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for stepped wedge trials with continuous
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Abstract

Background: We consider the design of stepped wedge trials with continuous recruitment and continuous
outcome measures. Suppose we recruit from a fixed number of clusters where eligible participants present
continuously, and suppose we have fine control over when each cluster crosses to the intervention. Suppose also
that we want to minimise the number of participants, leading us to consider “incomplete” designs (i.e. without full
recruitment). How can we schedule recruitment and cross-over at different clusters to recruit efficiently while
achieving good precision?

Methods: The large number of possible designs can make exhaustive searches impractical. Instead we consider an
algorithm using iterative improvements to hunt for an efficient design. At each iteration (starting from a complete
design) a single participant – the one with the smallest impact on precision – is removed, and small changes
preserving total sample size are made until no further improvement in precision can be found.

Results: Striking patterns emerge. Solutions typically focus recruitment and cross-over on the leading diagonal of the
cluster-by-time diagram, but in some scenarios clusters form distinct phases resembling before-and-after designs.

Conclusions: There is much to be learned about optimal design for incomplete stepped wedge trials. Algorithmic
searches could offer a practical approach to trial design in complex settings generally.
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Background
Stepped wedge trials are cluster-randomised trials where
clusters cross over from the control to the active interven-
tion condition during the trial, according to a randomised
schedule [1]. Typically, every cluster will begin the trial in
the control condition and end in the intervention condi-
tion, but the stepped wedge design in the broadest sense

allows for more variation than this, including the possibility
that some clusters remain in the same condition through-
out [2].
The classic schematic representation of a stepped

wedge trial shows time separated into regular or discrete
“periods” [2], though the reality is that many stepped
wedge trials recruit participants continuously over the
duration of the trial [3]. Few authors have considered
possibilities for the design of stepped wedge trials where
cross-over can be scheduled on a continuous time-scale
[4]. Another common assumption is that recruitment to
a stepped wedge trial occurs in every period in every
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cluster. But if each new participant increases our re-
search costs, or if we want to minimise the participation
burden for ethical reasons (generally true whenever indi-
vidual consent is required) we may want to consider an
“incomplete” design where recruitment effort is focused
at particular periods in particular clusters [5].
Suppose we have a fixed number of clusters which

recruit participants continuously at a fixed rate over a
fixed duration: it may not be necessary to recruit every
available participant in order to detect a clinically im-
portant effect with given statistical power. Here we are
interested in when we should recruit and when we
should cross over in different clusters in order to opti-
mise efficiency. We are assuming investigators have a
fine degree of control over the timing of recruitment
and cross-over at different clusters. One example would
be an intervention consisting of a change to a General
Practitioner’s computer system, such as an improvement
to a dashboard highlighting treatment options for par-
ticular patients. Such an intervention could be scheduled
seamlessly and electronically.
Although we are interested in situations where eligible

participants present as a random process in continuous
time, we will simplify by imagining that eligible partici-
pants arrive at each of K clusters at regularly-spaced
times 1/M, 2/M, …, M/M (where M is the rate of arrival
at each cluster and the total duration of recruitment is
scaled to be one time unit). We assume K and M are
fixed or constrained by design – in other words that we
have a certain number of clusters available to us, and a
certain length of time. Our interest in this article is
particularly on designs with large K (triallists are often
cautioned against running cluster-randomised trials with
small numbers of clusters) [6], and large M (so that we
have a reasonable model for a continuous time process).
We suppose that we can choose whether or not to re-

cruit each eligible participant. Assuming a linear model
for outcomes we can then determine, for any given de-
sign, the precision of the treatment effect estimate using
standard results [7–9], and compare different designs.
As M increases, however, the number of possible designs
becomes very large, and calculating the precision of each
design requires us to invert an increasingly large matrix
using numerical methods. Collapsing the data to the
cluster-period level (a trick often employed with longitu-
dinal cluster randomised trials in discrete time) is not
possible here because neither the time effect nor the intra-
cluster correlation in our model is piecewise-constant within
“periods”. As such, the vector of cluster-period means is not
a sufficient statistic for the treatment effect [10].
In this article we present a computational algorithm to

help researchers select an efficient design. Though the
algorithm is not guaranteed to find an optimal solution
it is driven by rules aimed at maximising the precision

with which the treatment effect is estimated. It is also
replicable and much faster than enumerating all possible
designs. Our aim was to improve understanding of the
form of optimal designs for incomplete stepped wedge
trials in continuous time, and to demonstrate proof of
principle for the use of computational methods in solv-
ing complex design problems.

