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Measures of Neural Similarity
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Abstract
One fundamental question is what makes two brain states similar. For example, what makes the activity in visual cortex
elicited from viewing a robin similar to a sparrow? One common assumption in fMRI analysis is that neural similarity is
described by Pearson correlation. However, there are a host of other possibilities, including Minkowski and Mahalanobis
measures, with each differing in its mathematical, theoretical, and neural computational assumptions. Moreover, the operable
measures may vary across brain regions and tasks. Here, we evaluated which of several competing similarity measures best
captured neural similarity. Our technique uses a decoding approach to assess the information present in a brain region, and
the similarity measures that best correspond to the classifier’s confusion matrix are preferred. Across two published fMRI
datasets, we found the preferred neural similarity measures were common across brain regions but differed across tasks.
Moreover, Pearson correlation was consistently surpassed by alternatives.
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Introduction

Detecting similarities is critical to a range of cognitive
processes and tasks, such as memory retrieval, analogy,
decision-making, categorization, object recognition, and
reasoning (Aly et al. 2013; Bracci and de Beeck 2016;
Coutanche and Thompson-Schill 2014; Goldstone 1994;
Markman et al. 2006; Medin et al. 1993; Palmeri and
Gauthier 2004; Tyler et al. 2000). Key questions for neuro-
science include which measures of similarity does the brain
use and do similarity computations differ across brain
regions and tasks. Whereas psychology has considered a
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dizzying array of competing accounts of similarity (Ennis
et al. 1988; Gentner and Markman 1997; Hahn et al. 2003;
Krumhansl 1978; Pothos et al. 2013; Tenenbaum and Grif-
fiths 2001; Tversky 1977), research in neuroscience usually
assumes that Pearson correlation captures the similarity
between different brain states (Davis and Poldrack 2013;
Davis et al. 2014; Kriegeskorte et al. 2008a; Kriegeskorte
et al. 2008b; LaRocque et al. 2013; Nili et al. 2014; Weber
et al. 2009; Xue et al. 2010); albeit, not all (Gardella et al.
2018; Nili et al. 2014; Ramirez et al. 2014; Soucy et al.
2009; van Rossum 2001).

Of course, when evaluating whether the brain favors cer-
tain measures of similarity, any conclusions are with respect
to the chosen data sets and dependent measures. This caveat
is shared with other endeavors, such as determining which
algorithm the brain uses for category learning. Although cat-
egory learning models are typically selected based on a set
of behavioral studies, model comparison can also be done
on the basis of brain imaging data (Mack et al. 2013). Here,
we select an abstract measure of similarity based solely on
brain data, in particular fMRI data. Although our methods
could equally apply to other measures of neural activity,
such as single-unit recording or EEG data, we focus on
fMRI because of its ability to localize activity from a num-
ber of brain regions simultaneously and demonstrations that
it can recover similarity spaces despite the method’s limita-
tions, which itself can be illuminating of the underlying neu-
ral computations (Guest and Love 2017). We alert the reader
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that, like any investigation that aims to bridge levels (e.g.,
from brain measure to abstract similarity computation),
the chosen data sets (e.g., the tasks, the stimuli, the depen-
dent measures) play a role in shaping the results. With this
caveat, we proceed and evaluate similarity measures that
operate over fMRI voxels.

On the face of it, it seems unlikely that the brain would
use a single measure of similarity across regions and tasks.
First, across regions, the signal and type of information
represented can differ (Ahlheim and Love 2018; Bracci
and de Beeck 2016; Diedrichsen et al. 2011), which might
lead the accompanying similarity operations to also differ.
Second, task differences, such as those that shift atten-
tion (Braunlich and Love 2018; Mack et al. 2013; Mack
et al. 2016), lead to changes in the brain’s similarity space
which may reflect basic changes in the underlying similarity
computation. Our interest is in describing similarity com-
putations that could, in principle, be used for behavioral
output, focusing on a necessary but not sufficient condi-
tion for producing behavior from neural representations.
Admittedly, similarity operations can be defined not only
over voxel vectors but as attentional weights on stimulus
dimensions (Mack et al. 2013; Mack et al. 2016), but we
will not address this phenomena here. Outside neuroscience,
it is common to use different similarity measures on dif-
ferent representations. For example, in machine learning,
Euclidean measures are often used to determine neighbors
in image embeddings whereas cosine similarity is more
commonly used in natural language processing (Mihalcea
et al. 2006).

In this contribution, we developed a technique to address
two theoretical goals. The first goal was to ascertain whether
the similarity measures used by the brain, as measured
by fMRI, differ across regions. The second goal was to
investigate whether the preferred measures differ across
tasks and stimulus conditions. Our broader aim was to
elucidate the nature of neural similarity. To do this, we
propose using the confusion matrix of a best-performing
classifier to evaluate similarity measures, with the classifier
being chosen by a best decoding accuracy criteria.

Previous studies have adopted different similarity mea-
sures to relate pairs of brain states such as Pearson cor-
relation or the Mahalanobis measure, measures commonly
chosen for representational similarity analysis (RSA) (Alle-
feld and Haynes 2014; Haxby et al. 2011; Kiani et al.
2007; Kriegeskorte et al. 2008a). However, the basis for
choosing one measure over another is not always clear.
The choice of measure induces a host of assumptions,
including assumptions about how the brain codes and pro-
cesses information. While all the measures considered oper-
ate on two vectors associated with two brain states (e.g.,
the BOLD response elicited across voxels when a sub-
ject views a truck vs. a moped), the operations performed

when comparing these two vectors differ for each similarity
measure.

