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1. Introduction
Stroke is one of the leading causes of death and long-term 
disability worldwide [1] with increasing incidence rates 
in low and middle-income countries [2]. Disability due 
to a stroke incidence has significant emotional, social and 
economic burden on the patients and their society. It was 
suggested that deaths due to stroke cases will reach to 12 
million and number of patients surviving from a stroke 
incidence will reach to about 70 million by the year 2030 
[3].

Stroke cases are categorized into two groups: 
hemorrhagic and thrombotic (or ischemic) stroke. In 
hemorrhagic stroke, intracerebral or subarachnoid 
hemorrhage occurs in the brain due to the rupture of 
a cerebral blood vessel, but this type of stroke is less 
common (about 15% of all stroke cases in USA and 
Europe) worldwide [4,5]. On the other hand, ischemic 
stroke contributes to the majority of stroke cases and 
occurs when a cerebral artery is occluded by thrombus or 

thromboembolism, meaning that a blood clot may occur 
and cause a block in a small cerebral artery or a blot clot 
formed in a large vessel lodges in a small vessel in the brain. 
Due to the occlusion of the cerebral artery, blood supply to 
a certain brain region is restricted. Therefore, this event is 
called ischemia or ischemic stroke. 

Despite being a global problem with major social and 
economic burden on the society, treatment strategies are 
limited, and prevention measures are not enough [1]. 
Currently, patients survived from an ischemic stroke are 
treated with tissue plasminogen activator (tPA) that helps 
to relieve the obstruction in the blood vessels [6]. However, 
tPA has a very short therapeutic window which makes it 
impossible to use in the majority of the patients because 
of unfavorable actions of thrombolytics. Therefore, 
researchers have been in the search for a treatment option 
that can be used in patients who were diagnosed after the 
end of the therapeutic window of tPA or add-on treatment 
with thrombolytics. In this sense, it was shown that 
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melatonin also reverses unfavorable actions of tPA [7] and, 
we will focus on the novel findings for the use of melatonin 
in ischemic brain injury in the present article.

The pathophysiologic mechanisms underlying 
ischemic stroke or ischemia/reperfusion injury in humans 
include loss of the prooxidant/antioxidant balance, 
excitotoxicity and related increase in intracellular Ca++ 
levels, dysfunction in mitochondrial processes, increased 
neuroinflammation and eventually apoptotic neuronal cell 
death [8].

2. Justification of use of melatonin in stroke treatment
The studies reporting the antioxidant effects of melatonin 
justified its use for treatment of ischemic injury in animal 
models [9]. Thereafter, further research provided evidence 
that melatonin is able to alleviate several of the detrimental 
effects of stroke-related pathophysiologic processes [10,11]. 
In addition, melatonin was shown to protect the integrity 
of blood-brain barrier [12] and vascular function in the 
brain [13], bind and neutralize heavy metals [14] promote 
neuronal survival [15,16], and functional recovery [17] 
with minimal, if any, side effects even in high doses [18]. 
Moreover, melatonin exerts neurological protection by 
reducing the cerebral inflammatory response, cerebral 
edema and brain-blood barrier permeability after ischemic 
stroke [19].

Although melatonin can be synthesized in a number of 
tissues, it is believed that the main production center may be 
the pineal gland due to the fact that melatonin’s protective 
effects are severely diminished by pinealectomy as reported 
in experimental model of stroke [20]. Melatonin synthesis 
in the pineal gland occurs in a circadian manner, in which 
the melatonin levels peak in the night-time, whereas in the 
day-time melatonin production is inhibited [21]. Secreted 
melatonin is believed to modulate the circadian clock 
mechanisms through the ubiquitin-proteasome signaling 
pathway. Several gene transcripts [22] and proteins [23] 
have been identified to be expressed in a circadian fashion. 
Of these genes, the six core clock genes are known as Per1 
and Per2, Cry1 and Cry2, Clock and Bmal1 [24,25]. We 
have reported that melatonin regulates Bmal1 expression 
under normal conditions in vitro after hypoxia and in vivo 
after ischemic stroke [26]. Interestingly, in parallel with the 
highest blood concentrations of melatonin, the ischemic 
stroke incidence is lowest at the midnight hours in human 
[27]. In this term, we have indicated that tolerance to 
ischemic injury changes according to the time of day in 
which the injury occurs and the underlying mechanism of 
this tolerance includes circadian clock genes, specifically 
Bmal1, which is also regulated by the phosphorylation 
of AKT signaling pathway [24]. Consistently, Bmal1 
expression is enhanced following melatonin treatment 
following ischemic brain injury in mice and this increase 