Methods
Statistical model
Suppose that participant i = 1, …, mk in cluster k = 1, …,
K is recruited at time tik. We assume that each partici-
pant has the primary outcome assessed once, at a fixed
time following recruitment. The outcome for participant
i in cluster k is Yik, which we assume to be on a continu-
ous scale of measurement. A “design” consists of a
schedule for recruitment at each cluster (which deter-
mines the tik and the numbers of participants recruited
at different clusters, mk), and a schedule for cross-over.
For simplicity, we will assume that recruitment under
the intervention condition can follow seamlessly from
recruitment under the control condition, i.e. that there
is no need for a transition period to allow for implemen-
tation of the intervention condition [1, 3], and that a
cluster can cross over to the intervention from time 0
onwards. One advantage of the numerical and computa-
tional approaches used in this article is that they could
readily be adapted to a different design problem where a
transition period (during which recruitment is suspended)
must be included between periods of recruitment under
the control and recruitment under the intervention. Sup-
pose cluster k crosses over from the control to the active
intervention condition at time t�k .
Our model for the outcome is:

Y ik ¼ T tikð Þ þ θH tik − t�k
� �þ εik ;

where H(t) is a step function taking the value 1 if t ≥ 0
and 0 otherwise, and the parameter θ is the treatment
effect we would like to estimate. This implies that the
treatment has an immediate effect when introduced at a
cluster – that is, an effect on all new participants who
subsequently present at that cluster. This is plausible if
the implementation is itself instantaneous, with no need
for a transition period, as we have assumed here [3].
T(t) is a function representing the fixed effect of time

on outcome (common to all clusters). This fixed time
effect could include secular, periodic, or even discon-
tinuous changes (though it seems artificial and implaus-
ible to assume that the time effect is piecewise constant,
even if there are meaningful, a priori divisions of the
time-scale at which to place the discontinuities). In this
article we will assume a polynomial time effect.
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The important thing for our present purposes is to
model the time effect appropriately, whatever form that
relationship takes. We are not so interested here in how
to make a robust analysis choice when the form of the re-
lationship is unknown, which could involve alternatives
such as restricted cubic splines. Polynomial time effects
were particularly simple and fast to encode as a design
matrix when running our code for calculating the variance
of the treatment effect estimator, which was appealing for
practical reasons since the solutions we sought required it-
erating this code a great many times. They also offered a
simple way to explore what happened when the time ef-
fect was made less smooth (using a polynomial of higher
degree). How well an analysis would perform if the time
effect were misspecified is certainly of some interest, but
this would require simulation and we leave this to future
work: here we focus on design rather than analysis.
The εik in the model are random errors, each with

mean 0 and variance σ2. Clustering implies that the
errors εik are correlated within clusters: we will allow for
the possibility that these correlations decay smoothly as
the separation in time increases [10, 11]. Specifically, we
consider the following correlation structure:

Corr εi1k ; εi2kð Þ ¼ ρτ ti1k − ti2kj j;

Corr εi1k ; εi2lð Þ ¼ 0; if k≠l;

Var εikð Þ ¼ σ2:

Here ρ represents the intracluster correlation for two in-
dividuals sampled at the same time from the same cluster,
and τ represents the decay in this correlation with increas-
ing separation in time. Time runs from 0 to 1, hence the
correlation between the outcomes of two different individ-
uals from the same cluster sampled at either end of the
entire trial period is τρ. Different individuals sampled from
the same cluster have been observed in real-life cohorts to
have less strongly correlated outcomes the further apart in
time from each other that they are sampled [4, 10, 12].
Our model generalises the discrete-time model of