Families of Similarity Measures

To better understand these assumptions and their impor-
tance, we organize common measures of similarity, many of
which are used in the neuroscience literature, into three fam-
ilies (see Fig. 1, left side). The most basic split is between
similarity measures that focus on the angle between vectors
(e.g., Pearson correlation or cosine distance) and measures
that focus on differences in vector magnitudes. The lat-
ter branch subdivides between distributional measures that
are sensitive to covariance across vector dimensions (e.g.,
Mahalanobis) and those that are not (e.g., Euclidean). Of
course, there are uncountably infinite similarity measures
one could choose to assess; the goal here is to compare
common measures that can discriminate between different
computations of interest as organized by these families of
measures with focus on angle, magnitude, and distributional
properties.

The choice of similarity measure can shape how neural
data are interpreted, leading to inferences on the underlying
computation. Consider the right panel in Fig. 1. In this
example, the neural representation of object a is more
similar to that of b than c when an angle measure is used,
but this pattern reverses when a magnitude measure is used.

Unlike the other measures, distributional measures are
anisotropic, meaning the direction of measurement is conse-
quential.1 Examples of such measures are variation of infor-
mation, Mahalanobis, and Bhattacharyya measures. These
measures consider the covariance between dimensions in
voxel space, which implies that the direction along which
the measurement is made will impact the measurement
itself.

The choice of similarity measure reflects basic assump-
tions about the nature of the underlying neural computation.
For example, Pearson correlation (a common measure for
neural similarity in fMRI, e.g., Davis and Poldrack (2013);
Davis et al. (2014); Kriegeskorte et al. (2008a, b); LaRoque
et al. (2013); Nili et al. (2014); Weber et al. (2009); Xue
et al. 2010) assumes that overall levels of voxel activity are
normalized and that each voxel independently contributes
to similarity, whereas Minkowski measures assume sim-
ilarity involves distances in a metrical space instead of
vector directions. Furthermore, the Mahalanobis measure
expands on both Minkowski and Pearson by assuming that
the distributional pattern of voxel activity is consequen-
tial. Non-distributional measures, like Pearson correlation,

1Anisotropic measures should not be confused with asymmetric
measures; the latter gives different values based on which stimulus is
measured first (Nosofsky 1992; Tversky 1977).
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Fig. 1 Families of similarity measures. (left panel) Similarity mea-
sures divide into those concerned with angle vs. magnitude differences
between vectors. Pearson correlation and Euclidean distance are com-
mon angle and magnitude measures, respectively. The magnitude
family further subdivides according to distributional assumptions.
Measures like Mahalanobis are distributional in that they are sensi-
tive to co-variance such that similarity falls more rapidly along low

variance directions. (right panel) The choice of similarity measure
can strongly affect inferences about neural representational spaces.
In this example, stimuli a, b, and c elicit different patterns of activ-
ity across two voxels. When Pearson correlation is used, stimulus a
is more similar to b than to c. However, when the Euclidean mea-
sure is used, the pattern reverses such that stimulus a is more similar
to c than b

require less data than distributional measures since they are
not concerned with estimating a covariance matrix. Con-
trariwise, distributional measures will be biased to operate
over vectors with lower dimensionality; this is covered in
the “Materials and Methods” section below where our fea-
ture selection procedure levels the playing field for all
measures. This also hints as to whether neural computa-
tions are more or less spatially localized or if they are
integrating information over longer time periods (i.e., a
covariance matrix represents this longer time period since
it requires more information from more stimulus obser-
vations). As alluded to here, finding a good description
of the brain’s similarity measure is as important as find-
ing an appropriate coordinate system for neural stimulus
representation; these goals are in fact equivalent — sim-
ilarity measures can be seen as doing implicit coordinate
transforms.

Knowing which similarity measure best describes the
brain’s operation could illuminate the nature of neural
computation at multiple levels of analysis. For example,
if a brain region normalized input patterns for key
computations, then Pearson correlation might have superior
descriptive power than the dot product. At a lower level,
such a result would be consistent with mutually inhibiting
single cells (Heeger 1992). On the other hand, if the brain

matches to a rigid template or filter (e.g., Brunelli and
Poggio (1993)), then the Euclidean measure should provide
a better explanation for neural data.

To identify which similarity measures are used by the
brain requires addressing a number of challenges. One
challenge is to specify a standard by which to evaluate
competing similarity measures. Related work in psychology
and neuroscience has relied on evaluating against verbal
report. However, such an approach is not suited to our aims
because we are interested in neural computations that may
differ across brain regions and which may not be accessible
by verbal report or introspection.

Instead, we rely on a decoding approach to assess
the information latent in a brain region. The intuition is
that brain states that are similar should be confusable in
decoding. For example, a machine classifier may be more
likely to confuse the brain activity elicited by a bicycle
with that by a motorcycle than a car. In this fashion,
we can evaluate competing similarity measures on a per
region basis in a manner that is not constrained by verbal
report. The insight that similarity is intimately related
to confusability has a long and rich intellectual history
(Shepard 1964; Spence 1952; Pavlov and Anrep 2003)
though has not yet been considered to evaluate what makes
two brain states similar.
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Fig. 2 Evaluating the similarity
profile for a ROI. The confusion
matrix from a classifier is used
to approximate the information
present in the ROI. The
similarity matrix from each
similarity measure is correlated
with this confusion matrix (i.e.,
the classifier matrix in the
figure). The pattern of these
correlations (i.e., the
performance of the various
similarity measures) is the
similarity profile for that ROI.
Similarity profiles can be
compared between ROIs, both
within and between datasets (see
“Materials and Methods”
section for more details)

Discrimination of Similarity Measures

Our method for distinguishing the similarity measure used
by the brain involves two basic steps:

1. For each ROI, compute a pairwise confusion matrix2

using a classifier. For each ROI, also compute a
similarity matrix for each candidate similarity measure.

2. For each similarity measure, correlate its similarity
matrix with the confusion matrix using Spearman
correlation to avoid scaling issues.

The better a similarity measure characterizes what makes
two brain states similar, the higher its Spearman correlation
with the confusion matrix should be. This analysis uses the
confusion matrix as an approximation of what information
is present in a brain region (more on this below).