is blocked when the survival kinase AKT inhibitors are 
present [26]. In addition to the transcriptional control 
of Bmal1 gene, melatonin may also regulate clock genes 
by stabilizing the protein through the inhibition of the 
ubiquitin-proteasome system [28]. It has been speculated 
that melatonin can act as a proteasome inhibitor and we 
showed that melatonin inhibits the proteasome machinery 
by downregulating Nedd4-1 E3 ligase expression [29]. 
Collectively, these data suggest that melatonin may 
still have unelucidated roles in the body that promotes 
endogenous recovery systems.

3. Melatonin’s antioxidant effect
The experimental models in rodents focusing on the 
antioxidant effect of melatonin in stroke pathophysiology 
mainly involved in the ischemia/reperfusion. In this 
model, generally transiently middle cerebral artery 
occlusion (MCAo) is performed and melatonin is usually 
administered either at the onset of ischemia or reperfusion 
[8]. In the ischemia/reperfusion injury, a blood vessel is 
obstructed and blood supply to a certain brain region is 
restricted, causing immediate apoptotic and necrotic cell 
death in the ischemic core. The surrounding tissue, called 
the penumbra, has relatively higher levels of blood supply 
compared to the ischemic core, however, apoptotic cell 
death through the complex interplay of several mechanisms 
can be observed in the penumbra even several days after 
ischemic injury [8]. In order to resupply the ischemic brain 
tissue with oxygen, hyperbaric (HBO) and normobaric 
oxygen (NBO) treatments gained considerable interest due 
to the possibility of oxygen to diffuse through the blood-
brain barrier to reach the injured brain tissue. However, 
conflicting literature exists for HBO treatment in transient 
or permanent MCAO models possibly because of increased 
free radical production upon effect of oxygen [30]. Even 
detrimental effects of HBO treatment were reported 
[31], but it should be kept in mind that the underlying 
reason for conflicting results may be partly because of 
the different timing of HBO treatment. Conversely, NBO 
therapy is an inexpensive and easy-to-access strategy that 
can be administered by simple facemasks. The favorable 
effects of NBO on the infarct volume and cell death were 
demonstrated in different models of brain injury [32–35]. 
However, the NBO treatment in these studies is usually 
started during the ischemia period or immediately at the 
onset of reperfusion. Although NBO can be beneficial in 
these models, this therapy can be only translated to patients 
who were admitted to hospitals with stroke symptoms that 
last for less than 12 h. In the light of these results, our group 
investigated the use of NBO treatment during reperfusion 
[12]. We also evaluated the combination of melatonin 
with NBO treatment. Our results indicated that melatonin 
potentiated the protective effect of NBO therapy in terms 
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of infarct volume, brain swelling, neurological deficit score 
and DNA fragmentation [12].

Even though the most important step in rescuing 
the cells’ from apoptotic death in the penumbra is to 
remove the obstruction and resupply the blood flow 
(i.e. reperfusion), this results in oxidative damage due 
to the excess production of free radicals. The cells of the 
central nervous system (CNS) are already exposed to high 
amounts of free radicals in the physiological state. The 
adult human brain uses about 20% of the total oxygen 
intake even though it weighs only about 2% of the total 
body weight [36]. Not only brain produces the highest 
number of free radicals compared to any other organ in 
the body, but also it has high levels of polyunsaturated fatty 
acids which make it more prone to oxidative stress. Under 
normal conditions, the production of free radicals and 
antioxidant enzymes are kept in a delicate balance. If an 
imbalance occurs in favor of oxidants as a result of brain 
injury, the ability of the CNS cells to neutralize oxidants 
using endogenous antioxidant systems is overwhelmed 
and eventually inflammation and apoptotic cell death are 
observed. 