Hussey and Hughes to continuous time [7].
The precision of the treatment effect estimator is cal-

culated using standard results, assuming a generalised
least squares approach to estimation [7–9]. Formally, if
we write outcomes Yik as a single column vector Y, and
parameters for fixed effects (including time effects and
treatment effect) as a column vector θ, and express the
linear model above in matrix form

Y ¼ Zθþ e; e � N 0;Vð Þ;
then the variance of the generalised least squares esti-

mator for θ is

Varðθ̂Þ ¼ ðZ′V − 1ZÞ − 1
:

Symmetry
Observe that the correlation structure described above is
unchanged if we run time backwards. Now, it is not the
case that if we reverse the time-scale of a stepped wedge
trial design we end up with another valid stepped wedge
design (because in the time-reversed design some clus-
ters would be asked to cross from the intervention back
to the control). But suppose we take a given stepped
wedge design, reverse the time-scale (that is, transform t
to 1 − t), and also swap the control and the intervention
conditions everywhere. Then the result is a valid stepped
wedge design – and both the original design and the de-
sign with time and condition reversed will estimate the
treatment effect with exactly the same precision.
Motivated by this symmetry, and in order to simplify

the space of designs over which we conduct our search,
we restrict attention to designs that are invariant under
a time-and-condition-reversing transformation. The
“classic” stepped wedge design in which clusters all start
in the control condition, finish in the intervention condi-
tion, and cross over at regularly-spaced intervals, is an
example of this kind of invariance.
To achieve this symmetry we assume an even number

of clusters, K, and work on the schedules for recruitment
and cross-over in half of the clusters only, k = 1, 2, …, K/
2. The timing of recruitment and cross-over in the
remaining half of the clusters, starting from the last clus-
ter and counting back, K, K − 1, …K/2 + 1, is then set to
match the first half but with time reversed.

The algorithm
As an approximation for a continuous time process we
assume that a new eligible participant arrives at each of
K clusters at regularly-spaced times 1/M, 2/M, …, M/M.
For a given sample size (the total number of partici-

pants recruited under a given design) the algorithm
looks for small, incremental design changes that improve
precision while preserving sample size – for example by
shifting a cross-over time or rearranging the recruitment
schedule (the changes considered are described in more
detail in the supplementary Appendix). These modifica-
tions continue until no additional improvements can be
found. To reduce (or increase) the sample size the algo-
rithm then removes (or adds) the one participant who is
calculated to make the least (or most) difference to the
precision. (This is a development of previous work in
the discrete-time context, proposing that the informa-
tion content of each cluster-period in a complete design
could be quantified as the loss of precision when recruit-
ment is suspended in that cluster period.) [13, 14]
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These steps are integrated into the overall algorithm
in the following way. Step 1: start with a complete design
with sample size MK. Step 2: modify the design to im-
prove the precision without altering sample size (shifting
cross-over times or rearranging the recruitment sched-
ule). Step 3: remove the participant calculated (with an
exhaustive search) to make the least difference to preci-
sion. Step 4: modify the design to improve the precision
without altering sample size. Step 5: return to Step 3.
In this way a solution can be obtained for every pos-

sible sample size. If our target is a design which detects
a minimal clinically important treatment effect δ with
given statistical power or precision, then we need only
run the algorithm until we reach a sample size that just
fails to achieve this precision, and then adopt the design
from the previous iteration of the algorithm.
To guard (to some extent) against the possibility that

the algorithm is drawn to a local rather than global
optimum in the space of possible designs, we then repeat
the algorithm, but from a different starting point and
now working in the opposite direction. Step 1: start with
a simple design with small sample size (see below). Step
2: modify the design to improve precision without alter-
ing sample size. Step 3: add the participant calculated to
make the most difference to precision. Step 4: modify
the design to improve precision without altering sample
size. Step 5: return to Step 3. This continues until we
reach a sample size and design that achieve the required
precision. If the solutions obtained by working from our
two starting points differ, the algorithm selects the design
that achieves the target precision with smaller sample size.
Our starting points for the forward and backward

searches are illustrated in the supplementary Appendix.
The starting point for the forward search is a complete
design where the cross-over boundary follows a straight,
diagonal line – that is, in cluster k the last time-point in
the control condition (before cross-over to the interven-
tion) is i/M, where i is the nearest integer to M(k − 1)/
(K − 1). The starting point for the backward search is a
“staircase” design [13], which we define here as a design
with the same cross-over boundary as the starting point
for the forward search, but with recruitment only at a
fixed number of time-points j immediately before cross-
over and the same number immediately after cross-over.
For the design which begins our forward search we set j
to be the nearest integer to M/(K − 1).