The matrices for each similarity measure were optimized
to maximize the Spearman correlation with the confusion
matrix by performing feature selection on voxels (see
Fig. 2). See the SI (Supplemental Information) for details
on the similarity measures. Importantly, to understand the
results, some similarity measures (i.e., Mahalanobis and
Bhattacharya) that estimate covariance matrices are tagged
according to the type of regularization used, with (d) for
keeping only the diagonal entries and (r) for Ledoit-Wolf
shrinkage.

2The matrix is symmetric since it is constructed with pairwise
accuracies (see “Materials and Methods”).

We considered all 110 regions of interest (see SI for
a list of the 110 regions) from the Oxford-Harvard Brain
Atlas (provided with FSL, Jenkinson et al. (2012)) for two
previously published datasets. One dataset was from a study
in which participants viewed geometric shapes (GS) (Mack
et al. 2013), and the other dataset was from a study in
which participants viewed natural images (NI) (Bracci and
de Beeck 2016). For each dataset, we determined the top
10 ROIs for decoding accuracy (cf. Bhandari et al. (2018)).
The union of these top ROIs provided 12 ROIs that were
considered in subsequent analyses (see SI).

Lower Confusability as Information Gain

As mentioned above, our proposed method involves
approximating brain state information with a classifier.
Subsequently, we use this approximation to assess an
array of similarity measures. The motivation for using a
classifier to approximate information in a brain state arises
from an information theoretic perspective. For example,
suppose one’s prior assumption is that two stimuli are
equally likely, which corresponds to random guessing or
maximal entropy (1 bit). If a probabilistic classifier with
the same prior is applied to the stimulus and approaches
100% accuracy, then the information gain approaches 1
bit. Formally, one can measure the Kullback-Leibler (KL)
divergence (a continuous, non-saturating measure) between
a prior distribution p (centered at 0.5) and an updated
distribution q defined by the classifier’s output. To be
more specific, we could model the prior as a binomial
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distribution with parameter p and the updated distribution
as another binomial with parameter q. With a suitable prior
distribution for the classifier, the KL divergence is always
defined and enables a computable measure of brain state
information. Thus, KL divergence, or information gain, will
be inversely proportional to confusability as measured by
the classifier. Of course, in practice, machine classifiers
do not reach close to 100% accuracy with fMRI data for
the types of discriminations that we consider. The point
is that decoding and measuring available information in
a brain state are intimately linked. This further justifies
the black box approach to choosing a classifier with the
highest decoding accuracy to approximate ground truth
confusability in the brain. Our hope is that treating the
classifier selection process as a black box will reduce the
bias for choosing the best-performing similarity measure.

Classification is not Similarity

Although it should be clear to cognitive scientists of all
varieties that similarity and classification are conceptually
distinct (see Goldstone 1994), it may not be as apparent
to some neuroscientists whose focus is elsewhere. To view
similarity and classification as one in the same would be
akin to viewing any operation in which similarity could
be relevant, such as memory retrieval, as synonymous with
similarity (Medin et al. 1993).

Mathematically, the domain and range of similarity and
classification functions are distinct. Similarity takes as its
domain (i.e., input) two states and its range (i.e., output) is
a scalar value (i.e., the similarity). Notice that similarity can
apply to any two states, irrespective of class membership.
A similarity function does not need to be “trained” and
“tested” on a particular discrimination, but instead can
apply broadly. Thus, new classes can be evaluated without
training. In contrast, a classification function takes as its
domain (i.e., input) items drawn from a predetermined set
of classes and its range (i.e., output) is a nominal value
indicating the class membership of the item. A classifier is
trained on items from the contrasting classes and tested only
on items drawn from these same distributions. The existence
of special cases in which there is a close relationship
between a particular similarity measure and classifier is
not a valid argument that similarity and classification are
one in the same in any general sense. It is true that some
classifiers may rely on similarity as an internal operation,
but such examples do not equate the categories. Likewise,
some similarity functions may require more information
than others (e.g., estimating a covariance matrix), but this
does not limit the applicability of that similarity function to
new classes.

To showcase the distinction between similarly and
classification operators, in addition to our main results, we

also present results for a non-classification task that relies
on neural similarity (i.e., a triplet analysis, see Fig. 3 below).
In particular, we assess neural similarity between a standard
stimulus and two probe stimuli, one of which matches in
shape. The similarity measures that perform best (i.e., select
the shape match standard) in the triplet analysis are the ones
that perform best in our main decoding analyses. Critically,
the stimulus classes used in the triplet analysis were not
included in the decoding analysis, which highlights that
similarity functions apply more broadly than classification
functions and that our method for selecting the brain’s
preferred similarity functions generalizes to novel stimulus
classes. This result also highlights how similarity measures
selected based on decoding predict performance on an
independent measure (e.g., shape match) that is outside the
selection procedure. Before visiting this result, we present
the main results that answer key questions, such as whether
the brain’s preferred similarity measures are common across
regions and tasks.

Materials andMethods

Datasets

The analyses are based on two previous fMRI studies:
a study that presented simple geometric shapes (GS) to
participants (Mack et al. 2013) and a study that presented
natural images (NI) to participants (Bracci and de Beeck
2016). The geometric shapes varied on four binary valued
dimensions (16 stimuli total) and the natural stimuli were
organized orthogonally, either by shape or by one of six
categories such as fruits or tools (54 stimuli total). The
GS study consisted of a visual categorization task with 20
participants and the NI study of a 1-back size judgment
task with 14 participants. Further descriptions of the tasks,
the stimuli, and acquisition parameters can be consulted in
the SI (see Fig. 3a for an example of the stimuli for both
studies). For further information, the reader should consult
the source citation directly.

