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Summary

The generation of functional genomics datasets is surging, as they provide insight into gene 

regulation and organismal phenotypes (e.g., genes upregulated in cancer). The intent behind 

functional genomics experiments is not necessarily to study genetic variants, yet they pose privacy 

concerns due to their use of next-generation sequencing. Moreover, there is a great incentive to 

broadly share raw reads for better statistical power and general research reproducibility. Thus, we 

need new modes of sharing beyond traditional controlled-access models. Here, we develop a data-

sanitization procedure allowing raw functional genomics reads to be shared while minimizing 

privacy leakage, enabling principled privacy-utility trade-offs. Our protocol works with traditional 

Illumina-based assays and newer technologies such as 10x single-cell RNA-sequencing. It 

involves quantifying the privacy leakage in reads by statistically linking study participants to 
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known individuals. We carried out these linkages using data from highly accurate reference 

genomes and more realistic environmental samples.

Graphical Abstract

In Brief

Growing functional genomics data puts individual privacy at risk via linkage attacks, the risk of 

which is quantified and can be sanitized using a privacy-preserving data format.
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1 Introduction

Advances in sequencing technologies and laboratory techniques have enabled researchers to 

probe epigenetic and transcriptomic states of the cell comprehensively, such as gene 

expression levels or DNA-binding protein levels, the majority of which are clinically 

actionable [e.g., The Cancer Genome Atlas (TCGA)]. With the availability of more 

advanced techniques, such as single-cell RNA sequencing (scRNA-Seq) and single-cell 

assay for transposase-accessible chromatin (scATAC-Seq) using sequencing, we can now 

functionally annotate tissues even at the single-cell level. This increased resolution will soon 

bring a surge of new functional genomics datasets from large cohorts of individuals, 

surpassing the available sequenced genomes. For example, let us consider a human 

biosample being assayed for all aspects of its biology. We can sequence the DNA of the 

sample once, but numerous functional genomics assays can be performed on the same 

sample. Moreover, as more data are collected from a larger number of study individuals, we 

can boost statistical power for future discoveries–that is, if the collected data are made 

available to the wider research community.

Privacy is a barrier to the open sharing of functional genomics datasets, as individuals’ 

genetic variants can be inferred from the data. Studies on genomic privacy have traditionally 

focused on DNA, partly due to the dominance of DNA sequencing in genomics research 
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(Erlich and Narayanan, 2014, Homer et al., 2008, Erlich et al., 2018, Kim et al., 2018, Im et 

al., 2012, Gymrek et al., 2013). However, as the balance in data acquisition shifts toward 

large-scale functional genomics data, privacy studies must shift as well (Joly et al., 2016). 

From a privacy standpoint, functional genomics data have a two-sided nature, in contrast to 

DNA sequencing data. Although these experiments are usually performed to understand the 

biology of cells, rather than to reveal identifying genetic variants, raw reads are nonetheless 

tagged by the genetic variants of the individuals due to the experimental design. Moreover, 

in addition to including genetic variant information that can be inferred from raw reads, 

functional genomics data provide the conditions under which the assay was performed (e.g., 

linking a specific phenotype to the sample). Furthermore, lower barriers to sequencing data 

enable a wider range of people, including “citizen scientists”, to access genomic data that 

can be overlapped with functional genomics data to infer sensitive information about study 

participants.

These privacy concerns should be addressed while considering the unique aspects of 

functional genomics data in order to maximize open sharing. To answer critical biological 

questions, researchers must generate key properties from functional genomics data, such as 

gene expression quantifications or transcription factor (TF) binding enrichments. These 

properties must be generated from the raw reads; however, such calculations do not require 

genetic variants in the reads. Sharing the raw reads, as opposed to derived quantities, is 

essential because this sharing provides researchers with the necessary level of control over 

their analyses and helps advance biomedical science by permitting a rapid assessment of 

tools and methods, thus enhancing reproducibility. Currently, large consortia such as TCGA 

(The Cancer Genome Atlas Research Network et al., 2013), the Genotype-Tissue Expression 

(GTEx) project (The GTEx Consortium, 2013), and PsychENCODE (PsychENCODE 

Consortium, 2018) store raw functional genomics reads behind controlled access following 

traditional DNA-sharing protocols, while providing open access to summary-level data such 

as gene expression levels. These large consortia and other researchers are aware that a 

number of genotypes can be inferred from summary-level data (Schadt et al., 2012, Schadt, 

2012, Harmanci and Gerstein, 2016). Yet, this approach makes sense as the scale of the 

genotype leakage from functional genomics reads is much larger, far beyond an acceptable 

level. Meanwhile, controlled-access sharing protocols delay data access for average 

researchers by creating bureaucratic bottlenecks and technical challenges. Furthermore, 

these protocols were developed with a focus on DNA-sequencing data, which are obtained 

for the purpose of identifying the genetic variants of an individual. Thus, a new model for 

sharing raw functional genomics reads is needed, one that better fits the privacy and utility 

needs of functional genomics data.

In this study, we developed read-sanitization techniques that enable public sharing of 

minimally manipulated functional genomics reads, while protecting sensitive information 

and minimizing the amount of private data requiring special access and storage. Our 

methods are based on an optimized balance between privacy requirements and the inherent 

utility of functional genomics reads. Our aim is to provide reads to the community that can 

be easily used as inputs to any functional genomics data processing pipeline.
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To develop data-sanitization techniques to reduce and even eliminate privacy risk, a 

comprehensive assessment of private information leakage from different types of functional 

genomics reads under varying noise conditions and sequencing coverage levels is necessary. 

Accordingly, we performed common privacy breaches using publicly available functional 

genomics and genome sequencing datasets. To quantify the privacy loss in a more realistic 

setting, we conducted DNA-sequencing and RNA-sequencing (RNA-Seq) assays on blood 

tissue and environmental samples, such as used coffee cups (to mimic surreptitious DNA 

testing) collected from consented individuals. We demonstrated that our statistical measures 

can link individuals to functional genomics datasets under different noise levels and 

sequencing coverage levels, hence revealing sensitive phenotype information about the 

individuals. We then showed that our data-sanitization protocol minimizes this privacy risk, 

while providing accurate estimations of key summary quantities, such as gene expression 

levels. Finally, we demonstrated that easy access to a large amount of data that are otherwise 

locked behind controlled access can be achieved with a principled balance between privacy 

and utility.

2 Results

2.1 Privacy Breach Scenarios for Quantification of Privacy Loss

A “linkage attack” is a common breach of privacy in which one can quantify the private 

information leakage in an anonymized database (D) by using publicly available information 

(ℐ) about the individuals in the database (Narayanan and Shmatikov, 2008, Erlich and 

Narayanan, 2014). A famous example of a linkage attack is the de-anonymization of Netflix 

Prize challenge data (D) using publicly available IMDB user comments (ℐ) (Narayanan and 

Shmatikov, 2008). Within genomics, researchers have shown that genetic information from 

publicly available genealogy websites (ℐ) can be overlapped with short tandem repeats on 

the Y chromosomes of anonymized genomes to infer the surnames of participants in 

genomics databases (D) (Gymrek et al., 2013); likewise, expression quantitative trait locus 

(eQTL) data (ℐ) can be applied to de-anonymize gene expression databases (D) (Schadt et 

al., 2012, Schadt, 2012, Harmanci and Gerstein, 2016). Linkage techniques have been used 

outside of the privacy context as well, such as to resolve sample swap problems during 

omics data production (Yoo et al., 2014, Lee et al., 2017, Westphal et al., 2019, Lee et al., 

2019).

Here, we define three types of linkage attacks (Figure S1), which differ by the nature of the 

data in D and ℐ, i.e., whether the data is perfect (P) or noisy (N):

• (I) Case P-P involves obtaining publicly available perfect information ℐ about a 

known individual (e.g., date of birth, zip code, gender) and overlapping it with 

perfect information in anonymized database D (e.g., zip code, gender) to reveal 

sensitive information (e.g., political affiliation). This can be done by cross-

referencing two datasets, and often does not require any statistical heuristics. A 

famous example in medicine is the use of cross-referencing birthdate and zip 

code information present in medical records and voter list databases to reveal the 

addresses of patients (Sweeney, 2000).
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• (II) Case P-N involves obtaining publicly available perfect information ℐ about a 

known individual (e.g., whole-genome sequencing reads) and overlapping it with 

noisy information from anonymized database D (e.g., ChIP-Seq reads) to reveal 

sensitive information (e.g., psychiatric disease status). Because it involves noisy 

data, simple overlaps often do not work and statistical analysis is required.

• (III) Case N-N involves obtaining publicly available noisy information ℐ about a 

known individual (e.g., DNA gathered from a coffee cup) and overlapping it with 

noisy information from anonymized database D (e.g., ChIP-Seq reads) to reveal 

sensitive information (e.g., psychiatric disease status). This can require more 

involved statistical techniques to sort through the signal in two noisy datasets.

In order to quantify the private information leakage in functional genomics datasets, we 

adopted Narayanan and Shmatikov’s statistical techniques of privacy breaches (Narayanan 

and Shmatikov, 2008). The privacy threat models are as follows. One can imagine a scenario 

in which an adversary gains illicit access to a known individual’s WGS data and performs 

linkage attacks on functional genomics data in order to infer private phenotypes associated 

with them. Note that, in this scenario, the private information that will be leaked are the 

sensitive phenotypes (e.g., HIV status, bipolar disorder status, etc.), not the genotypes. The 

genotypes in the functional genomics reads are merely used as a means to infer the 

phenotype. This is somewhat different from traditional privacy attacks, in which the leaked 

information is the genotype data. The genotypes obtained from functional genomics data are 

noisy; thus functional genomics reads constitute a noisy database (D), and genomes can be 

thought of as perfect information (ℐ) about the individual. Therefore, we mimicked this 

scenario with a Case P-N attack. One can also imagine a more realistic, “real-world” 

scenario: an adversary takes advantage of the DNA trail individuals leave behind in everyday 

life, such as saliva on a stamp (Flynn, 2018), a used facial tissue, or a cup of coffee. The 

DNA information (ℐ) extracted from environmental samples (e.g., coffee cups) is noisy due 

to possible contamination by multiple individuals other than the owner. Therefore, we 

mimicked this scenario with a Case N-N attack.

2.2 Sensitive phenotypes can reliably be inferred by linking perfect genotypes to noisy 
genotypes called from functional genomics data

Let us assume a study that aims to understand the changes in gene expression of individuals 

with bipolar disorder (BPD). This study assays the gene expression of a cohort of 

individuals with BPD-positive (BPD+) and -negative (BPD−) phenotypes and publicly 

releases the RNA-Seq reads (database D). By lawful or unlawful means, an adversary 

obtains access to the WGS or genotyping array data (information ℐ) of a known individual 

(henceforth referred to as the query individual) and aims to predict whether this individual’s 

phenotype is BPD+ or BPD−.