Software and code
We coded the algorithm in Mata, within Stata v16
(StataCorp, College Station, TX USA), which is a com-
piled language offering rapid execution. The matrix inver-
sion needed to calculate precision for each design uses
Mata’s built-in ‘invsym’ function, but also takes advantage
of the fact that the inverse of a block-diagonal matrix

(such as the correlation matrix between all pairs of out-
comes Yik) is itself a block-diagonal matrix [7]. Code is
available from a GitHub repository (https://github.com/
richard-hooper/incomplete-continuous-SWT).

Scenarios investigated
We consider the illustrative case of a trial with 30 clus-
ters and 100 eligible participants in each cluster, and
with the following correlation structures: (i) ρ = 0.01, τ =
1.0; (ii) ρ = 0.05, τ = 0.2; (iii) ρ = 0.05, τ = 1.0; (iv) ρ = 0.25,
τ = 0.2; (v) ρ = 0.25, τ = 1.0. We assume in the first in-
stance that the time effect is a sixth degree polynomial,
but we also discuss the impact of the functional form of
the time effect on the choice of design.
Our target in each case is to achieve a design which

minimises the sample size needed to detect a given effect
size with 90% power at the two-sided 5% significance
level. We consider effect sizes (δ/σ) of 0.15, 0.20, 0.25,
0.30, and 0.35. In those instances where even a complete
design is not powerful enough to detect the given effect
size, we illustrate the most powerful complete design
that the algorithm can find.

Comparison with randomly generated and staircase
designs
To provide some context we compare the performance
of the algorithm’s solutions for different sample sizes
with the performance of (i) 100,000 randomly generated
designs, and (ii) staircase designs (as defined above) with
different widths of the recruitment window before and
after cross-over, in the illustrative scenario K = 30, M =
100, ρ = 0.05, τ = 0.2. Randomly generated designs were
chosen to be invariant under a time-and-condition-re-
versing transformation (achieved by randomly generat-
ing treatment and recruitment schedules for half the
clusters, and then reversing these schedules in the other
half). Random cross-over times in different clusters were
independent and uniformly distributed, and each partici-
pant was assumed to be recruited independently of any
other with probability p, where p was fixed for a given de-
sign and distributed uniformly over [0,1] between designs.

Results
The designs obtained by the algorithm under each sce-
nario are shown in Fig. 1 (the patterns are also available
in spreadsheet form from the GitHub repository cited
above).
The complete solutions in cases where τ = 1.0 resemble

the “hybrid” designs described by Girling & Hemming
[15], in which the cross-over boundary between recruit-
ment under the control and intervention conditions is
roughly linear. The complete solution for ρ = 0.05, τ = 0.2
has a slightly more serpentine boundary between control
and intervention, while the complete solutions for ρ =
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0.25, τ = 0.2 and ρ = 0.25, τ = 0.04 arrange clusters in four
macro-steps. The latter two scenarios are also notable for
being less well powered than others: even a complete
design is underpowered in these instances for detecting an
effect size of 0.25.
As we increase the effect size we want to detect, the

required sample size decreases. Incomplete design solu-
tions in Fig. 1 generally focus recruitment around the
cross-over boundary, though there are notable instances
where this is complemented by recruitment in the off-
diagonal corners of the diagram. It is also noteworthy
that patterns of recruitment in some scenarios exhibit
high-level structure. This is particularly striking in the
designs to detect effect sizes of 0.30 and 0.35 for the
cases where τ < 1.0. Here the clusters are arranged in
four groups, in each of which the comparison between
control and intervention appears to be almost entirely
within (rather than between) clusters.
Figure 2 plots the performance of the algorithm’s solu-

tions in comparison with randomly generated and staircase
designs, in the illustrative scenario K = 30, M = 100, ρ =