Classification Analysis

Pattern classification analyses were implemented using
PyMVPA (Hanke et al. 2009), Scikit-Learn (Pedregosa et al.
2011), and custom Python code. The input to the classifiers
were least squares separate (LS-S) beta coefficients for
each presentation of a stimulus (Mumford et al. 2012) (see
SI). Basically, each beta coefficient represents the peak
activation for a single presentation of a stimulus for a
given voxel. Three classifiers were used for the pattern
classification: Gaussian naı̈ve Bayes, k-nearest neighbor,
and linear support vector machine (SVM). The output of
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Fig. 3 An overview of the materials and basic analyses. a Partici-
pants engaged either in a categorization task for the GS study or in
a 1-back task for the NI study. Importantly, the tasks in the original
studies are independent of the analyses we perform, which are only
concerned with the fMRI activations arising from the stimulus presen-
tations. Examples of the stimuli used for each study are shown. b The
neural similarity analysis involved comparing similarity prof iles.
The similarity profile for region i is a vector in which each entry
j is the Spearman correlation between similarity measure j and
the classification accuracies of each region i. Each Spearman cor-
relation involves all possible stimulus pairs (excluding an item with
itself). For the similarity measure, this includes the similarity of each

item with every other item. For the classifier accuracy, the accu-
racies of the binary classifier for the corresponding two stimulus
items are included. For the GS study with 16 stimuli, each Spear-
man correlation involved 16 × 15/2 = 120 similarity-classifier
accuracy pairs. For the NI study with 54 stimuli, each Spearman
correlation involved 54 × 53/2 = 1431 similarity-classifier accu-
racy pairs. c In the triplet analysis, the question is which of the
two probe items is more neurally similar to the standard using neu-
ral similarity measure j . When the probe that matches the standard
in shape is more similar, the trial is scored as correct. All pos-
sible triplets (under a few constraints, see SI) are considered for
each ROI

one of these classifiers was to be chosen as the best
representation of the underlying similarity matrix to which
all other similarity measures would be compared to (see
the neural similarity analysis below). The linear SVM was
implemented with the Nu parametrization (Schölkopf et al.
2000). This Nu parameter controls the fraction of data
points inside the soft margin; the default value of 0.5 was
used for all classifications. The k-nearest neighbor classifier
was implemented using five neighbors. No hyperparameters
required setting for the Gaussian naı̈ve Bayes classifier.

To pick the best-performing classifier, classification was
conducted on the whole-brain (no parcellation into distinct
ROIs) for each study independently. All classifiers were
trained with leave-one-out k-fold cross-validation, where
k was equal to the number of functional runs for each
participant in each study (e.g., six runs in the GS study
or sixteen runs in the NI study). To do feature selection
on voxels, all voxels were ordered according to their F
values computed from an ANOVA across all class (stimuli)
labels. The top 300 voxels with the highest F values were

retained based on classifier performance (i.e., accuracy) on
the test run. For these classifiers, accuracy was computed
across all classes (16 classes for the GS study and 54
classes for the NI study) with a majority vote rule across
all computed decision boundaries (for classifiers where this
is applicable like linear SVM). This means that random
classification is equal to 6.25% for the GS study and 1.85%
for the NI study for this whole-brain analysis. However, for
all other classification analyses, accuracy is computed as
mean pairwise accuracy across all classes, which means that
random classification is equal to 50%. The best-performing
classifier was selected as the classifier with highest mean
accuracy (mean across participants) in the GS and NI
study, independently. Classifier accuracies (i.e., confusion
matrices) were multiplied by negative one for the neu-
ral similarity analysis explained. This was done so that
they would correlate positively with the (dis)similarity
measures and facilitate presentation of results. As men-
tioned previously, the confusion matrices are symmetric
since they are constructed from pairwise accuracies.
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The following analysis was performed for each of the
110 ROIs that are described in the SI. To train the classifiers
leave-one-out k-fold cross-validation was also used. Within
each fold, a (randomly) picked validation run was used
to tune the number of features (i.e., voxels) that would
be selected for that fold. Thus, feature selection was done
within each fold. To do this feature selection, all voxels
were ordered according to their F values computed from
an ANOVA across all class (stimuli) labels. This step aids
classifier performance because it preselects task-relevant
voxels (as opposed to item discriminative voxels). It is
important to note that these ANOVAs were computed on
the training runs but not on the validation run nor on the
held-out test run, to avoid overfitting. The top n voxels
with the highest F values were used to train a classifier
and estimate its classification accuracy on the validation
run. The number n that generates the highest accuracy
is then chosen for the classifier and the ROI. Scipy’s
minimize scalar function (Jones et al. 2001) was used to
optimize this validation run accuracy with respect to the
top n voxels. After picking the top n voxels, the classifiers
were trained on both the training runs and the validation
run. Subsequently, the classifiers were tested on the held-
out test run for that fold. This classification analysis was
done for all possible pairwise classifications for each study
(i.e., 120 pairwise classifications in the GS study and 1431
pairwise classifications in the NI study, see Fig. 3b). From
this analysis, the pairwise classification accuracies were
retained for both the validation run and the test run for each
fold. Further ROI selection (top twelve ROIs reported in the
“Results” section) is described in the SI.

Neural Similarity Analysis

The goal of this analysis was to compare the representation
of different similarity measures in the brain. The regions
considered here are the ones reported in the “Results”
section and described in the secondary ROI selection
section in the SI. The comparison criterion was chosen as
the Spearman correlation between all pairwise similarities
and the classification accuracies mentioned above. This
criterion was used since it avoids scaling issues. To achieve
this, first all pairwise similarities (i.e., for all pairs of
stimuli) were computed from the training runs defined
in the classification analysis—not including the validation
run. Incidentally, feature selection was also realized here.
In the same fashion as in the classification analysis, all
voxels were ordered according to their F values computed
from an ANOVA across all class (stimuli) labels. Then,
the top n voxels with the highest F values were retained
based on the Spearman correlation of the similarities with
the validation run accuracies of the classifier that were
previously computed. After picking the top n voxels,

the similarities were computed across training runs and
validation run for those voxels. These similarities were then
used to compute the final Spearman correlation with the
classifier test run accuracies. Conducting feature selection
for the similarity measures is important because different
measures leverage information differently. For measures
that require estimating a covariance matrix, this matrix was
computed across all classes (i.e., pairwise dot product) in
the training set with either Ledoit-Wolf regularization (r),
diagonal regularization (d), or no regularization at all.