It is well-known that the free radicals including reactive 
oxygen species (ROS) and reactive nitrogen species (RNS), 
including superoxide anions (O2•−), hydrogen peroxide 
(H2O2), hydroxyl radicals (HO•) nitric oxide (•NO) and 
peroxynitrite (ONOO−) are mainly produced during the 
reperfusion phase of an ischemic stroke. The sources of 
these free radicals are diverse. For instance, nitric oxide 
is a signaling molecule that is involved in vasodilatation, 
neurotransmission and blood pressure maintenance and 
is synthesized by NO synthase (NOS) enzymes mainly in 
a calcium-dependent manner [37]. Three types of NOS 
enzymes were characterized as neuronal NOS (nNOS), 
inducible NOS (iNOS) and endothelial NOS (eNOS) in the 
central nervous system [38]. During ischemic brain injury, 
excess nitric oxide is generated, which in turn results in 
lipid peroxidation, energy depletion, and formation of 
highly neurotoxic oxidizing agent ONOO− [39]. Although 
the nitric oxide synthesized by the eNOS at the early phases 
of ischemic stroke is believed to provide protective effects, 
NO synthesis by iNOS and nNOS exacerbates the injury 
by activating the inflammatory mechanisms [40].

It has become clear that excessive free radical 
generation is a critical pathophysiological step in ischemic 
injury and regulates several other steps. This prompted 
researchers to investigate the possible use of chemical 
or biological molecules to reduce the generation or 
accumulation of free radicals. We and others have tested 
several antioxidant molecules, such as glutathione [41], 
vitamin E [42], vitamin C [43] or melatonin [20]. To the 
best of our knowledge, melatonin is the only antioxidant 
whose metabolites also have antioxidant capacities. In 

fact, the direct and indirect capacity of melatonin and 
its metabolites (c3OHM, AFMK and AMK) to scavenge 
free radicals is called the “antioxidant cascade” [44]. As 
the members of the antioxidant cascade of melatonin 
are all free radical scavengers, the detoxification capacity 
of melatonin was predicted to be up to 10 times more 
than any other antioxidant molecule [45]. Therefore, 
antioxidant capacity of melatonin has been studied in 
many ischemia/reperfusion injury models, including 
brain, kidney or heart. In fact, melatonin can interact with 
and detoxify the free radicals by donating an electron or 
a hydrogen atom in the injury models. In addition to its 
free radical scavenger activity, melatonin was also shown 
to upregulate antioxidant enzymes, such as superoxide 
dismutase (SOD), catalase or glutathione reductase (GR) 
[46]. Our group evaluated the effect of melatonin on the 
production of nitric oxide and our results demonstrate 
that melatonin treatment significantly downregulates 
nNOS and iNOS after ischemic brain injury [7,47].

4. Melatonin in mitochondria 
Considering the higher melatonin concentrations 
compared to blood levels were measured in rat liver 
mitochondria [48], it is not surprising to assume that high 
melatonin levels are required to protect the mitochondrial 
DNA from the continuous production of reactive oxygen 
species by the oxidative phosphorylation [49]. Because of 
its lipophilic structure, melatonin can easily pass through 
the biological membranes and accumulate in organelles, 
such as mitochondria and nuclei. Since the discovery 
of melatonin in bacteria and chloroplasts,it has been 
speculated that melatonin synthesis can also occur in the 
mitochondria [50]. Furthermore, enzymes (although not 
all) required for the synthesis of melatonin were detected 
in oocyte mitochondria [51]. These results strongly suggest 
that melatonin synthesized in the mitochondria is used 
as direct free radical scavenger and indirect antioxidant 
enzyme regulator in this organelle. Moreover, in a recent 
study, mitochondrial melatonin was shown to be secreted 
into the cytosol where it can bind to the receptors on the 
surface of the mitochondria [52]. It is proposed that this 
feature gives another advantage to melatonin in its role in 
mitochondrial homeostasis. This involves the restoration 
of the activity and expression of complexes I and IV which 
are decreased during ischemic injury. This in turn, reduces 
the electron leakage and prevents further damage to the 
organelle.