The adversary uses traditional variant callers (e.g., GATK (DePristo et al., 2011, der Auwera 

et al., 2013)) to obtain genotypes from the RNA-Seq reads. They create a database of 

genotypes SD from all the individuals in the study. The genotypes obtained from 

information ℐ of the query individual are denoted as Squery
ℐ . SD contains partial (i.e., 
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missing some alleles) and noisy (i.e., containing some misidentified alleles) genotypes, as 

genotyping from RNA-Seq reads may contain errors and cannot cover the entire genome. By 

the design of the functional genomics study, the genotypes of each individual in SD are 

linked to the phenotype of these individuals (i.e., BPD+ and BPD−). The adversary then 

statistically matches the genotypes of the query individual, Squery
ℐ , to the genotypes of the 

individuals, SD, as follows (see Figure 1a and STAR Methods): The adversary calculates a 

“linking score” as the sum of the log of the inverse of the genotyping frequency of each 

genotype at the intersection of Si
D and Squery

ℐ  for each entry in SD. The adversary then ranks 

the linking scores and calculates a gap value for the top-ranked entry in SD by determining 

the ratio between the highest and second-highest linking scores, and then determines a p-

value for the significance of it (see STAR Methods for calculation of the statistical 

significance of gap). Finally, the adversary denotes the best match as the list of genotypes of 

the query individual and this reveals the BPD status of the known query individual to the 

attacker.

In this study, we used RNA-Seq data of 421 individuals from the gEUVADIS project 

(Lappalainen et al., 2013) as the functional genomics database D, and high-coverage WGS 

of the same individuals from the 1,000 Genomes Project (The 1000 Genomes Project 

Consortium, 2010) as the information ℐ (Figure 1a). After creating the genotype panel SD

and query genotypes Squery
I , we successfully linked all 421 query individuals to database D

and revealed sensitive phenotypes (p-value < 10−2).

To further increase the noise levels, we added an increasing number of randomly picked 

false-positive genotypes to each genotype call set Si
D and kept the number of true positive 

variants constant. We linked 418 out of 421 individuals to the cohort even after adding 

100,000 false-positive variants to each entry (Figure 1b). The gap values become non-

significant only after adding one million false-positive variants (Figure 1b). The queries 

from individuals with African ancestry (denoted as YRI in Figure 1b), despite having the 

same coverage as the rest of the RNA-Seq data (from European ancestries, i.e., GBR, FIN, 

CEU, and TSI), were more vulnerable to this linkage attack (Figure 1b). This result is likely 

due to a higher number of alternative alleles in the African genomes compared to the 

reference genome.

Effect of genetically related individuals: We next assessed the effect of including 

related individuals in the attacked database. We added RNA-Seq data from 14 individuals 

related to NA12878 (Li et al., 2014) to the attacked database, and found that querying 

NA12878 did not return any of the relatives, whether NA12878 was present in the database 

or not (see STAR Methods and Figure 1c).

Effect of sequencing depth: The number of reads in a typical functional genomics 

dataset can vary depending on various factors such as the study design, number of assayed 

samples, assay type, or tissue type. These variations can greatly affect the number and 

quality of the genotypes that can be called. To understand the effect of the sequencing 

coverage, we subsampled reads from all individuals in the gEUVADIS cohort and created 
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new attacked databases SD* for each level of subsampling (Figure 2a, see STAR Methods). 

As shown in Figure 2b, we found that the quality of genotypes decreased with a decreasing 

number of reads. However, linking accuracy was not affected by the sequencing depth even 

after the addition of 10,000 false-positive genotypes (Figure 2c).

2.3 Sensitive phenotypes can be reliably inferred by linking surreptitiously gathered, 
noisy genotypes to noisy genotypes called from functional genomics data

Let us assume that the adversary is not able to access existing WGS or genotyping array 

datasets, and instead obtains environmental DNA samples (e.g., used coffee cups). The 

adversary aims to identify the disease status of the coffee cups’ owners by linking their DNA 

to a functional genomics cohort. To mimic this scenario, we performed RNA-Seq 

experiments on blood tissues from two consented individuals A and B. We then combined 

these raw RNA-Seq reads with the gEUVADIS RNA-Seq cohort to create the noisy attacked 

database. We then collected six used coffee cups from the same individuals. After extracting 

and amplifying the DNA from the surface of coffee-cup lids using known forensic 

techniques with commercially available kits, we performed WGS at 10x sequencing 

coverage (see STAR Methods, Tables S1&S2). Each of these WGS data was used as the 

noisy information ℐ. We successfully linked all 12 coffee-cup samples to the correct 

individuals in the database with an average gap of 1.82 and 2.70 for individuals A and B, 

respectively, with p-values < 10−2 (Figure 3b).

Effect of imputation and sequencing depth: Genotypes missing from RNA-Seq due 

to low coverage can be imputed using population genetics-based genotype imputation tools. 

We first subsampled reads from the RNA-Seq data of two study individuals and created 

cohort genotype databases SD *  for each level of subsampling in each RNA-Seq experiment 

similar to above. We then imputed genotypes for each subsampling using BEAGLE (see 

STAR Methods) (Browning et al., 2018). We found that imputation on the genotypes from 

RNA-Seq reads improved the quality of the genotypes and hence, the linking accuracy. 

Conversely, imputation decreased the accuracy of genotypes from coffee-cup reads and 

linking (see STAR Methods, Figure 3c,d).

Depth-dependent sequencing cost: The cost of sequencing is directly related to the 

coverage. We investigated the total monetary cost for an adversary to sequence DNA from 

the coffee cups in order to perform a successful linking attack on a moderately sequenced 

RNA-Seq cohort. We found that the coffee cups could be linked with statistical significance 

to the correct RNA-Seq samples when we spent as little as $19 on sequencing (Figure 3e), 

with a linking accuracy of 60% (see STAR Methods, Figure 3f).

Different genotyping techniques: An ideal and cheap alternative genotyping method 

for the adversary could be exome-based genotyping arrays, as RNA-Seq captures reads 

overwhelmingly from exons. Another genotyping method popular for its low cost and 

portability is the Oxford Nanopore. We were not able to obtain accurate genotypes from the 

coffee-cup reads using either of these technologies, and therefore were not able to link the 

owners of the coffee cups to their RNA-Seq data (see STAR Methods, Table S2).
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2.4 Different functional genomics techniques with varying sequencing depth can be 
reliably linked to genome databases

We assessed whether linkage attacks yield similar results when data from different 

functional genomics techniques (e.g., ChIP-Seq, Hi-C, or ChIA-PET) are used as the noisy 

information and linked to a perfect genome database. We used cell line functional genomics 

data as information ℐ about individuals represented in the 1,000 Genomes genotype 

database (the attacked database). The ENCODE data portal contains data from a range of 

functional genomics assays (Table S4) on the GM12878 cell line (individual NA12878 in the 

1,000 Genomes database). We performed linkage attacks at varying sequencing coverages 

using data from a number of these assays. We were able to link NA12878 to the database 

successfully, even at low coverages with many different types of functional genomics data 

(Figure 4a). We then calculated the linking score per bp and found that some of the TF 

ChIP-Seq experiments may leak more information per bp than even WGS does (Figure 4b). 

We also found differences in linking score and gap values for different RNA-Seq assays, 

which may be due to the differences in genotyping frequency distribution of the called 

genotypes (Figure 4c). We repeated this analysis for other individuals from different 

ancestries and found similar trends in gap and linking score (Figure 4d–f, S2).

We also assessed whether the ancestral composition of the database affected linking. We 

created a database with the genotypes from an African (AFR) population (108 individuals) 

and added two European (EUR) individuals including NA12878. We were able to link 

NA12878 to this new database (p-value < 0.01). However, when we removed the query 

individual from the attacked database, we misidentified the remaining EUR individual as 

NA12878 (Figure S3).

2.5 Practical data sanitization techniques can reduce the amount of private information 
leakage while preserving the utility of functional genomics data

Overview: Sharing read alignment files (SAM/BAM/CRAM) from functional genomics 

experiments is extremely important for developing analysis methods and discovering novel 

mechanisms operating on the human genome. Ideally, one would share the maximal amount 

of information with minimal utility loss while largely maintaining an individual’s privacy. 

To do so, one must balance the efficiency and effectiveness of the data anonymization 

process with the utility of the anonymized dataset. Thus, we propose a versatile data 

sanitization approach such that privacy and utility can be tuned (Figure 5a).

A raw alignment file (BAM) can be thought of as a dataset that stores information for each 

read. Let us assume a BAM file is a dataset B, where each entry is a read. The desire is to 

release dataset B in the form of a privacy-preserving BAM (pBAM, say dataset B*) such that 

it does not leak variants from the reads, but for which any calculation f based on B and B* 

returns almost the same result. For example, f could be a function that calculates gene 

expression levels from an input BAM file. The aim is to ensure that the expression levels 

will be similar, whether BAM (B) or pBAM (B*) is used. Now let us perform the privacy-

preserving transformation through a sanitizer function PQ,r such that PQ,r(B) = B*. Q is an 

operation such as “removal of variants” and r is a parameter representing the number of 

variants to be removed.
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Read sanitization protocol: We can construct a sanitized “pBAM” file from a 

BAM/SAM/CRAM file using generalization (a technique commonly used in data 

sanitization) for the BAM features. Some of the features in BAM files contain large amounts 

of variant information that directly reveal the location of a variant (CIGAR and SEQ 

strings). There are also features that cause subtle leakages (alignment scores, string for 

mismatching positions, and string for distance to the reference), which allow us to infer the 

presence of a variant in a read. In general, we address the BAM tags that leak the presence 

of a variant by generalizing them. For example, we replace the sequence with the 

corresponding sequence from the reference genome, convert the CIGAR into a format that 

does not contain variant information, and generalize the other tags. This generalization adds 

quantifiable noise to the reads depending on the type (mismatches, indels) of the sanitized 

variants (see Figure 5b, Figure S4, and STAR Methods). Our theoretical (see STAR 

Methods) and empirical (Figure 5c) quantifications demonstrated that pBAM adds noise to 

the number of reads at certain loci when there are indels, and does not alter this number with 

mismatches.

We store removed information in a compressed file format called “.diff” (STAR Methods). 