0.05, τ = 0.2 (represented in the second column of Fig. 1).
The plot shows the precision of the treatment effect estima-
tor, where precision is defined as the inverse of the variance
of the estimator, assuming that the variance of observed
outcomes, σ2, is 1. In this example the relative precision of
a staircase design compared with a design with the same
sample size obtained by the algorithm is never less than
95%. The dashed line showing the precision of the algo-
rithm’s solutions illustrates the trade-off that can be
achieved between sample size and precision: for small sam-
ple sizes the precision is roughly proportional to the sample
size, but then begins to level off as the sample size in-
creases. By the time the sample size has reached just 50% of
the maximum available the precision is already 93% of what
is achievable with a complete design.

The functional form of the time effect
For the results presented above we assumed a sixth
degree polynomial for the time effect. This might seem
an excessive number of degrees of freedom to use up in
practice in estimating the time effect, though not in

Fig. 1 Trial designs that achieve 90% power at the two-sided 5% significance level to detect various effect sizes, δ/σ, for different combinations of
ρ (the intracluster correlation for two individuals sampled at the same time from the same cluster) and τ (representing the decay in this
correlation over the duration of the trial). Designs assume K = 30 clusters which are arranged down the vertical axis of each schematic, and M =
100 eligible participants presenting in each cluster, arranged along the horizontal axis. Underneath each schematic is the overall sample size. In
those instances where even a complete design is not powerful enough to detect the given effect size, we illustrate the most powerful complete
design that the algorithm can find
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comparison with stepped wedge trials where the time
effect is modelled as a categorical (i.e. discrete) variable
with a different level for each design period. To investi-
gate the influence of the functional form of the time
effect, we also considered polynomials of degree 1 up to
8 in the illustrative scenario ρ = 0.05, τ = 0.2, and δ/σ =
0.3. The designs obtained by our algorithm in each case
are shown in Fig. 3. With both linear and quadratic
effects of time, the algorithm settles on the same, two-
phase before-and-after design. Cubic and quartic effects
of time both lead to the same, three-phase design. Poly-
nomial degree 5 leads to the same, four-phase design as
degree 6, while degrees 7 and 8 produce a design where
the phases are less distinct – closer in appearance to a
staircase design.
In practice, of course, we may have little to guide us a

priori in choosing an appropriate functional form for the
time effect. What if we went ahead with one of the de-
signs in the first column of Fig. 3 (or, more realistically,
some simplified design form with similar total sample
size, as illustrated in the second column of Fig. 3), but
concluded a posteriori that we needed to adjust for a
different functional form? We evaluated the power to
detect an effect δ/σ = 0.3 (at the 5% significance level) of
each simplified design in Fig. 3 under different polyno-
mial forms for the time effect, with ρ = 0.05, τ = 0.2. The
results are shown in Table 1. The power of the multi-
phase designs depends heavily on accurate selection of
the degree of the polynomial, and consequently the

number of phases: if there are fewer phases than are ap-
propriate to the degree of the polynomial then the power
drops dramatically. The staircase design performed well
over the whole range of polynomial degrees.

Discussion
Some of our findings were expected. Hybrid designs
have been shown to be asymptotically optimal among
complete designs in the discrete time case, at least when
τ = 1.0 (i.e. when there is no decay in the intracluster
correlation over time) [15]. Our results suggest some-
thing similar when time is treated as a continuous
phenomenon. For an optimal incomplete design it is not
surprising that recruitment in a cluster should be con-
centrated just before and just after cross-over: any decay
in the intracluster correlation will mean that within-
cluster comparisons are made most powerfully over a
short timescale like this. What is more surprising is that
we should see designs in Fig. 1 that include recruitment
in the off-diagonal corners of the diagram in addition to
the leading diagonal, though a similar pattern has been
noted before in the context of discrete-time models [13].
The other surprising feature of some of the designs in

Fig. 1 is the separation into distinct phases of recruit-
ment, with little overlap of control and intervention re-
cruitment periods in different clusters, as if clusters were
being randomised to phases of a multi-phase before-
and-after study. This pattern is observed for larger effect
sizes when τ < 1.0. The concentration of recruitment at