In addition, increased free Ca++ levels following 
ischemic brain injury are also responsible for mitochondrial 
dysfunction and formation of further free radicals. If these 
toxic effects are not neutralized, ATP production would 
be severely affected. Intriguingly, Xu et al. implicated 
that melatonin can control free Ca++ movement in the 
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cytoplasm and protects the homeostasis of mitochondria 
[53].  

5. Melatonin’s antiapoptotic effect
Loss of blood supply during ischemic brain injury 
depletes the cellular energy and results in the release of 
glutamate neurotransmitter into the extracellular space 
[8]. As a result, the transmembrane glutamate receptors 
(such as NMDA, AMPA or kainic acid receptors) and 
several channel and transporter proteins (such as TRPM2, 
TRPM7, NCX, ASICs, CaV1.2) are overactivated. 
Activation of these receptors is followed by an excessive 
Ca++ influx, either due to the release from mitochondria 
and endoplasmic reticulum or due to activation of plasma 
membrane proteins and lead to apoptotic cell death [54]. 
Of these receptors, overactivation of postsynaptic NMDA 
receptors by glutamate results in increased Ca++ load 
in the cytosol and mitochondria [55]. In this term, we 
used a combination treatment with an NMDA receptor 
inhibitor, memantine, and melatonin in a MCAo model 
and our results indicate that administration of melatonin/
memantine combination significantly reduces the infarct 
volume, while improving the vascular leakage [56]. 
Furthermore, electrophysiological studies revealed that 
melatonin depresses NMDA receptor activity in the brain, 
possibly due to reduced nNOS activity [56,57].

In an attempt to rescue from Ca++ overload, the cells 
in the injured brain tissue try to reduce the high cytosolic 
Ca++ levels by storing Ca++ ions into mitochondria 
or endoplasmic reticulum. However, when Ca++ 
levels are increased in the mitochondrial matrix, free 
radical production is enhanced. Increased free radical 
accumulation disrupts mitochondrial membrane, results 
in permeabilization and depolarization followed by the 
release ofproapoptotic molecules, such as cytochrome 
c and apoptosis inducing factor (AIF) into the cytosol 
[58,59]. Andrabi et al. suggested that melatonin inhibits 
the cytochrome c release and decreases DNA damage 
in transient MCAO in rats [60]. Our results proved that 
melatonin improves neuronal survival by caspase-3 
inhibition [16]. In addition, we showed that melatonin 
inhibits antiapoptotic Bcl-xL, while promoting the 
expression of proapoptotic Bax [12]. Downregulation of 
survival kinases in the injured brain tissue also contributes 
to apoptotic cell death. It is well-known that ischemia/
reperfusion inhibits PI3K/AKT pathway. Our planar 
immunoassay analyses revealed that melatonin treatment 
results in the increased AKT phosphorylation especially at 
the Thr308 site of the activation loop via PDK1 and PTEN 
as well as decreased GSK-3α/β, and p53 phosphorylations 
[19], suggesting that neuroprotective activity of melatonin 
directly involves the activation of survival signaling 
pathways. Additionally, we have observed that melatonin 

treatment phosphorylates AMPKα, which is particularly 
activated by the reduced intracellular energy. AMPKα 
drives the cell to a catabolic state which this molecule 
mobilizes alternative energy sources, such as fatty acid 
oxidation, in order to supply ATP in the condition of 
ischemic stroke, suggesting also that melatonin may 
activate alternative collateral survival pathways [19].