These .diff files are small files to be kept behind controlled access. We report only the 

differences between BAM and pBAM in the .diff file and avoid printing any sequence 

information that can be found in the reference human genome. This allows us to share the 

majority of the data with minimal utility loss. If the users find the data useful for their 

research, they can then apply to access the information in the “.diff” files. We provide an 

easy-to-use software suite that can convert pBAM files to their original BAM format.

pBAM provides privacy while maintaining utility.—Let us assume that the number of 

variants to remove is r′. Our sanitizer PQ,r will in fact remove r number of variants (r ≥ r′), 

because the variants in linkage disequilibrium (LD) with the r′ variants need to be removed 

as well (as one could impute variants within LD blocks). However, note that if the goal is to 

sanitize all variants from the BAM file, then the LD is irrelevant since all the observable 

variants will be removed from the BAM file.

We define key quantities to measure privacy and utility. Here, we define privacy of a pBAM 

with a parameter δ and consider the resulting pBAM to be δ-private. δ is the proportion of 

sanitized variants to the total number of observable variants (δ = 1 means 100% privacy, i.e., 

all the observable variants are sanitized; see STAR Methods). We define the utility of a 

pBAM with another parameter ε and consider the resulting pBAM to have ε-utility. ε is the 

proportion of unchanged genomic units to the total number of units based on an error per 

unit (ei) threshold γ. Error per unit (ei) is the log-fold difference between the value of the 

unit in the pBAM vs. BAM formats (see STAR Methods). For example, if we calculate the 

signal depth profile from a BAM and a corresponding pBAM, some of the bases in the 

genome (i.e., units) will have different values. This difference is quantified as added error 

(ei, Figure 6a, see STAR Methods). If this error is above a threshold value (γ), then a given 

base will be considered as changed. The total proportion of unchanged bases to the length of 

the genome will then be the ε value for this pBAM. Error and utility can also be defined at 

the level of genes or functional elements. The difference between a BAM and pBAM file at 
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nucleotide resolution gives us the upper bound for the utility. ε = 1 means 100% utility, i.e., 

the results obtained from a BAM and a PBAM are identical.

We derived a mathematical relationship between the privacy parameter δ and the utility 

parameter ε to clarify the trade-off between the privacy and utility of a pBAM (see STAR 

Methods). This relationship depends on the type of sanitized variant, the number of sanitized 

variants, and the read length. Hence, the privacy-utility relationship will be different for 

different BAM files as well as for individuals with different ancestries. Therefore, to give 

one sense of the trade-off, we empirically calculated this relationship for the upper bound as 

follows: We first assumed that all of the genotypes of an individual can be observed by any 

functional genomics data. This is a generous assumption as, for instance, one can call around 

0.5% of all the genotypes from a typical RNA-Seq BAM file. We then calculated the mean 

number of SNPs and indels of all individuals from the same ancestry using the 1,000 

Genomes database. Finally, we calculated the change in utility as a function of the change in 

privacy (unit = nucleotide, γ=0) (Figure 5d). We found that, at 100% privacy, the utility loss 

is at most less than 10% for all the ancestries (Figure 5d). We found a small difference in 

utility loss (~2%) when we used the number of variants in the African population. This can 

be explained by the large difference in the number of variants in the African population 

compared to other populations (Figure 5d).

One way to understand how to interpret the values of the key utility quantities–e, γ, and ε–is 

to compare them against the discrepancies between replicates. It is well known that high-

throughput experiments such as functional genomics assays are subject to great variability. 

This is remedied by using biological replicates in experiments and further performing 

irreproducibility discovery rate analysis (Li et al., 2011). One can calculate the ei values for 

the discrepancy between the replicates and use them as the γ threshold, i.e., the tolerable 

error between BAM and pBAM. In particular, if the difference between replicates per unit is 

ei
rep then a pBAM can be considered to have no utility loss up to this ei

rep  quantity (see 

STAR Methods).

Empirical calculations validate privacy provided by pBAM: To test the assumption 

that variants are masked in pBAM files, we performed variant calling of the pBAMs at 

different privacy levels on an RNA-Seq data of individual NA12878. We first systematically 

ramped up the total number of masked variants by thresholding using the genotyping 

frequencies in the 1,000 Genomes database. We then performed variant calling and 

subsequent linkage attacks on the database and calculated the gap values. We also calculated 

the number of overlapping GWAS SNPs with the called variants from pBAM set as another 

privacy metric. Figure 6a shows that variant calling yields a lower number of genotypes, 

hence a lower number of overlapping GWAS SNPs and fewer gap values with pBAM at 

different privacy levels. The observed gap value decreases as we remove more genotypes 

and crosses the random gap, meaning that we can no longer link the query to the RNA-Seq 

database.

Empirical calculations validate utility provided by pBAM: We further calculated the 

total amount of error introduced in the signal depth profiles when we convert the BAM file 
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to a pBAM file at each genotyping frequency thresholding level. Figure 6a shows how risk 

of privacy loss decreases with increasing loss of utility. To further understand utility loss, we 

calculated the difference (log2 ratio) between the signal depth profiles (BigWig files) 

obtained from pBAM and BAM (ei) files when we masked all of the variants. In addition, 

we performed the same comparison between the signal depth profiles obtained from BAM 

files belonging to two different biological replicates. As shown in Figure 6b, the difference 

between BAM and pBAM files is smaller than the difference between the replicates at base 

resolution, suggesting that the noise added to the signal is within the biological noise levels. 

We zoomed in to the highly polymorphic HLA locus to show the similarity between the 

signal in biological replicates and their corresponding pBAMs. We further quantified the 

gene expression levels and found minimal difference between pBAM and BAM files (Figure 

6c). We performed similar calculations for ChIP-Seq data (Figure S5).

Implementation: We implemented our pipeline for converting between BAM and pBAM

+.diff files (Figure 7a) in bash, awk, and Python. The .diff files are encoded in a compressed 

format to save disk space. For convenience, pBAM files are saved as BAM files with 

manipulated content and with a p.bam extension. That is, any pipeline that uses BAM as an 

input can take p.bam as an input as well. CPU times (calculated using a single 2.3 GHz 

AMD Opteron processor) and associated file sizes for alignments from RNA-Seq and ChIP-

Seq experiments are shown in Table S4. Our data sanitization pipeline has been adopted by 

the ENCODE Consortium Data Coordination Center and deployed in the ENCODE Uniform 

Pipeline Framework using workflow description language scripts and docker images, 

accompanied by appropriate documentation for computational reproducibility on multiple 

platforms (Google Cloud, Slurm Scheduler, LINUX servers, etc.) under ENCODE Data 

Processing pipelines. Codes for calculating information leakage, scripts for file 

manipulations, examples, and file specifications of BAM, pBAM, pCRAM, and .diff files 

can be found at privaseq3.gersteinlab.org and github.com/ENCODE-DCC/ptools.

pFastqs as an alternative for alignment-free expression quantification and 10x 
scRNA-Seq reads: There are many different ways to quantify expression levels using 

RNA-Seq reads. Some software such as RSEM (Li and Dewey, 2011) use aligned reads 

(BAM files), while others such as kallisto (Bray et al., 2016) use reads directly from fastq 

files. While converting pBAM files to pFastqs for bulk functional genomics data is trivial 

with available tools (e.g., samtools), 10x scRNA-Seq reads have different fastq structures. To 

address this, we added a module to our software suite that first maps the 10x scRNA-Seq 

reads to the reference genome and transcriptome, and generates a BAM file that includes the 

unaligned reads (following a typical 10x scRNA-Seq pipeline), as well as the tags that 

contain information about barcodes and unique molecular identifiers (UMI). Our software 

then converts this BAM file into pFastq files based on UMI, barcode, and sequence 

identifiers. By using a 10x (v2) scRNA-Seq dataset from the Human Cell Atlas project, we 

calculated the key quantities using fastq and pFastq files as inputs (see STAR Methods). We 

found that both fastq and pFastq returned similar results in terms of total gene count, total 

counts per cell, and cell clustering. Note that clustering algorithms are often stochastic and 

may return slightly different results even when the same input is used (Figure 6d).
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3 Discussion

Functional genomics experiments are increasingly leveraging tissues or cells from donors 

due to their clinical significance. For example, large-scale studies such as TCGA and 

PsychENCODE provide functional genomics data on thousands of human subjects with 

known phenotypes such as cancer or psychiatric diseases. We expect to have a surge of 

functional genomics data on human subjects in the near future, which will require data 

access solutions beyond the traditional approaches. Moreover, sharing “raw” functional 

genomics data is important because it allows researchers to uncover biological insights by 

leveraging their own tools and analyses. The availability of raw data also helps address the 

reproducibility crisis in scientific research. However, the majority of functional genomics 

experiments use next-generation sequencing-based assays. Hence, their raw form includes 

sequence fragments from donors’ genomes. Here, we aimed to provide privacy- and utility-

preserving solutions to the functional genomics data access problem.

Deriving important quantities such as gene expression values does not require the knowledge 

of the genetic variants of a sample. We took advantage of this, and designed a data 

sanitization protocol that masks the private variants in the reads while maintaining the utility. 

Our protocol is flexible and based on principled trade-offs between privacy and utility. 

While the most privacy-conservative option is to mask all variants, the tool allows study 

participants to opt for a more or less conservative approach. For example, some participants 

may wish to mask only the variants that leak information about their susceptibility to 

stigmatizing phenotypes that can be used against them by insurers or employers. In such a 

case, our protocol can be used to mask only the desired variants and those in LD. To help 

guide study participants and researchers, we developed a formalism to show utility loss 

under different resolutions along the genome. For example, the genomic coordinates of a 

non-expressed gene will not be sequenced in RNA-Seq, so removing any indel overlapping 

with these locations will not result in any utility loss. Our formalism can aid researchers in 

finding an optimal combination of variants to be masked in order to maintain high utility.

To design an effective data-sanitization protocol, one first needs to quantify the private 

information leakage in the data, which can be done via linkage attacks. Using this approach, 

we systematically quantified variant leakage in the data and analyzed the robustness of the 

leakage under different circumstances. We demonstrated how potentially private phenotypes 

can be inferred, which is particularly important as surreptitious sequencing is becoming 

more accessible; in particular, for just $19, we were able to link genotypes obtained from a 

used coffee cup to their RNA-Seq reads.

We addressed the most obvious leakage from functional genomics data, and provided 

solutions for quick quantification and safe data sharing. Other sources of information 

leakage from functional genomics experiments are possible at different stages of the overall 

data summarization process (Figure 7b). Subtle leakages can come from the quantification 

of expression values; given a population of individuals, these gene expression values can be 

related to variants through eQTLs, and hence can create leakage (Schadt, 2012, Schadt et al., 

2012, Harmanci and Gerstein, 2016). We calculated the potential number of variants one can 

obtain from a typical RNA-Seq experiment in order to get a sense of the contribution each 
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type of leakage makes to the total leakage (Figure 7 and Figure S6). While inferring the 

leakage from gene expression values through eQTLs is interesting and non-trivial, eQTLs 

are not a main source of genotype information in functional genomics data. The amount of 

genotype leakage from reads is almost 1,000 times that from gene expression levels, and can 

be avoided with pBAMs. Another source of subtle private information leakage could be the 

presence of viral (e.g., HPV/EBV) or bacterial reads. Inference of potentially stigmatizing 

phenotypes from these can be avoided by simply removing these reads from the BAM files 

during the data sanitization process.