This analysis parallels the classification analysis in every
way except that instead of optimizing model accuracy,
here the optimization criterion was model correlation
(i.e., Spearman correlation) with the previously computed
pairwise classifier accuracies.

Mixed-Effects Models

A mixed-effects model was performed with the lme4
package (Bates et al. 2014) for each study with Spearman
correlations from the neural similarity analysis (i.e.,
similarity profile) as the response variable. The models
contained fixed effects of similarity measure, linear SVM
accuracy, participant, and ROI. Linear SVM accuracy,
participant, and ROI variables only serve to account for
variance and obtain better estimates. The models also
contained random effects of ROI (varying per participant)
and of similarity measure (varying per ROI). Model
comparisons were performed between the full model and
a null model without any similarity measures. Follow-
up contrasts of the similarity measure were performed,
compared to a baseline measure (Pearson correlation).3 The
contrasts that compared each measure to Pearson correlation
were computed with the multcomp package in R (Hothorn
et al. 2008).

Searchlight Analysis

This analysis allows finer spatial localization and was
conducted on the union of the top 10 ROIs across
both studies (see Secondary ROI selection in SI) in the
native space of each subject using PyMVPA’s searchlight
function. For each voxel (i.e., searchlight center), the
similarity matrices were Spearman correlated with the
best-performing classifier in the same fashion as in the
main analysis above. For each study, the statistical maps
of Euclidean and Mahalanobis(r) were compared to the
statistical map of Pearson correlation, using it as a baseline
measure. All maps were transformed to MNI space for

3A full model that included both studies was not possible due to
convergence issues.
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this comparison. The threshold-free enhancement (TFCE)–
corrected p values for the paired t statistics were computed
with FSL’s randomize function with 5000 permutations.
Only t statistics with TFCE-corrected p values below 0.001
were considered as significant. This conservative threshold
was used to adjust for the fact that these 3 similarity
measures were selected from the original 17 (i.e., p =
0.05/17 ≈ 0.0029).

Triplet Analysis

As discussed in the “Introduction” section, similarity
and classification are distinct concepts. To illustrate, this
analysis shows how similarity measures can be used in
non-classification settings involving stimuli from novel
(untrained) classes. In particular, we consider a triplet
analysis involving data from the NI study (Figs. 3c and 6).
The analysis compared which of two probe items is more
neurally similar to the standard stimulus. Trials were
defined as correct when the probe that matches in shape was
more neurally similar. Clusters of items organized by shape
were predefined in the original NI study.

Thus, if the similarity measure was higher between
standard and correct probe (which matches on shape) than it
was for standard and incorrect probe (which does not match
on shape), then the outcome of such a comparison was
labelled with value 1, otherwise 0 (see Fig. 3c). So for each
created triplet, there was always one probe that matched on
shape and one that did not. All possible triplets were created
with the additional constraint that the standard not be in the
same nominal category as either probe; nominal categories
were also predefined in the original NI study. Accuracy was
computed as the number of outcomes equal to 1 divided by
the number of triplets (8640 triplets total, see SI). These
accuracies were correlated with the NI similarity profile
explained above in the neural similarity analysis, both on
the test set (which excluded the standard and correct probe
on each triplet) and on the whole set of stimuli (Fig. 6).

To summarize all the methods, we first obtained the
LS-S estimates of the beta coefficients, representing peak
activation for a single presentation of a stimulus per voxel.
Then, a black box approach was taken to pick a classifier
with best decoding accuracy for each study (GS and NI)
from a selection of predetermined classifiers. The union
of the top 10 ROIs in decoding accuracy across both
studies was used as an ROI selection criteria for further
analyses. For each of these ROIs, we computed similarity
profiles as a vector of Spearman correlations between
pairwise classifier accuracies and pairwise similarities
(for each similarity measure, see Fig. 2 and Fig. 3b).
Similarity profiles were compared to each other via a
mixed-effects model including contrasts with respect to
a baseline measure (Pearson correlation). Finally, three

measures of interest (Euclidean, Mahalanobis, and Pearson
correlation) were visually inspected in the brain with a
searchlight analysis. As an added bonus, we further justified
the neural similarity analysis with a triplet analysis for
the LS-S beta coefficients sourced from the NI study. In
the triplet analysis, we compared the accuracy of each
similarity measure as defined on triplets of standards,
correct probes, and incorrect probes. Correctness was
defined as equivalence in shape, as predetermined in the
original NI study. Accuracy was defined as the proportion
of standard to correct probe similarity measurements that
were higher than the standard to incorrect probe similarity
measurements (Fig. 3c). Accuracies from the triplet analysis
were then related to the Spearman correlations from the
neural similarity analysis (Fig. 6 below).

Results

Neural Similarity

What makes two brain states similar and does it vary across
brain regions and tasks? The following analyses focus both
on the performance of individual similarity measures and
on the pattern of performance across a set of candidate
measures, which we refer to as the similarity profile for an
ROI (see Fig. 2).

As a precursor, we first tested whether similarity mea-
sures differed in their performance (Fig. 4a). Specifically,
we evaluated whether certain measures better describe what
makes two brain states similar by nested comparison using
a mixed-effects model for each study (see “Materials and
Methods”). For both studies, similarity measures differed
in their performance, χ2(2) = 1720.331, p < 0.001; χ2(2)
= 6770.249, p < 0.001, for the GS and NI studies, respec-
tively.

