of word learning supports associative model,” in 
IEEE Conference on Development and Learning-EpiRob (ICDL), 2014.

Kachergis and Yu Page 16

IEEE Trans Cogn Dev Syst. Author manuscript; available in PMC 2020 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
Example of two typical passive cross-situational training trials. On trial t, participants 

observe three objects and hear three pseudowords (“bosa, manu, plimbi”). Two intervening 

trials (not shown) each present three other objects and words, and then on trial t+3 two of the 

objects and words from trial t are presented again alongside another object and word. 

Participants are tasked with learning which words refer to which objects, and cognitive 

models propose different accounts of how they accomplish this.
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Fig. 2: 
Example training trial for the response condition, during which participants would hear four 

words (e.g., “bosa..regli..manu..stigson”). The spoken words always referred to an object on 

the trial, but in a random order, making it impossible to disambiguate the assigned word-

object mappings without cross-situational evidence. In the passive condition, no “Don’t 

Know” button was visible, and participants were not instructed to respond after each word.
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Fig. 3: 
Accuracy on final 18AFC test as a function of different statistics about that item’s responses 

during training. Correctly selecting the referent more than three times in training resulted in 

≥ 75% accuracy on final test.
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Fig. 4: 
Response utilization during training for items that were known or unknown on the final 

18AFC test. The 35% of items that were finally correct showed increasingly correct 

responses during training, whereas the 65% of items that were finally incorrect showed 

constant, high levels of incorrect responding during training.
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Fig. 5: 
Hypothesis-testing models’ (top) and associative models’ (bottom) proportion of responses 

at each training occurrence, split by finally-correct and finally-incorrect items (at 18AFC 

test) for the best-fitting parameter values. Only the associative model, when selecting a 

single referent per word to update (lower left) matches people’s increase in correct 

responding (inset, and in Figure 4), and steady decline in uncertain and incorrect 

responding–even for the finally-incorrect items. When updating all associations (lower 

right), the model does not distinguish finally-correct and finally-incorrect response 

trajectories. Meanwhile, hypothesis testing models show response trajectories that do not 

match people’s, especially for finally-incorrect items.
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TABLE I:

Conditional probability of response on the second training occurrence given the response on the first 

occurrence.

Probability of Second Response

First Response Correct Uncertain Incorrect N Final Accuracy

Correct 0.50 0.09 0.41 182 0.49

Uncertain 0.20 0.41 0.39 337 0.36

Incorrect 0.29 0.11 0.60 411 0.28
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TABLE II:

Probability of response on the current training occurrence (2–6) given the response on the previous occurrence 

(1–5).

Probability of Current Response

Prev. Response Correct Uncertain Incorrect N

Correct 0.66 0.07 0.27 1,694

Uncertain 0.23 0.41 0.36 1,063

Incorrect 0.30 0.12 0.58 2,133

N 808 2,065 2,017
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TABLE III:

Training statistics of clustered items.

Cluster First Learned Correct Responses Incorrect Responses “Don’t Know” Finally Correct N

1 1.71 4.73 0.69 0.48 0.78 252

2 2.71 2.03 3.16 0.77 0.25 418

3 5.75 0.78 1.25 3.88 0.19 153

4 6.51 0.40 4.78 0.80 0.14 167
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TABLE IV:

Training response by occurrence and accuracy on final test.

Final Test Training Resp.
Occurrence

1 2 3 4 5 6

Correct
(.35)

Correct .28 .44 .57 .67 .75 .86

Uncertain .37 .20 .13 .11 .06 .03

Incorrect .35 .36 .30 .22 .19 .11

Incorrect
(.65)

Correct .15 .22 .25 .26 .27 .35

Uncertain .36 .22 .20 .20 .20 .15

Incorrect .49 .56 .55 .54 .53 .5
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