9 STAR Methods

9.1 RESOURCE AVAILABILITY

9.1.1 Lead Contact: Further information and requests for resources should be directed 

to and will be fulfilled by Lead Contact, Mark Gerstein (mark@gersteinlab.org).

9.1.2 Materials Availability: This study did not generate new unique reagents.

9.1.3 Data and Code Availability: The information quantification and linkage attack 

code; pTools; intermediate data processing scripts; test BAM, PBAM and .diff files; file 

format specifications; a Jupyter notebook for single-cell analysis on BAM and pBAM and 

links to publicly available data used in this paper can be found at privaseq3.gersteinlab.org. 

The pTools code can also be found at https://github.com/ENCODE-DCC/ptools. There are 

restrictions to the availability of the sequencing data generated from coffee cups due to their 

containing information that could compromise the privacy of research participants and other 

individuals who may have contaminated the samples.

9.2 METHOD DETAILS

9.2.1 Linkage Attack Details

Linking score:  Let us assume that there are n variants that can be observed from our query 

individual with known identity, either by using deeply sequenced WGS data (perfect 

information ℐ) or by using DNA left on a coffee cup (noisy information ℐ). 

Squery
ℐ = g1, g2, …, gn  is then the set of genotypes for each variant (gi = {0,1,2} for the 

homozygous reference allele, heterozygous alternative allele, and homozygous alternative 

allele, respectively). Si
D = g1, g2, …, gn  is the set of genotypes for an individual i in 

database D for the same variants in Squery
ℐ . Note the genotype set Si

D is observed from 

functional genomics data of an anonymized individual i and some of the genotypes may be 

missing due to the coverage and experimental bias in the functional genomics reads. For 

each individual i in SD, we find the intersection Si
D ∩ Squery

ℐ  and calculate a linking score

L(i, query) = − ∑
t = 1

t = SiD ∩ Squeryℐ

log2f gt ,
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where f(gt) is the ratio of the number of individuals whose tth variant has the genotype gt to 

the total number of individuals in the cohort.

gap:  To find the individual in database D that matches the query individual, we then rank 

all the L(i,query) scores for a given query individual in decreasing order as

L(i, query)1, L(i, query)2, …, L(i, query)m,

where m is the total number of individuals in the attacked database. We denote the individual 

with the highest score as the queried individual. To assess the statistical robustness of this 

prediction, we defined a measure called gap, which is the ratio between the L(i,query) score 

of the first-ranked individual (max = L(i,query)1) and that of second-ranked individual 

(max2 = L(i,query)2 and gap = max/max2). The goal is to determine how separated the 

matching individual is from the rest of the individuals in the cohort. The gap value is similar 

to the eccentricity parameter in the IMDB-Netflix attack (Narayanan and Shmatikov, 2008) 

used to determine the reliability of the linkage attack. The difference between gap and 

eccentricity is that gap is the fold change, which can be compared across samples.

Sensitivity and precision of input datasets:  We calculated the sensitivity as the ratio 

between the called true-positive genotypes and the total (ground-truth) genotypes belonging 

to the individual. We calculated precision as the ratio between the called true-positive 

genotypes and all called genotypes.

Addition of false-positive genotypes to the attacked database:  Using the 1,000 Genomes 

dataset, we randomly selected genotypes and appended them to the genotype set of each 

individual i Si
D . These random genotypes may or may not be found in the genotype set of 

Squery
D , hence increasing the chance of matching the query individual to any individual i in 

SD.

Addition of genetically related individuals:  We genotyped the RNA-Seq reads obtained 

from 14 individuals genetically related to the 1,000 Genomes individual NA12878, 

including the parents and children (Li et al., 2014) using GATK (DePristo et al., 2011, der 

Auwera et al., 2013), and added them to the database SD. We repeated the linking attack and 

calculated associated linking scores and gap values with and without NA12878 present in 

SD. The gap values for both cases were statistically tested. The goal was to asses whether 

the linking approach used in this study is robust to the addition of first-degree genetically 

related individuals to the attacked database.

Subsampling gEUVADIS RNA-Seq reads and creation of new attacked databases:  We 

randomly subsampled reads from all the individuals in the gEUVADIS cohort and created 

new attacked databases SD* for each level of subsampling by using 5, 10, 20, …, up to 

100% of the reads in each RNA-Seq data (Figure 2a). We first calculated the sensitivity and 

precision of the called genotypes by using the genotypes from high-coverage WGS data as 

the ground truth. We then performed the linking attack by a) using the genotypes obtained 
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from reads under different coverages and b) adding random false-positive variants to the 

genotypes of each entry in the attacked database.

Subsampling RNA-Seq and coffee cup reads and imputation of missing genotypes:  We 

first randomly subsampled reads from the RNA-Seq data of two study individuals and 

created cohort genotype databases SD* for each level of subsampling by using 10, 20, …, 

100% of the reads in each RNA-Seq experiment. We then imputed genotypes for each 

subsampling using BEAGLE (Browning et al., 2018). This process resulted in ten databases 

SD* from the genotypes of subsampled RNA-Seq reads and ten databases SD′ from the 

imputed genotypes of subsampled RNA-Seq reads. We also randomly subsampled the WGS 

coverage of coffee-cup samples from 10x to 0.125x and performed genotype imputation for 

each subsampling. In total, we had six query sets Squery
ℐ*  from subsampling and six query sets 

Squery
ℐ′  from imputation for each coffee cup. Next, we linked 144 queries (2 individuals × 6 

coffee cups × 12 subsample-imputation combinations) to 20 different databases, totalling 

2,880 different linkage attacks (Figure 3c). For each coffee-cup sample (6 cups × 2 

individuals), we calculated the linking accuracy for all subsampling and imputation 

combinations (240 total) as the ratio between the number of correctly linked coffee cups and 

the total number of coffee cups (Figure 3e).

Linkage attacks with genotypes from genotyping arrays:  We used Illumina exome-based 

genotyping arrays on the coffee cup samples. We found that arrays had a relatively low call 

rate for our samples, likely due to fragmented, degraded, or damaged DNA (Table S2). 

Although there were many correctly genotyped SNPs in the coffee-cup samples, their 

overlap with RNA-Seq genotypes was low, resulting in only 2 out of 12 samples successfully 

linked to the RNA-Seq database (gap=1.98 and 1.73, p-value< 10−2).

Linkage attacks with genotypes from Oxford Nanopore:  SNP and indel genotype quality 

from a typical Oxford Nanopore run is quite low with single-pass sequencing using standard 

protocols. We used a standard sequencing kit recommended by the Oxford Nanopore with 

multiplexing. The intent of this approach was to minimize the cost and to mimic the act of a 

curious scientist surreptitiously gathering DNA. We were only able to identify a few 

genotypes and failed to link the coffee cups to RNA-Seq data (Table S2).

Linkage attacks with different functional genomics data:  We performed linkage attacks 

using reads from different functional genomics techniques (e.g., ChIP-Seq, Hi-C, or ChIA-

PET) as the noisy information ℐ and 1,000 Genomes dataset as the perfect attacked 

database D. The goal was to empirically quantify and compare the amount of sensitive 

information in various functional genomics datasets. This is particularly important as 

different assays target different regions of the genome with different coverage profiles. For 

example, RNA-Seq targets expressed exons, whereas H3K27ac ChIP-Seq targets the non-

coding genome of the promoter and enhancer regions. Different assays also have different 

coverage profiles (i.e., some assays have spread-out peaks while others are more punctate). 

We used cell line functional genomics data from the ENCODE consortium as information ℐ
about individuals represented in the 1,000 Genomes genotype database (the attacked 
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database D). We treated the genotypes in the attacked database D as the gold standard when 

comparing different metrics such as linking score and gap values.

Comparison between assays:  The ENCODE data portal contains data from a range of 

functional genomics assays (Table S4) on the GM12878 cell line (individual NA12878 in the 

1,000 Genomes database). We performed linkage attacks at varying sequencing coverage 

using data from a number of these assays. We compared our results from functional 

genomics data to those from WGS, whole exome sequencing (WES), and genotyping arrays. 

Overall, ChIP-Seq for histone modification data showed lower gap values at low coverage 

compared to other assays (Figure 4a). We also calculated the linking score per nucleotide by 

normalizing the linking scores with the total number of base pairs in an assay. Although the 

total linking score obtained using scRNA-Seq data was lower compared to other assays, the 

gap values were surprisingly high even at the lowest coverage (Figure 4a). In general, 

experiments targeting exons (WES, RNA-Seq) demonstrated comparable gap values to 

whole-genome approaches even though the linking scores were lower. To investigate the 

reasons behind this, we calculated the median frequency of genotypes called from different 

functional genomics assays at different coverage (Figure 4c). We found that genotypes from 

assays targeting exons (especially scRNA-Seq) were slightly more rare in the cohort than 

genotypes from other assays (Hi-C, WGS, ChIP-Seq TF binding and histone modification), 

and hence the comparable gap values despite lower linking scores (Figure 4c, see STAR 

Methods subsection for contributions of rare and common genotypes to linking scores). The 

gap value of the polyA RNA-Seq sample to the correct individual at low coverage is higher 

than the gap value obtained from WES and total RNA-Seq at the same coverage. We think 

the reason is as follows: polyA RNA-Seq sequences contain highly expressed exons, WES 

sequences contain all exons, and total RNA-Seq data contain sequences from non-exonic 

parts of the genes. Compared to all the exons on a gene or other intragenic regions, highly 

expressed exons contain more rare variants due to selection pressure. Therefore, polyA 

RNA-Seq data contain more individual specific variants. Thus, although polyA RNA-Seq 

BAM files typically contain fewer reads than total RNA-Seq or WES BAM files, they can be 

highly prone to re-identification attacks, which is not clear at first glance. We repeated this 

analysis for individuals for whom we had less functional genomics data. We found that non-

obvious data types such as ChIP-Seq control experiments and Repli-Seq data can be used for 

linking purposes above coverage of around 10 million bp; if we assume a typical experiment 

has on average a 100 bp read length, then this would correspond to roughly 100,000 reads. 

For some of the ChIP-Seq TF binding experiments (information ℐ) it was not possible to 

link the individuals to the 1,000 Genomes database (attacked database D) despite their 

relatively high depth (Figure S2).