We tested whether the similarity profile differed across
brain regions within each study. The similarity pro-
files (i.e., mean aggregate performance across measures)
were remarkably alike across ROIs (see “Materials and
Methods”). High (Pearson) correlations are presented
within task for both the GS study (Fig. 4b) and the NI study
(Fig. 4c) between all pairs of ROIs, where mean correlation
of the upper triangle is 0.95 (s.d. = 0.034) in the former and
0.96 (s.d. = 0.027) in the latter. Bartlett’s test (Bartlett 1951),
which evaluates whether the matrices are different from
an identity matrix, was significant for both the GS study,
χ2(66) = 432.847, p < 0.001, and the NI study, χ2(66) =
502.7494, p < 0.001. Permutation tests (with 10,000 iter-
ations), where the labels of the similarity measures were
permuted, confirmed these results (p< 0.001). These results
are consistent with the same similarity measures being used
across brain regions within each study.
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Fig. 4 Similarity measure profiles and ROI correlation matrices. Mean
Spearman correlations (a) for each similarity measure and the clas-
sifier confusion matrix in the GS study (grey bars) and the NI study
(black bars) are displayed. To convey the variability, error bars are
plotted as standard deviations, and each ROI mean is plotted as a
green point. ROI correlation matrices for the GS (b) and NI (c)
studies, demonstrating that the similarity profiles were alike across

brain regions (i.e., were positively Pearson correlated). ROI correlation
matrix (d) demonstrating that the similarity profiles disagreed across
studies (i.e, were negatively Pearson correlated). The 12 ROIs were left
and right intracalcarine cortex (CALC), left and right lateral occipital
cortex (LO) inferior and superior divisions, left and right lingual gyrus
(LING), left and right occipital fusiform gyrus (OF), and left and right
occipital pole (OP)

We tested whether similarity profiles differed between
studies. The results indicated that similarity profiles differed
between studies, suggesting that the operable neural
similarity measures can change as a function of task or
stimuli (Fig. 4d). In particular, similarity profiles between
studies were negatively correlated with a mean correlation
of the upper triangle of −0.27 (s.d. = 0.148). Jennrich’s test
(Jennrich 1970) showed that this matrix was different than a
matrix of zeros, χ2(66) = 769.0349, p < 0.001. Permutation
tests (10,000 iterations) with shuffling of similarity label
measures also confirmed these results (p < 0.001).

Searchlight Analysis

In light of these results, post hoc pairwise tests of each
similarity against the Pearson similarity measure, which
is the de facto default choice in the literature, were
conducted. The contrasts from the mixed-effects models
(mentioned above, see “Materials and Methods”) presented
in Table 1 provide evidence that some similarity measures
are a superior description of the brain’s similarity measure.
The performance of many measures differed from Pearson,
especially in the NI study. Notably, only two variants of
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Table 1 Comparison of similarity measures to Pearson correlation.
Top panel shows significant z statistics for measures worse than
Pearson correlation (in brackets) and better than Pearson correlation
for the GS study. Bottom panel shows the same for the NI study. p
values are Bonferroni corrected

Similarity measure z p

GS study

Minkowski(5) 12.562 < 0.001

Euclidean 12.145 < 0.001

Minkowski(10) 10.459 < 0.001

City block 10.479 < 0.001

Mahalanobis(d) 8.825 < 0.001

Minkowski(50) 6.624 < 0.001

Chebyshev 6.353 < 0.001

Cosine 4.532 < 0.001

Dot product 4.053 < 0.001

Mahalanobis (3.161) 0.02

NI study

Mahalanobis(r) 11.301 < 0.001

Mahalanobis 10.304 < 0.001

Minkowski(50) 4.920 < 0.001

Chebyshev 4.733 < 0.001

Minkowski(10) 4.005 < 0.001

Euclidean (5.170) < 0.001

Mahalanobis(d) (7.593) < 0.001

City-block (10.411) < 0.001

Cosine (22.803) < 0.001

Dot product (29.547) < 0.001

the Mahalanobis measure and three Minkowski measures
outperformed Pearson. In the GS study, we can observe that
all the Minkowski distances performed better than Pearson
as well as cosine, Mahalanobis(d), and the dot product.
Once again, the contrasting pattern of results between the
two studies is striking.

Given the performance of the Euclidean and Maha-
lanobis(r) measures, and that they have been used previously
in analyzing neural data (Fritsch et al. 2012; Nili et al.
2014; Persson and Rieskamp 2009; Walther et al. 2016),
we selected these measures for inclusion in a searchlight
analysis (Fig. 5, see “Materials and Methods” for details).
By comparing the Euclidean and Mahalanobis(r) measures
to Pearson correlation on a voxel-by-voxel basis for the 12
ROIs, we aimed to provide a visualization of the perfor-
mance of similarity measures across regions and studies.
Figure 5 illustrates the regions where these two measures
outperform Pearson correlation, displaying the maximum t
for voxels where both Euclidean and Mahalanobis overlap
(see SI for visualizations of the overlap).

In the NI study, the Mahalanobis(r) measure dominated
(Fig. 5b), confirming the results from the previous analyses.

In contrast, in the GS study (Fig. 5a), Euclidean dominates
in some regions whereas Mahalanobis(r) dominates in
others. Despite it being a de facto standard, Pearson
similarity was never the top measure. For this post hoc
analysis, the measures were compared using permuted
paired sample t statistics for each voxel. Positive t statistics
that survived threshold-free cluster enhancement (TFCE)
correction with p < 0.001 are presented in Fig. 5 (see
“Materials and Methods” for the rationale behind this
threshold).

Triplet Analysis

In this section, we show that neural measures that perform
best in our decoding analysis perform best in the triplet
analysis, despite the entire classes used in the triplet analysis
being withheld from the decoding analysis. These results
indicate that approximating the information available in a
brain state through decoding can select similarity measures
that broadly generalize and perform sensibly in novel tasks.