6. Melatonin’s antiinflammatory effect
It has been shown that one of the early mechanisms of 
ischemic injury is the release of inflammatory cytokines, 
such as IL1β, IL6 and TNFα [61]. Following an ischemic 
attack in the brain, the free radicals are generated in 
high amounts. This excessive free radical production 
especially during the reperfusion phase also contributes 
to the disruption of the integrity of the blood-brain 
barrier and stimulates the infiltration of lymphocytes, 
neutrophils, monocytes, T cells, and macrophages to the 
injury site [62]. Simultaneously, resident microglial cells 
are activated, change their morphology (deramification) 
and start to release proinflammatory cytokines. Microglial 
activation following ischemia also results in increased 
proliferation and accumulation in the penumbra region. 
Microglial activation seems to have a dual role in the 
pathophysiology of stroke. During the course of ischemia/
reperfusion, microglial cells are believed to switch from 
an antiinflammatory state to proinflammatory phenotype 
[63]. Melatonin treatment was shown to inhibit the 
proinflammatory shift of microglial cells through the 
regulation of SIRT1 and STAT3 [64,65]. Moreover, TLR4 
activates NF-κB after stroke, resulting in the secretion of 
inflammatory molecules (IL1β, IL6 and TNFα). Melatonin 
decreases the secretion of inflammatory mediators 
by downregulating NF-κB, while promoting Nrf2 
upregulation [66]. 

7. Roles of melatonin receptors in stroke treatment
Studies indicated increased melatonin levels can be 
observed as early as in the first 10 minutes of intraperitoneal 
or subcutaneous application, indicating that melatonin 
can easily pass through the blood-brain barrier [67]. 
Melatonin is also able to diffuse through cellular and 
organelle membranes due its small size and lipophilic 
structure [68]. On the other hand, melatonin has two G 
protein-coupled transmembrane receptors; MT1 and MT2 
(earlier names Mel1a and Mel1b) which are ubiquitously 
found in almost all cells in the body [69]. It has been 
proposed that melatonin exerts its neuroprotective effects 
on the brain by both receptor-independent or receptor 
dependent mechanisms [70]. Models of acute and chronic 
ischemia have been used to investigate the role of MT1/
MT2 receptors in ischemic brain injury by using melatonin 
receptor agonists, such as ramelteon [71,72], agomelatine 
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[73,74] or Neu-P11 [75]. Activation of MT1/MT2 receptors 
by the aforementioned agonists reduced infarct volume 
through the regulation of different signaling molecules. 
In 2010, it was reported that melatonin administration 
promotes the expression of MT2 in the ischemic tissue and 
due to this increase, the authors suggested that MT2 may 
partially mediate the effects of melatonin [76]. Chern et al. 
reported that chemical antagonists of MT2 could reverse 
the protective effect of melatonin in a transient brain 
ischemia model [77]. However, in a previous report where 
we used a transient focal cerebral ischemia model in MT1/
MT2 knockout mice, we showed that melatonin treatment 
significantly decreased brain damage, suggesting that 
it does not require the interplay of these receptors for 
exerting neuroprotective effects [47]. In the light of these 
results, we hypothesized that although the activation of 
MT1/MT2 receptors protects the brain from ischemic 
injury, melatonin does not require MT1/MT2 receptor 
activation to exert neuroprotection. However, it should be 
noted that melatonin has another membrane-associated 
receptor, MT3 (also known as quinone reductase 2, QR2), 
found in thecells of liver, kidney, heart, lung, intestine, 
adipose tissues or in brain cells [78,79] and whether it 
is involved in melatonin’s antioxidant, antiapoptotic or 
antiinflammatory activity should be further investigated. 
Interestingly, MT3 knockout mice were less susceptible 
to menadione toxicity [80], suggesting that the inhibition 
of this receptor may have protective effects. Moreover, 
knockdown of MT3 by RNA interference in vitro resulted 
in enhanced expression of antioxidant enzymes [81], while 
overexpression of MT3 resulted in excessive production of 
reactive oxygen species [82]. It was shown that melatonin 
is able to inhibit this receptor at nanomolar levels in which 
antioxidant effects were documented [83]. Therefore, it is 
tempting to speculate that MT3 inhibition by melatonin 
is involved in melatonin’s protective effects on the 
pathophysiological outcomes of brain injury not only by 
increasing the expression of antioxidant enzymes, but also 
by providing resistance to oxidative stress.