9.2.2 Sample Selection—We present short variant calls on 478 samples. Of these, 16 

were newly sequenced for this study (two DNA samples from two individuals, two RNA 

samples from the same individuals, six coffee cup DNA samples from two individuals), and 

the remaining 462 RNA-Seq data were obtained from the gEUVADIS study (Lappalainen et 

al., 2013). Genomic materials for newly sequenced samples were obtained by collecting 

blood samples and used coffee cups. DNA samples from the blood were sequenced using 

high-coverage Illumina sequencing (30x) and used as the gold standard. RNA samples from 
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the blood were sequenced using the Illumina total RNA-Seq protocol. Extracted DNA from 

coffee cups were sequenced using low-coverage Illumina sequencing (10x), Oxford 

Nanopore Technologies (ONT), and genotyped with the Illumina Infinium 

OmniExpressExome-8 v1.6.

9.2.3 Contribution of very rare and unique genotypes to the L(i,query) score
—We calculated the number of unique, very rare, and common genotypes for every 

individual in the 1,000 Genomes panel. We observed around 15,000 unique genotypes per 

individual. This contributes around 11×15,000 = 165,000 bits of information. We estimated 

11 from −log2(1/2503), as 1 in ~2,503 individuals in 1,000 Genomes have these unique 

genotypes. We observed around 670,000 very rare genotypes, which contribute 7×670,000 = 

4,690,000 bits of information on average. We estimated 7 from −log2(20/2503), as 20 in 

~2,503 individuals in 1,000 Genomes have these unique genotypes. In total, unique and very 

rare genotypes contribute 4,855,000 bits of information. We then calculated the information 

in the genomes of all the individuals in the 1,000 Genomes Phase III panel. The mean 

information per individual is around 2×107 bits. The contribution of unique and very rare 

variants then becomes around 24% of the total information in an individual’s genome, 

despite the fact that the number of unique and very rare variants is only 3% of the total 

number of variants in an individual’s genome. Note that this calculation is based on our 

scoring system adopted from Narayanan and Shmatikov (Narayanan and Shmatikov, 2008), 

which assumes independence between variants.

9.2.4 Experimental protocols

DNA extraction protocol from coffee cup lids:  We used the QIAamp DNA Investigator 

Kit from QIAGEN. This kit is designed to purify DNA from forensic and human identity 

samples. We first swabbed the surface of the coffee cups using a cotton swab dipped in 1 μL 

purified water. We followed the QIAamp DNA Investigator kit protocol for isolating DNA 

from surface-swab samples without modification. The final amount of DNA isolated from 

coffee cups was around 0.9 to 1 ng.

Whole-genome amplification:  Due to the very low starting amount of purified DNA, we 

used a single-cell whole-genome amplification kit (REPLI-g Single Cell Kit), which allows 

uniform PCR amplification from single cells or limited sample materials for use in next-

generation sequencing applications. We then used the Monarch PCR and DNA Cleanup kit 

to purify the DNA from PCR reactions.

Illumina sequencing:  Amplified DNA samples from coffee cups as well as purified PCR-

free DNA from blood (as the gold standard) were sent to the Yale Center for Genome 

Analysis for Illumina WGS. Coffee cup samples were sequenced at a 10x coverage and 

blood samples were sequenced at a 30x coverage.

Illumina genotyping arrays: We used an Infinium OmniExpressExome-8 BeadChip for the 

amplified DNA samples from coffee cups. Infinium OmniExpressExome-8 array surveys tag 

SNPs located on exons from all three HapMap phases, which includes 273,000 exonic 

markers. Each SNP is represented on these chips by 30 beads, on average. The Yale Center 
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for Genome Analysis performed the BeadChip protocol and calculated the call rates using an 

Illumina BeadStudio.

Nanopore Sequencing:  We used the rapid sequencing kit with multiplexing (due to the low 

amounts of input DNA) without the additional steps of DNA repair or suggested quality 

control. Due to the low quality of the DNA obtained from coffee cups, we did not perform 

size selection of the fragments in the PCR-based libraries we obtained using the ONT rapid 

sequencing kit. A total of 12 libraries from six coffee cups per individual were barcoded 

using the ONT rapid barcoding kit. Libraries were sequenced across an individual R9.4 flow 

cell on a single MinION instrument. A total of 844,599 reads were successfully base-called 

and demultiplexed using Guppy. The recommended MinION run-time was 48 h; therefore, 

the run was terminated after 48 h. SNP calling was performed using Nanopolish software.

RNA extraction protocol and RNA-Seq:  Blood samples from individuals were sent to the 

Yale Center for Genome Analysis for RNA purification and Illumina high coverage total 

RNA-Seq analysis following the suggested protocols by Illumina. Note that the RNA-Seq 

data we generated is at a higher sequencing coverage than those in the gEUVADIS cohort. 

Therefore, our RNA-Seq data yielded more genotypes than the gEUVADIS data. We found 

that 20% of the total reads in our experiment was equivalent to the total number of reads in a 

sample of the gEUVADIS cohort. To do a fair comparison for the linkage attacks, we 

downsampled the total number of captured variants to the average number of variants 

observed in the gEUVADIS dataset.

9.2.5 Genotyping

Blood tissue and coffee cups

Illumina sequencing: The DNA extracted from two blood tissues and 12 coffee cup samples 

were sequenced using Illumina. Raw fastq files were processed by mapping them to the 

hg19 reference genome (b37 assembly) using bwa (Li and Durbin, 2009). The resulting 

BAM files were processed using Picard tools to remove PCR duplicates. De-duplicated files 

were then genotyped using GATK best practices (DePristo et al., 2011, der Auwera et al., 

2013).

Genotyping Arrays: The 12 coffee cup samples were genotyped using Illumina Infinium 

OmniExpressExome-8 v1.6 and UV-coated chips were scanned using IScan. Scanned output 

files were analyzed and call rates were calculated using Illumina BeadStudio.

ONT: The 12 coffee cup samples were prepared and sequenced using the rapid barcoding kit 

and minION following the manufacturer’s suggestions. After converting fast5 files to the 

fastq format using Guppy software for base-calling and de-multiplexing, each sample was 

aligned to the hg19 reference genome (b37 assembly) using bwa “mem -x ont2d” options 

(Li and Durbin, 2009). Aligned reads were used for variant calling using Nanopolish 

software.

Functional genomics data: Raw RNA-Seq fastq files (from this study, gEUVADIS, and 

ENCODE) were processed by mapping them to the hg19 reference genome (b37 assembly) 
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and gen-code v19 transcriptome assembly using STAR (Dobin et al., 2013). Other raw 

functional genomics (e.g., Hi-C, ChIP-Seq) fastq files were mapped to the hg19 reference 

genome (b37 assembly) using bwa (Li and Durbin, 2009). The resulting BAM files were 

processed using Picard tools to remove PCR duplicates. De-duplicated files were then 

genotyped using GATK best practices (DePristo et al., 2011, der Auwera et al., 2013) for 

RNA and DNA for RNA-Seq and other functional genomics data, respectively.

9.2.6 pBAM details—The privacy-preserving BAM (pBAM) format is a variant of the 

BAM format. The genomic variants in BAM files are masked using data-sanitization 

techniques as outlined below. pBAMs are generated after aligning the functional genomics 

reads to the reference genome. The alignment step can be performed in a privacy-preserving 

manner as well (Chen et al., 2012), however the resulting alignment files still need to be 

sanitized to maintain patient privacy. The goal is to create files that can be openly shared and 

utilized in any downstream analysis pipeline. Our data sanitization is agnostic to the type of 

variant. Any difference between the sample and the reference genome will be covered 

regardless of whether they are somatic or germline SNPs or large structural variants. We 

simply compare the read in a BAM file to the reference genome and remove the difference. 

This will prevent genotyping and variant calling from the reads (Poplin et al., 2018).

Procedure: Below is a practical guide on how to convert BAM files to pBAM files.

1. Let us assume the variants that need to be sanitized from the BAM file areVs 

={s1, .., si, ..sn} and the variants that are in LD with the variants in Vs are 

V s
LD = s1

LD, …, siLD, …, sk
LD . The total number of variants that need to be 

sanitized are then r = n+k.

2. We first find all the reads that contain the variants in the V s ∪ V s
LD such that R = 

{R1, ..,RT}.

3. We apply sanitization techniques (i.e., generalization) to the BAM fields so that 

an adversary cannot infer the existence of these variants:

a. CIGAR: Convert the CIGAR of each Ri to a perfectly mapped read 

CIGAR (e.g., 100M, where 100 is the read length and M denotes that 

each base on the read perfectly mapped to reference genome).

b. SEQ: Replace the sequence of each Ri with the sequence in the 

reference genome.

c. QUAL: Convert all the base qualities of Ri to perfectly called base 

phred scores.

d. There are also optional tags in the BAM files such as AS (alignment 

scores), MD (string for mismatching positions), and NM (edit distance 

to reference) that should be sanitized. They can be generalized to the 

values for perfectly mapped reads if they are present in the BAM files.

e. We demonstrated that there might be extremely subtle leakages through 

MAPQ scores (mapping quality, see Figure S7). In particular, if the goal 
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is to prevent large leakages such as structural variants, then a data-

sanitization procedure such as suppression or generalization might be 

suitable for this field as well.

In addition, we treat intronic reads differently to be able to capture the splicing accurately.

Privacy: If one can observe t number of variants from a functional genomics BAM file, then 

the resulting B* = PQ,r(B) can be viewed as δ-private with respect to operation Q, if δ = r/t, 
which is the ratio of non-observable variants in a pBAM file to all observed variants in a 

BAM file. As mentioned earlier, PQ,r is the data sanitizer. We can reach 100% privacy when 

r = t. Here, variants are defined as homozygous and heterozygous alternative alleles. This 

definition assumes that all r number of variants are guaranteed to be deleted in the resulting 

pBAM file.

Utility: We defined the the utility of pBAMs as such that any calculation f based on a BAM 

file should result in similar results when the pBAM is used instead. A calculation f can be a 

signal depth profile calculation, TF binding peak detection, or gene expression quantification 

(Figure 5a–5b). Then, we can reconstruct an equation for each unit i as

ei = log(f(B)) − log f B*

where a unit i can be a single base pair, an exon, or a gene depending on the function f. 
Accordingly, ei can be calculated as the absolute value of the log-fold change between the 

results derived from the BAM and pBAM file. Note that ei is a measure of the error in the 

new dataset B*. B* = PQ,r(B) can be viewed as having ε-utility with respect to operation Q 
if ε = (G−m)/G, where m is the total number of units with ei > γ and G is the total number 

of the units. We can obtain 100% utility if the error is smaller than the threshold γ for every 

unit in the genome.