The triplet analysis allows a separate evaluation of the
similarity measures of interest by comparing the accuracies
in such a task to the similarity profile of the NI study
(Fig. 6a); Pearson correlation of r(12) = 0.63, p = 0.017,
across the fourteen similarity measures of interest. For this
association, the scatterplot in Fig. 6a shows the variance
associated to the twelve regions of interest presented above.
Measures like Mahalanobis and Mahalanobis(r) clearly
do best; in line with the original similarity profile of
the NI study reported in the neural similarity analysis
(Fig. 4a). The similarity profile correlations were adjusted to
account for the held-out pairs from the triplet analysis (with
standard and correct probe removed), thus termed (reduced)
in contrast to the original profile and reported here as
(complete) (see “Materials and Methods”). In Fig. 6b, all the
similarity profiles are related amongst each other and with
the triplet analysis accuracies. Most notably, the bottom
row of the diagonal matrix displays how the triplet analysis
accuracies also Pearson correlate negatively with the GS
study similarity profile as in Fig. 4d, r(12) = −0.81, p <

0.001. For comparison purposes, we also present the
Pearson correlation of the triplet analysis accuracies with
NI study similarity profile (complete), r(12) = 0.63, p =
0.016. The triplet analysis is thus an independent assessment
of the validity of our neural similarity analysis.

These results clearly demonstrate independence from
our method of selecting similarity measures based on
a decoding approach that approximates the information
available in a brain state. In the triplet analysis, similarity
measures that performed best in our neural similarity
analysis also performed best in this novel task involving
untrained classes. More supporting evidence distinguishing
classification from similarity is also presented in the SI;
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Fig. 5 Euclidean and
Mahalanobis(r) outperform
Pearson. Occipito-lateral views
of the left and right hemispheres
for the GS study (a) and the NI
study (b) displaying maximum t
statistics where either the
Euclidean measure (blue) or the
Mahalanobis(r) measure (red)
outperformed the Pearson
correlation measure (i.e., each
voxel displays the t statistic for
the measure with highest t). The
t statistics were based on a
searchlight analysis of
Spearman correlations of each
measure with each voxel’s SVM
confusion matrix (see “Materials
and Methods”). Only displaying
t statistics where p < 0.001 for
paired sample t tests, TFCE
corrected; computed with FSL’s
randomize function with 5000
permutations, using as a mask
the 12 ROIs with best accuracy
(see “Materials and Methods”).
Note that very few voxels only
show the Euclidean measure
significantly outperforming
Pearson correlation in the NI
study, thus do not appear in this
visualization

the best-performing classifier is a linear SVM for both the
GS and NI study, whereas we find differences in similarity
profiles between studies. Clearly, similarity is not a simple
recapitalization of classification.

Discussion

One fundamental question for neuroscience is what makes
two brain states similar. This question is so basic that
in some ways it has been overlooked or sidestepped by
assuming that Pearson correlation captures neural similarity.
Here, we made an initial effort to evaluate empirically
which of several competing similarity measures is the best
description of neural similarity.

Our basic approach was to characterize the question as a
model selection problem in which each similarity measure
is a competing model. The various similarity measures (i.e.,
models) competed to best account for the data, which was
the confusion matrix from a classifier (i.e., decoder) that
approximated the information present in a brain region
of interest. The motivation for this approach is that more

similar items (e.g., a sparrow and a robin) should be more
confusable than dissimilar items (e.g., a sparrow and a
moped). Thus, the test of a similarity measure, which is a
pairwise operator on two neural representations, is how well
its predicted neural similarities agree with the classifier’s
confusion matrix.

At this early juncture, basic questions, such as whether
different brain regions use different measures of similarity
and whether the nature of neural similarity is constant across
studies remained unanswered. Our results indicated that the
neural similarity profile (i.e., the pattern of performance
across candidate similarity measures) was constant across
brain regions within a study, though strongly differed
across the two studies we considered. Furthermore, Pearson
correlation, the de facto standard for neural similarity, was
bested by competing similarity measures in both studies.

Support for the validity of our method came from the
follow-on triplet analysis in which we tested the ability of
the similarity measures to select which of two probe items
was most neurally similar to a comparison item. Similarity
measures that performed best at this task (by selecting
the probe that matched the comparison in stimulus shape)
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Fig. 6 Triplet analysis accuracies correlate with NI study similarity
profiles. In a, each data point represents one similarity measure per
region of interest. The Spearman correlations in a have been recal-
culated with the removal of held-out pairs used in the triplet analysis
(where each pair is the standard and the correct probe), thus termed NI

study similarity profile (reduced). In b, we Pearson correlate the sim-
ilarity profiles from the neural similarity analysis with the accuracies
derived from the triplet analysis as well as with each other. NI study
similarity profile (complete) and GS study similarity profile are the
same Spearman correlations as displayed in Fig. 4a

were those that also performed best under our decoding
approach to evaluating neural similarity, despite the fact that
the stimuli and classes used in the triplet were withheld
from the decoding analyses. These results establish that our
method of evaluating similarity measures selects measures
that generalize well to novel tasks and stimulus classes. It
also highlights that similarity and classification are distinct
functions.

Accordingly, we report results in the SI in which
the best-performing similarity measures vary while the
best-performing classifier remains constant, providing an
illustration of how similarity and classifier performance
can diverge. Of course, despite similarity and classification
being distinct, the classifier used to estimate the information
present in a brain region could bias the results; although,
it is not clear if this can be proven in the general
case. For example, a case could be made for the dot
product—as an internal operation of the linear SVM—
to be biased in picking Pearson correlation since they
both attend to vector directions, which we do not observe
in our results. Indeed, our method is classifier agnostic,
selecting the classifier that extracts the most information
from a given brain state. If there should be some general
formal relation between similarity functions and classifiers,
this would only improve the theoretical interpretation of

the brain’s similarity measure without compromising their
status as different concepts. We recommend the procedure
we followed: consider a variety of classifiers and choose
the best-performing classifier independently of how the
neural similarity measures perform (see SI). In practice, this
means that an advance in classifier techniques would invite
reconsidering how neural similarity measures perform.