Moreover, the nuclear receptors RZR/ROR from 
the retinoic acid receptor superfamily were proposed 
as nuclear binding sites for melatonin [84]. RZR/ROR 
expression was demonstrated in the brain, and in the 
pineal gland [69]. ROR receptors were shown to induce 
the expression of several clock genes, including Clock, 
Cry or Bmal1 [85–87] by binding to retinoic acid-
related orphan receptor response elements (ROREs) in 
the promoter region. In parallel with these data, cyclic 
expression of ROR mRNAs were noted in different tissues, 
suggesting a circadian function possibly under the control 
of melatonin. However, whether these receptors play a 
part in the protective mechanisms induced by melatonin 
should be further investigated.

8. New roles for melatonin: regulation of circular RNA 
in ischemic injury
Recently, noncoding RNAs including microRNAs, 
long noncoding RNAs, and circular RNAs have gained 
considerable attention as regulatory molecules. Recent 
studies indicated that circular RNAs (circRNAs) are 
found abundantly in the brain and are involved in the 
embryonic development [88]. CircRNAs are enriched 
in specific brain regions such as cerebellum, cortex, 
striatum, olfactory bulbs, and hippocampus. Since 
they are circular, these types of noncoding RNAs are 
more resistant to digestion. CircRNAs can be made 
from introns, coding or noncoding exons, or from both 
exons and introns by a process called “back-splicing” 
[89]. Zhang et al. suggested that because the circRNAs 
are formed by the circularization of skipped exons, 
formation of circRNA can cause the downregulation of 
its parental gene by using up the pre-mRNA molecules 
[90]. In addition to their regulatory roles in the brain, 
circRNAs are also associated with neurological disorders, 
including, but not limited to, ischemia/reperfusion injury, 
traumatic brain injury, and Alzheimer’s disorder [91]. In 
a study performed in acute ischemic stroke patients to 
profile the changes in circRNA, 3 circRNAs have been 
proposed as diagnostic and predictive biomarkers for 
stroke [92]. Significantly altered circRNAs in a transient 
MCAO model in C57BL/6J mice were characterized, and 
bioinformatics data suggested that all these circRNAs 
possess binding sites for microRNAs [93]. However, the 
exact pathophysiological mechanisms that they have a 
role in are not fully elucidated. It has been predicted that 
melatonin may be involved in the regulation of circRNAs 
as the circRNA prolife in the pineal gland has been altered 
in a mouse model of Alzheimer’s disease [94]. In fact, a 
recent study reported that melatonin exerts protective 
effects through the regulation of CircRIC3/miR-204-
5p/DPP4 signaling in calcific aortic valve disease [95]. 
Therefore, we hypothesized that melatonin also regulates 
circRNAs in ischemia/reperfusion injury, however, these 
circRNAs should be further investigated in future studies. 

9. Prophylactic use in high risk individuals
Moreover, we reported that lower endogenous melatonin 
concentrations were associated with increased injury after 
transient ischemic stroke in pinealectomized rats and when 
those deprived animals were given exogenous melatonin, 
injury size could be reduced [20]. It has been shown that 
melatonin levels are reduced in elderly compared to young 
adults; therefore, aged population is more prone to serious 
ischemic injury [96]. In addition, accumulation of other 
risk factors, such as cardiovascular disorders, diabetes, 
obesity or hypertension with ageing increases the risk of 
ischemic injury incidence [97,98]. In animal models, we 
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demonstrated that prophylactic uses, and delayed uses of 
melatonin successfully protects the brain from the ischemic 
injury [13,17]. In conclusion, prophylactic doses could be 
considered in the elder population in order to compensate 
for the reduced melatonin levels due to the calcification 
of pineal gland and to promote the endogenous repair 

mechanisms against stroke or other neurodegenerative 
diseases.
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