Concordance between replicates vs. BAM and pBAM: In an effort to avoid assigning the γ 
threshold ad hoc, we can use the concordance between biological replicates of a functional 

genomic experiment as guidance. Let us denote R1 and R2 as the BAM files from two 

biological replicates of the same experiment. Then, we can repurpose the equation above as

ei
rep = log f R1 − log f R2

ei
rep is the absolute value of the log-fold change between the results derived from R1 and R2. 

Then, the γ for every unit can be chosen as ≤ ei
rep, such that the error tolerated between 

BAM and pBAM never exceeds the biological noise levels.

Privacy-Utility Relationship: The relationship between privacy and utility can be derived 

through the mathematical relationship between δ and ε. Let us assume the units for our 

utility calculation are single bases in the genome, as this will give us the upper bound (i.e., 

more utility loss at higher resolution). Let us also assume that the function f for which we 

want to measure the utility loss is the signal depth calculation. Sanitization is done over 
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three kinds of variants: SNPs, insertions, and deletions. (1) In the case of SNPs, when we 

change a letter from the alternative allele to the reference allele, the resulting signal profile 

at that location does not change. (2) In the case of an insertion at position x, when we delete 

the insertion from a read (since an insertion is not represented in the reference), we have to 

append lins number of bases to the end of the read (lins is the length of the insertion). This 

adds error to all of the bases between position x and x+LR, where LR is the length of the 

reads. That is, for each insertion, the total number of bases with ei > γ will be at most LR, 

when γ is equal to 0 for the upper bound. (3) In the case of a deletion at position x, when we 

fill the deletion with the reference, we have to delete ldel number of bases from the end of 

the read (ldel is the length of the deletion). This adds error to all of the bases between 

position x and x+LR +ldel −1, where LR is the length of the reads. The maximum detected 

indel length varies by the aligner settings. In the most extreme cases, ldel can be as large as 

LR−1. That is, for each deletion, the total number of bases with ei > γ will be at most 2·LR

−2, when γ is equal to 0 and ldel is equal to LR−1 for the upper bound.

If r is the total number of variants to be sanitized, then r = rsnp+rins+rdel. The number of 

bases with m such that ei > 0 are at most

m ≤ LR ⋅ rins + 2 ⋅ LR − 2 ⋅ rdel

Since ε = (G−m)/G, then m = −ε ·G+G. We can then say

( − ε ⋅ G + G) ≤ LR ⋅ rins + 2 ⋅ LR − 2 ⋅ rdel

If we replace rins with r−rsnp−rdel and r with δ ·t, then our relationship becomes

( − ε ⋅ G + G) ≤ LR ⋅ δ ⋅ t − rsnp − rdel + 2 ⋅ LR − 2 ⋅ rdel

Utility bounds: The goal is to consider the impact of sanitizing BAM files through 

modifications applied to identified variants. The sanitization procedure used here is 

inherently asymmetric, as bases are added or removed at only one end of the read. We make 

a distinction between a personal genome and the reference genome: the personal genome 

includes all of the SNPs and indels; the reference genome is the standard external metric. 

While the personal genome may not actually be constructed, it serves as a useful conceptual 

tool to understand the impact of the transformation involved in the sanitization procedure. 

We discuss three types of variants and the chosen sanitization method applied in the pBAM 

format:

SNP: A single-nucleotide variant/polymorphism is changed by mutating the variant to the 

reference allele in every read in which the mutation is observed.

Insertion: An insertion is sanitized by removing any fraction of the new inserted segment 

and adding the equivalent number of reference nucleotides to one end of the corresponding 

read.
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Deletion: A deletion is sanitized by filling the reference nucleotides into the part of the 

deleted segment occurring on any read, and then removing the equivalent number of 

nucleotides from that read.

Definitions: The genome is indexed by discrete positions i. The coverage prior to and after 

sanitization are functions of the genomic position, and are labeled as cpre(i) and cpost(i), 

respectively. The read length is fixed at LR. The size of the insertion is labeled liins, while the 

size of the deletion is labeled as lidel, where in both cases the position i marks the start 

position of the indel. In addition, N(i) = the number of reads that start at position i in the 

mapping to the personal genome.

SNPs: Every read containing a SNP will be modified, with the alternate allele replaced by 

the corresponding reference allele. Under the assumption that the presence of this SNP does 

not alter the mapping efficiency (say, if the other variants within a particular read sum to 

mmis−1, then this SNP will lead to that read being dropped) and thus read dropout, we see 

that cpre(i) = cpost(i). Therefore, no impact will be observed, unless one looks through the 

mapping quality control (QC) and finds all the reads overlapping a given locus have slightly 

lower quality. This might be possible, unless the QC metadata is being modified explicitly in 

the sanitization procedure (see Quantifications and Statistical Analysis).

Short Indels: For indels, we consider the mapping changes due to the sanitization procedure 

in the following.

1. Insertions: The variant is indexed by position i, where the insertion occupies the 

base pairs from i + 1 to i + liins. We consider the following cases:

• liins < L: No individual read will dropout in this case due to the presence 

of the insertion. Consider a case in which the added nucleotides are on 

the end of a higher genomic position for the sake of clarity. The process 

of sanitization leads to an additional build-up of reads downstream of 

the insertion point. This happens due to the replacement process 

discussed above. Certain reads that would have been mapped to the 

insertion in the personal genome of the individual are now added 

downstream of the insertion in the mapping to the reference genome. 

This allows us to quantify the read build-up in terms of the start 

positions of the reads. Thus, for all reads that overlap with the insertion 

the following transformation occurs:

– ∀x: i − LR + 2 ≤ x ≤ i − LR + liins, all reads starting at position 

x in the personal genome are newly mapped to the reference in 

the interval [i+1,x+LR+1].

– ∀x: i − LR + liins + 2 ≤ x ≤ i, all reads starting at position x in 

the personal genome are newly mapped to the reference in the 

interval x + LR − liins, x + LR − 1 .
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– ∀x: i + 1 ≤ x ≤ i + liins, all reads starting at position x in the 

personal genome are newly mapped to the reference in the 

interval x + LR − liins + 1, i + LR .

The genomic footprint of the sanitization procedure is the interval [i+1,i
+LR]. The resultant read build-up of the sanitized BAM relative to the 

original BAM is thus given by the integral/discrete sum over all the 

accumulated contributions described above (again, x is the position 

along the personal genome, with the insertion in place; α in the 

equation below is the position along the reference genome in the 

downstream interval [i+1,i+LR−1] that is impacted by read build-up due 

to post-sanitization remapping):

Change in the raw read count  = Δc i+1 ≤ α ≤ i + LR = ∑
x = α − LR + 1

α − LR + li
ins

N(x)

For example, imagine an ideal case where all the reads are uniformly 

distributed in the given region. This means that c(x) = constant = c and 

N(x) =  constant  = c
LR

 across the original mapping. Note that in the 

ideal case of uniformly distributed reads, the number of reads that begin 

at a locus is the total number of reads that overlap with a locus, divided 

by the length of each read. Thus,

Change in the raw read count  = Δc i+1 ≤ α ≤ i + LR = ∑
x = α − LR + 1

α − LR + li
ins 

N(x) = c ⋅
li
ins 

LR

Thus, the fold-change in the coverage is given by 

FC =
c+

c ⋅ li
ins

LR
c = 1 +

li
ins

LR
 in the interval i+1 ≤ α ≤ i+L If we define, 

FC(α) = exp(eα), we end up with eα = log 1 +
liins

LR
 in the interval i+1 ≤ 

α ≤ i+L. The general formula is

eα = log
c(α) + ∑x = α − LR + 1

α − LR + liins
N(x)

c(α)

• liins ≥ LR: This case will be slightly different from the above case, as 

some of the reads will completely overlap with the insertion region and 

never contribute to the remapping build-up downstream. The 
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calculation would then ignore the reads that overlap significantly with 

the insertion. We do not discuss this situation here, as these reads will 

have soft or hard clipping in their CIGARs (split reads) and will be 

treated differently as discussed above.

2. Deletions: The variant is indexed by position i, where the deletion removes the 

reference base pairs from i + lidel. We exclusively consider lidel < LR in this case, 

with the understanding that longer deletions would require slight modifications 

of the following calculations. The mapping to the reference genome after 

sanitization results in loss of coverage from regions downstream of the deletion, 

and an equal gain in regions of the deletion. The mapping changes are as follows:

• ∀x: i − LR + 2 ≤ x ≤ i − LR + 1 + lidel, all reads starting at position x in 

the personal genome are removed from i + lidel + 1, x + lidel + LR − 1

and newly mapped to the reference in the interval [i+1,x+LR−1].

• ∀x: i − LR + 2 + lidel ≤ x ≤ i, all reads starting at position x in the 

personal genome are removed from x + LR, x + lidel + LR − 1  and 

newly mapped to the reference in the interval i + 1, i + lidel .

The genomic footprint of the sanitization procedure is the interval i + 1, i + lidel + LR − 1 . 

The change in coverage can be calculated in a manner similar to the case of insertions, with 

the additional notion that reads that are remapped to the deleted segment are drawn from 

downstream portions of the genome:

If the gain in the raw read count in the deleted segment of the reference genome is Gain, 

then

Gain = Δc i + 1 ≤ α ≤ i + lidel = ∑
x = α − LR + 1

i
N(x)

If the loss in the raw read count downstream of the deleted segment is Loss, then

Loss = Δc i + lidel + 1 ≤ α ≤ i + lidel + LR − 1 = − ∑
x = α − lidel − LR + 1

min α − LR, i
N(x)

It is not possible to compute the fold change in the coverage in the deleted segment, as the 

coverage is 0 pre-sanitization. However, it can be calculated by adding a pseudo count to the 

coverage pre-sanitization. In the downstream segment, the fold change in the coverage is 

given by

FC =
c(α) − ∑x = α − li

del − LR + 1
min α − LR, i

N(x)

c(α)
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for i + lidel + 1 ≤ α ≤ i + lidel + LR − 1, and with FC(α) = eeα, we have

eα = log
c(α) − ∑x = α − lidel − LR + 1

min α − LR, i
N(x)

c(α) = log 1 −
∑x = α − lidel − LR + 1

min α − LR, i
N(x)

c(α)

Again, considering the example of constant coverage discussed for the insertions, we have

FC = 1 −
∑x = α − li

del − LR + 1
min α − LR, i

N(x)

c(α) = 1 −
∑x = α − li

del − LR + 1
min α − LR, i c

LR
c = 1 −

min li
del, i + li

del + LR − α
LR

The upper bound on the fold change is given by FC ≤ 1 −
di
del

LR
. Note that the formula and the 

genomic footprint are different from those in the insertion case.