One question is why the neural similarity profile would
differ across studies. There are host of possibilities. One
is that the nature of stimuli drove the differences. The
stimuli in the GS study were designed to be psychologically
separable, consisting of four independent binary dimensions
(color: red or green, shape: circle or triangle, size: large
or small, and position: right or left). These stimuli were
designed to conform to a Euclidean space so that cognitive
models assuming such similarity spaces could be fit to
the behavioral data. Accordingly, in our analyses, the
neural similarity measures from the Minkowski family
(including Euclidean) performed best. In contrast, the NI
study consisted of naturalistic stimuli (photographs) that
covaried in a manner not easily decomposable into a small
set of shared features. One possibility is that these types
of complex feature distributions are better paired with the
Mahalanobis measure (cf. Diedrichsen and Kriegeskorte
(2017)). Of course, task also varied with stimuli which
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offers yet another possible higher-level explanation for the
differences observed in neural similarity performance. For
example, the task in the GS study emphasized analytically
decomposing stimuli into separable dimensions whereas
holistic processing of differences was a viable strategy
in the NI study. In general, different tasks will require
neural representations that differ in their dimensionality
or complexity (Ahlheim and Love 2018), which has
ramifications for what similarity measure is most suitable.

A host of other concerns related to data quality may
also influence how similarity measures perform. The nature
of fMRI BOLD response itself places strong constraints
on the types of models that can succeed (Guest and Love
2017), which suggests that future work should apply the
techniques presented here to other measures of neural
activity. Regardless of the measure of neural activity,
more complex models of neural similarity will require
higher quality data to be properly estimated. For example,
measures such as Mahalanobis or Bhattacharyya need to
estimate inverse covariance matrices. These matrices grow
with the square of the number of vector components which
approaches both numerical and statistical unreliability when
the number of components approaches the number of
observations. For these reasons, we optimized the number
of top features (i.e., voxels) separately for each similarity
measure (see “Materials and Methods”), except in the
searchlight analysis where this was not possible. We also
considered regularized versions of similarity measures, such
as Mahalanobis(d), that should be more competitive when
data quality is limited.

Although the similarity measures considered are rela-
tively simple, they make a host of assumptions that are
theoretically and practically consequential. For example,
angle measures, such as Pearson correlation, are uncon-
cerned with differences in the overall level of neural activ-
ity, an assumption that strongly contrasts with magnitude
measures, such as those in the Minkowski family (e.g.,
Euclidean measure). Therefore, the choice of similarity
measure is central to any mechanistic theory of brain func-
tion and has practical ramifications when analyzing neural
data, such as when characterizing neural representation
spaces. In this light, operations that may seem routine, such
as normalizing data in various ways, can affect the inter-
pretation of results. For example, vector cosine only differs
from dot product by virtue of normalizing by the magnitude
of the two state vectors.

As mentioned previously, the space of possible similarity
measures is uncountably infinite and new measures
routinely enter the literature (Allefeld and Haynes 2014;
Walther et al. 2016). Such studies may focus more
on reliability criteria, rather than on modelling the
informational content of a brain state (Walther et al. 2016).
The distinction is subtle but it does describe the difference

between assessing a similarity measure as a model of
neural and cognitive phenomena as opposed to assessing a
measure’s suitability for a data analysis pipeline. In line with
our main results, sometimes new measures like crossnobis
perform well, and sometimes they fail (Charest et al. 2018).
Here, we aimed to include representative measures from
the main families of similarity measures we identified (see
Fig. 1, left side). Others are free to replicate our analyses
with alternative sets of measures. For example, a different
approach entirely could be to learn the metric directly from
the data, but perhaps limiting its theoretical interpretability
(Xing et al. 2003).

Although we focus on the BOLD response, our approach
applies equally to other neural measures, such as single-
unit recordings, perhaps enabling the study of non-
smooth similarity measures. One important open question
is whether the same similarity measures perform well
across measures that differ dramatically in terms of spatial
and temporal resolution, as well as the aspects of neural
activity they capture. Likewise, our approach can be
applied to complex artificial neural networks, such as
deep convolutional neural networks (CNN), which have
become popular in neuroscience by virtue of their ability to
track neural activity along the ventral stream during object
recognition tasks (Yamins and DiCarlo 2016). In standard
neural networks, the basic mathematics of integrate-and-
fire artificial neurons (i.e., units) can be viewed as a
similarity operation, namely a dot product between the
weight representation of the unit and the activity pattern
at the previous layer. Alternatively, many of the other
similarity functions we considered are differentiable and
could be used in CNNs trained through backpropagation
to perhaps provide better performance and agreement with
neural measures. The question of which similarity functions
manifest at the unit level of a CNN vs. at a larger
organizational level recapitulate the previous discussion of
the human brain. Other future directions include evaluating
different similarity kernels within classification procedures,
as an alternative to assessing neural similarity computations.
The work presented here adds to the general effort of
constraining cognitive models with neural data (Turner et al.
2018). Neural similarity measures, as inferred here, could
be used as building blocks for cognitive models, though the
mapping from model components to voxels could be quite
complex.

In conclusion, we took a step toward determining what
makes two brain states similar. Working with two fMRI
datasets, we found that the best-performing similarity
measures are common across brain regions within a
study, but vary across studies. Furthermore, we found
that the de facto similarity measure, Pearson correlation,
was bested in both studies. Although follow-up work is
needed, the current findings and technique suggest a host
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of productive questions and have practical ramifications,
such as determining the appropriate measure of similarity
before conducting a neural representational analysis. In
time, efforts making use of this and similar approaches
may lead to mechanistic theories that bridge neural circuits,
related measurement data, and higher-level descriptions.
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