Suggestions for a higher utility pBAM while preserving privacy: After quantifying gene 

expression or other functional genomics quantities such as transcription factor binding 

enrichment from a BAM and corresponding pBAM file, one can pinpoint particular indels 

that overlap with the functional regions of the genome. We can then calculate the joint 

genotyping probability of these functional indels in a cohort of individuals (e.g., 1,000 

Genomes individuals) in order to determine how rare or common they are. We can then 

systematically mask rare indels one by one until the difference between BAM and pBAM 

files are within noise levels (e.g., less than the difference between two replicates).

Transcriptome alignments: pTools searches the reference transcriptome for the position of 

the transcripts and reports the reference transcriptome sequences in the pBAM. We used the 

reference transcriptome files that are generated by STAR software (Dobin et al., 2013).

.diff files: .diff files contain the difference between the original BAM files and the pBAM 

files in a compact form. If the information is already available in the reference human 

genome such as sequence of the fragment, then the .diff file does not report it. This approach 

keeps the .diff files as small as possible. These files require special permission for access 

and contain the private information about the individual. To be able to go back and forth 

between BAM and pBAM files using the .diff files, the BAM and pBAM files must be 

coordinate sorted.

9.2.7 Functional genomics data processing—RNA-Seq data were processed using 

STAR (Dobin et al., 2013) for alignment and RSEM (Li and Dewey, 2011) for 

quantification. ChIP-Seq data were processed using bwa (Li and Durbin, 2009) for 

alignment and MACS2 (Zhang et al., 2008) for peak calling. ScRNA-Seq data were 

processed using HCA’s optimus pipeline for quantifications and further analyzed using the 

Scanpy (Wolf et al., 2018) (A jupyter notebook. The figures and the necessary input files can 

be found at privaseq3.gersteinlab.org).

Gürsoy et al. Page 25

Cell. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://privaseq3.gersteinlab.org


9.3 QUANTIFICATION AND STATISTICAL ANALYSIS

9.3.1 Statistical significance of gap—We estimated the empirical p-values for a 

particular gap value by linking a set of random genotypes that do not belong to a particular 

individual to the database, as follows.

a. We selected n random genotypes from a database of nearly 50 million genotypes 

(taken from 2,504 individuals in the 1,000 Genomes database). n is the total 

number of genotypes that were linked to the database for the gap calculation.

b. We calculated the L(i,query) between these random n genotypes and every 

individual i in the database.

c. We calculated the gap as the ratio between the first-ranked and second-ranked 

L(i,query).

d. We repeated the above steps 1,000 times and obtained a distribution of random 

gap values.

e. The total number of random gap values that are equal to or greater than the real 

gap divided by 1,000 is the probability of observing the real gap value by chance.

We empirically calculated the probability of observing the real gap value or a larger gap 

value by chance by randomly subsetting n variants (the same number of variants as in Squery
ℐ ) 

observed from the information ℐ, performing the linkage attack, and calculating the 

associated gap value. If this p-value is statistically significant, then the attacker can rely on 

the prediction.

9.3.2 Quantifications related to the data sanitization

Calculation of average and maximum leakage per variant:  We first overlapped the 1,000 

Genomes variants with the exon annotations. We classified the variants into the following 

categories: exonic variants, exonic SNVs (excluding indels), exonic indels, and exonic small 

deletions. For each category, we calculated the self-information of the variant for all three 

possible genotypes (0, 1 and 2) as h(s0),h(s1) and h(s2). The average of self-information for 

each variant in each category is the average information leakage and the 

max(h(s0),h(s1),h(s2) is the maximum information leakage for that particular variant. We 

then calculated the mean and standard deviation for all the variants in each category. Total 

information leakage is calculated as the product of the total number of accessible variants 

and the average information leakage per variant. The distributions of the leakage can be seen 

in Figure S6. These distributions do not follow the normal distribution and are skewed, thus 

calculating the average is not the best approach. Therefore, mean leakage can be thought of 

an approximation that might be overestimated and since raw reads leak a lot more 

information than the signal profiles and eQTLs, the conclusion does not change with this 

approximation.

Leakage from MAPQ:  We found that reads with MAPQ values below the mean MAPQ 

contain insertions, deletions, and soft and hard clipping at a higher rate than expected 

(Figure S7), hence they might leak the location of large structural variants. In Figure S7, we 

analyzed a subsampled BAM file from a WGS dataset. The BAM files from functional 

Gürsoy et al. Page 26

Cell. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genomics data are noisier than WGS, however the MAPQ values could still potentially be a 

source of variant leakage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Surging functional genomics data necessitates improved data-sharing modes.

• Quantification of private information in these data is done via linkage attacks.

• A data sanitization protocol grounded in privacy and utility is developed.

• The sanitized format is compatible with existing file formats and pipelines.
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Figure 1: 
Functional genomics data de-anonymization scheme with perfect genomes. (a) Anonymized 

functional genomics data from a cohort of individuals can be seen as a database D to be 

attacked, which contains functional genomics reads and phenotypes for every individual in 

the cohort. The perfect information ℐ about an individual can be the genome of an 

individual. After obtaining genotypes from the functional genomics reads, the attacker 

scores each individual in the cohort based on the overlapping genotypes between the known 

individual’s genome and the noisy genotypes called from functional genomics. These scores 

are then ranked and the top-ranked individual in the cohort is selected as the known 

individual. See also Figure S1. (b) gap values for the 1,000 Genomes individuals in the 

gEUVADIS RNA-Seq cohort. Red circles are the gap values obtained by linking a random 

set of genotypes to the RNA-seq panel. gap values are also shown after adding false-positive 

genotypes to the genotype set of each individual in the database. (c) The linking scores for 

each individual in the functional genomics cohort after the addition of genetically related 

individuals to the query, with and without the query individual present in the database.

Gürsoy et al. Page 31

Cell. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Impact of sequencing depth on genotyping and linking accuracy. (a) The process of pooling 

reads from functional genomics data to generate different attacked databases. c amount of 

reads were pooled and a new cohort was generated. A linkage attack was performed for each 

new database using genomes as perfect information. (b) Variant calling was performed for 

pooled reads for each individual in the database. The panel shows the distribution of 

precision and sensitivity of the called genotypes over all individuals at different subsampling 

percentages using their genomes as the ground truth. (c) Cumulative linking accuracy before 

and after adding the false-positive genotypes. Linking accuracy was calculated as the ratio 

between the total number of correctly linked individuals.
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Figure 3: 
Functional genomics data de-anonymization scheme with noisy genomes. (a) Anonymized 

functional genomics data from a cohort of individuals can be seen as a database D to be 

attacked. The noisy information ℐ can be assumed to be DNA surreptitiously gathered from 

a known individual’s used coffee cup. The procedure described in Figure 1a was repeated. 

See also Figure S1. (b) gap values for two individuals and six coffee cups, each at 10x 

sequencing coverage. (c) The process of generating different databases and noisy 

information by (i) subsampling the reads from functional genomics data and the coffee cup 

sequences and (ii) imputing the genotypes obtained from functional genomics data and the 

coffee-cup sequences at different subsampling rates. The precision and sensitivity of the 

called genotypes are shown for each subsampling/imputation level. A total of 2,880 linkage 

attacks were performed using each subsampled database with and without imputation and 

using each subsampled coffee-cup reads with and without imputation. (d) Linking accuracy 

was calculated for each of the 2,880 linking attacks and depicted as a heatmap. (e) gap 
values for 2 individuals and 12 coffee cups, each at different sequencing coverage, compared 

with gap values obtained using random sets of genotypes. The RNA-Seq data used in this 

plot corresponds to a 20% sampling rate (second row in panel d). (f) Cumulative linking 

accuracy after subsampling the sequencing coverage calculated using the information in 

panel e.
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Figure 4: 
Effect of functional genomics assay type on de-anonymization. See also Figure S2 and S3. 

(a) The linking scores and gap as a function of sequencing coverage for individual NA12878 

for different functional genomics assays. (b) Linking score per base pair for each assay was 

calculated by normalizing the linking score values per subsampling by the total number of 

nucleotides in the sample. (c) Mean genotyping frequency per sequencing coverage for 

different assays. (d) The linking score and gap values from two individuals for ChIA-PET 

and ChIP-Seq experiments, (e) ChIP-Seq experiments, and (f) repli-Seq experiments. See 

also Figure S2.
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Figure 5: 
Functional genomics data sanitization. (a) The schematic of the privacy-preserving 

transformation of an alignment file and the difference between the signal calculated from the 

original BAM and transformed pBAM files. (b) A schematic of how different reads and 

corresponding CIGAR strings are treated in pBAM files. See also Figure S4 and S7. (c) The 

change in error with an increasing number of manipulated reads for different operations Q. 

(d) The numerical bounds for the privacy-utility relationship for different ancestries using 

the average number of variants in 1,000 Genomes data.
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Figure 6: 
pBAM protects privacy while preserving data utility. (a) The empirical values for the 

privacy-utility balance using NA12878 total RNA-Seq BAM files. The linking attacks were 

repeated using the partially masked pBAMs and gap values were calculated. The genotypes 

from these pBAMs were also overlapped with GWAS SNPs. The error between the pBAM 

and BAM files at the base resolution was calculated. (b) The difference between the BAM 

and pBAM files is shown at the read level, when the reads were mapped to a reference 

genome. The added noise to the depth signals due to the BAM-to-pBAM transformation is 

shown for an example read with a deletion, insertion, and mismatch. The difference in the 

depth signal when calculated from BAM and pBAM is shown in the signal tracks for Chr 6. 

Log-fold differences of the signal of each nucleotide between the BAM vs. pBAM and BAM 

of replica 1 vs. replica 2 were calculated using deeptools. (Ramírez et al., 2016). (c) The 

difference between the BAM and pBAM files is shown at the read level, when the reads 

were mapped to a reference transcriptome. The BAM files from two replicas and pBAM 

were then used to quantify the expression of all 60,699 genes. Transcripts per million (TPM) 

values were compared between the replicas and between BAM and pBAM. See also Figure 

S5. (d) The difference between the BAM and pBAM files is shown when the aligned reads 
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were converted back to fastq files for 10x v2 single-cell RNA-Seq data. Fastq and pFastq 

files were processed using the HCA’s optimus pipeline. The comparison between Fastq and 

pFastq processing is shown for the number of genes, total number of counts, and cell 

clustering levels.
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Figure 7: 
Software and fitting pBAM into the existing system of functional genomics data storage. (a) 
Schematic of how p-tools work with different file formats. (b) Different layers of data 

produced from functional genomics experiments with the associated number of leaking 

variants and bits of information. Table shows the leakage associated with RNA-Seq reads 

and gene expression quantification. See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

QIAamp DNA Investigator Kit QIAGEN 56504

REPLI-g Single Cell Kit QIAGEN 150363

Monarch PCR and DNA Cleanup kit NEW ENGLAD BioLabs T1030S

Infinium OmniExpressExome-8 BeadChip Illumina 20024677

Rapid barcoding kit Oxford Nanopore SQK-RBK004

Software and Algorithms

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Bwa Li and Durbin, 2009 https://github.com/lh3/bwa

Samtools Li et al., 2009 http://samtools.github.io

GATK DePristo et al., 2011, der Auwera et al., 
2013

https://gatk.broadinstitute.org

BEAGLE Browning et al., 2018 https://faculty.washington.edu/browning/beagle/
beagle.html

Guppy Oxford Nanopore https://github.com/nanoporetech

Nanopolish Loman et al., 2015 https://nanopolish.readthedocs.io

deeptools Ramirez et al., 2016 https://deeptools.readthedocs.io

RSEM Li and Dewey, 2011 https://deweylab.github.io/RSEM/

scanpy Wolf et al., 2018 https://scanpy.readthedocs.io

IGV Robinson et al., 2011 http://software.broadinstitute.org/software/igv/

Macs2 Zhang et al., 2008 https://github.com/macs3-project/MACS

Optimus HCA https://github.com/HumanCellAtlas/skylab/tree/
master/pipelines/optimus

Information quantification from SNPs This paper https://privaseq3.gersteinlab.org

pTools This paper https://privaseq3.gersteinlab.org

Cell. Author manuscript; available in PMC 2021 November 12.

https://github.com/alexdobin/STAR
https://github.com/lh3/bwa
http://samtools.github.io/
https://gatk.broadinstitute.org/
https://faculty.washington.edu/browning/beagle/beagle.html
https://faculty.washington.edu/browning/beagle/beagle.html
https://github.com/nanoporetech
https://nanopolish.readthedocs.io
https://deeptools.readthedocs.io/
https://deweylab.github.io/RSEM/
https://scanpy.readthedocs.io/
http://software.broadinstitute.org/software/igv/
https://github.com/macs3-project/MACS
https://github.com/HumanCellAtlas/skylab/tree/master/pipelines/optimus
https://github.com/HumanCellAtlas/skylab/tree/master/pipelines/optimus
https://privaseq3.gersteinlab.org/
https://privaseq3.gersteinlab.org/

	Summary
	Graphical Abstract
	In Brief
	Introduction
	Results
	Privacy Breach Scenarios for Quantification of Privacy Loss
	Sensitive phenotypes can reliably be inferred by linking perfect genotypes to noisy genotypes called from functional genomics data
	Effect of genetically related individuals:
	Effect of sequencing depth:

	Sensitive phenotypes can be reliably inferred by linking surreptitiously gathered, noisy genotypes to noisy genotypes called from functional genomics data
	Effect of imputation and sequencing depth:
	Depth-dependent sequencing cost:
	Different genotyping techniques:

	Different functional genomics techniques with varying sequencing depth can be reliably linked to genome databases
	Practical data sanitization techniques can reduce the amount of private information leakage while preserving the utility of functional genomics data
	Overview:
	Read sanitization protocol:
	pBAM provides privacy while maintaining utility.
	Empirical calculations validate privacy provided by pBAM:
	Empirical calculations validate utility provided by pBAM:
	Implementation:
	pFastqs as an alternative for alignment-free expression quantification and 10x scRNA-Seq reads:


	Discussion
	STAR Methods
	RESOURCE AVAILABILITY
	Lead Contact:
	Materials Availability:
	Data and Code Availability:

	METHOD DETAILS
	Linkage Attack Details
	Linking score:
	gap:
	Sensitivity and precision of input datasets:
	Addition of false-positive genotypes to the attacked database:
	Addition of genetically related individuals:
	Subsampling gEUVADIS RNA-Seq reads and creation of new attacked databases:
	Subsampling RNA-Seq and coffee cup reads and imputation of missing genotypes:
	Linkage attacks with genotypes from genotyping arrays:
	Linkage attacks with genotypes from Oxford Nanopore:
	Linkage attacks with different functional genomics data:
	Comparison between assays:

	Sample Selection
	Contribution of very rare and unique genotypes to the L(i,query) score
	Experimental protocols
	DNA extraction protocol from coffee cup lids:
	Whole-genome amplification:
	Illumina sequencing:
	Illumina genotyping arrays
	Nanopore Sequencing:
	RNA extraction protocol and RNA-Seq:

	Genotyping
	Blood tissue and coffee cups
	Illumina sequencing:
	Genotyping Arrays:
	ONT:
	Functional genomics data:


	pBAM details
	Procedure: Below is a practical guide on how to convert BAM files to pBAM files.1.Let us assume the variants that need to be sanitized from the BAM file areVs ={s1, .., si, ..sn} and the variants that are in LD with the variants in Vs are . The total number of variants that need to be sanitized are then r = n+k.2.We first find all the reads that contain the variants in the  such that R = {R1, ..,RT}.3.We apply sanitization techniques (i.e., generalization) to the BAM fields so that an adversary cannot infer the existence of these variants:a.CIGAR: Convert the CIGAR of each Ri to a perfectly mapped read CIGAR (e.g., 100M, where 100 is the read length and M denotes that each base on the read perfectly mapped to reference genome).b.SEQ: Replace the sequence of each Ri with the sequence in the reference genome.c.QUAL: Convert all the base qualities of Ri to perfectly called base phred scores.d.There are also optional tags in the BAM files such as AS (alignment scores), MD (string for mismatching positions), and NM (edit distance to reference) that should be sanitized. They can be generalized to the values for perfectly mapped reads if they are present in the BAM files.e.We demonstrated that there might be extremely subtle leakages through MAPQ scores (mapping quality, see Figure S7). In particular, if the goal is to prevent large leakages such as structural variants, then a data-sanitization procedure such as suppression or generalization might be suitable for this field as well.In addition, we treat intronic reads differently to be able to capture the splicing accurately.Privacy: If one can observe t number of variants from a functional genomics BAM file, then the resulting B* = PQ,r(B) can be viewed as δ-private with respect to operation Q, if δ = r/t, which is the ratio of non-observable variants in a pBAM file to all observed variants in a BAM file. As mentioned earlier, PQ,r is the data sanitizer. We can reach 100% privacy when r = t. Here, variants are defined as homozygous and heterozygous alternative alleles. This definition assumes that all r number of variants are guaranteed to be deleted in the resulting pBAM file.Utility: We defined the the utility of pBAMs as such that any calculation f based on a BAM file should result in similar results when the pBAM is used instead. A calculation f can be a signal depth profile calculation, TF binding peak detection, or gene expression quantification (Figure 5a–5b). Then, we can reconstruct an equation for each unit i as

where a unit i can be a single base pair, an exon, or a gene depending on the function f. Accordingly, ei can be calculated as the absolute value of the log-fold change between the results derived from the BAM and pBAM file. Note that ei is a measure of the error in the new dataset B*. B* = PQ,r(B) can be viewed as having ε-utility with respect to operation Q if ε = (G−m)/G, where m is the total number of units with ei
> γ and G is the total number of the units. We can obtain 100% utility if the error is smaller than the threshold γ for every unit in the genome.Concordance between replicates vs. BAM and pBAM: In an effort to avoid assigning the γ threshold ad hoc, we can use the concordance between biological replicates of a functional genomic experiment as guidance. Let us denote R1 and R2 as the BAM files from two biological replicates of the same experiment. Then, we can repurpose the equation above as

 is the absolute value of the log-fold change between the results derived from R1 and R2. Then, the γ for every unit can be chosen as , such that the error tolerated between BAM and pBAM never exceeds the biological noise levels.Privacy-Utility Relationship: The relationship between privacy and utility can be derived through the mathematical relationship between δ and ε. Let us assume the units for our utility calculation are single bases in the genome, as this will give us the upper bound (i.e., more utility loss at higher resolution). Let us also assume that the function f for which we want to measure the utility loss is the signal depth calculation. Sanitization is done over three kinds of variants: SNPs, insertions, and deletions. (1) In the case of SNPs, when we change a letter from the alternative allele to the reference allele, the resulting signal profile at that location does not change. (2) In the case of an insertion at position x, when we delete the insertion from a read (since an insertion is not represented in the reference), we have to append lins number of bases to the end of the read (lins is the length of the insertion). This adds error to all of the bases between position x and x+LR, where LR is the length of the reads. That is, for each insertion, the total number of bases with ei
> γ will be at most LR, when γ is equal to 0 for the upper bound. (3) In the case of a deletion at position x, when we fill the deletion with the reference, we have to delete ldel number of bases from the end of the read (ldel is the length of the deletion). This adds error to all of the bases between position x and x+LR +ldel −1, where LR is the length of the reads. The maximum detected indel length varies by the aligner settings. In the most extreme cases, ldel can be as large as LR−1. That is, for each deletion, the total number of bases with ei
> γ will be at most 2·LR−2, when γ is equal to 0 and ldel is equal to LR−1 for the upper bound.If r is the total number of variants to be sanitized, then r = rsnp+rins+rdel. The number of bases with m such that ei
> 0 are at most
Since ε = (G−m)/G, then m = −ε ·G+G. We can then say
If we replace rins with r−rsnp−rdel and r with δ ·t, then our relationship becomes
Utility bounds: The goal is to consider the impact of sanitizing BAM files through modifications applied to identified variants. The sanitization procedure used here is inherently asymmetric, as bases are added or removed at only one end of the read. We make a distinction between a personal genome and the reference genome: the personal genome includes all of the SNPs and indels; the reference genome is the standard external metric. While the personal genome may not actually be constructed, it serves as a useful conceptual tool to understand the impact of the transformation involved in the sanitization procedure. We discuss three types of variants and the chosen sanitization method applied in the pBAM format:SNP: A single-nucleotide variant/polymorphism is changed by mutating the variant to the reference allele in every read in which the mutation is observed.Insertion: An insertion is sanitized by removing any fraction of the new inserted segment and adding the equivalent number of reference nucleotides to one end of the corresponding read.Deletion: A deletion is sanitized by filling the reference nucleotides into the part of the deleted segment occurring on any read, and then removing the equivalent number of nucleotides from that read.
	Procedure:
	Privacy:
	Utility:
	Concordance between replicates vs. BAM and pBAM:
	Privacy-Utility Relationship:
	Utility bounds
	SNP:
	Insertion:
	Deletion:

	Definitions
	SNPs:
	Short Indels:
	Suggestions for a higher utility pBAM while preserving privacy:
	Transcriptome alignments:
	.diff files:


	Functional genomics data processing

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Statistical significance of gap
	Quantifications related to the data sanitization
	Calculation of average and maximum leakage per variant:
	Leakage from MAPQ:



	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Table T1