Fig. 2 Precision (inverse of the variance of the treatment effect estimator, assuming that the variance of observed outcomes, σ2, is 1) against
sample size for different designs, in the case of K = 30, M = 100, ρ = 0.05, τ = 0.2. The dashed line shows designs obtained by the algorithm for
different sample sizes (with dark-filled circles indicating the designs shown in the second column of Fig. 1). Pale-filled circles denote 100,000
randomly generated designs. Crosses show the performance of staircase designs with varying width of recruitment window
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certain times – and in particular the increase in the
number of these distinct phases of data collection with
increasing degree of polynomial for the time effect – is
reminiscent of results from the literature on the optimal
design of experiments for polynomial regression on a
continuous variable [16]. This should not surprise us.
Although it is the treatment effect that interests us most
directly, a design that relies heavily on before-and-after

comparisons to estimate this treatment effect must also
model the underlying time effect as precisely as possible.
Note that a wholly before-and-after design was always

going to be an admissible solution once we focused on
time effects with a form that was not confounded with
treatment. In our case a smoothly varying (polynomial)
effect of time is distinguishable from a discontinuous
jump in outcomes when the intervention is introduced,
even in a wholly before-and-after design.
We chose particular values of K and M to illustrate

the design problem and its solutions. The approach pre-
sented in this article and the supplementary material
could be used to investigate other scenarios. Further
analytical work is needed to clarify asymptotic relation-
ships of K and M with the form of the patterns seen in
Fig. 1, and thus to draw more generalisable conclusions.
We cannot rule out the possibility that a solution ob-

tained by the algorithm is a local optimum in the design
space rather than a global optimum, although our intu-
ition about what optimal designs look like may be equally

Fig. 3 Solutions obtained from the algorithm when the time effect is modelled as a polynomial of degree 1 up to 8, in the case of K = 30, M =
100, ρ = 0.05, τ = 0.2, δ/σ = 0.3. Simplified design forms are also presented

Table 1 Statistical power (at the two-sided 5% significance level)
of the simplified design forms shown in Fig. 3, under different
models for the time effect (polynomials of degree 2, 4, 6 or 8), to
detect effect size δ/σ = 0.3, with K = 30, M = 100, ρ = 0.05, τ = 0.2

Polynomial degree

Simplified form 2 4 6 8

2-phase 89% 37% 35% 22%

3-phase 90% 90% 37% 33%

4-phase 89% 89% 89% 43%

Staircase 89% 89% 89% 89%

Hooper et al. BMC Medical Research Methodology          (2020) 20:279 Page 7 of 9



unreliable. Figure 2 illustrates nicely just how well the
algorithm performs in identifying efficient designs,
with performance well beyond the envelope generated
by randomly selected designs.
None of the designs in Fig. 1 is an exact staircase

design in the sense we have used the term, but Fig. 2
shows that staircase designs perform well over the
gamut of sample sizes in the scenario illustrated. They
may also cope well with a variety of functional forms for
the time effect. The focus of the present article is on an
algorithmic search for an efficient design (whatever that
looks like), but staircase designs will undoubtedly repay
further investigation in the study of incomplete stepped
wedge trial designs.
We simplified considerably in assuming that eligible

participants present at regular, fixed intervals rather than
as a random continuous-time process, but assuming that
the arrival rate is constant over time we would expect
arrival times in a sample to become increasingly uni-
formly spread as M increases. Simulation studies investi-
gating the impact of unevenly spaced arrival times on
the precision of complete stepped wedge designs suggest
that this impact is small [11].
Finally, note that we have been working within a

generalised least squares estimation framework, and are
envisaging analysis using mixed regression or generalised
estimating equations, as often recommended as a start-
ing point for the analysis of stepped wedge trials [1].
With different approaches, for example robust estima-
tion methods that reduce reliance on modelling assump-
tions [17, 18], it may be that different patterns emerge.

Conclusions
This article is not an invitation to conduct before-and-
after studies in place of randomised trials. Nevertheless,
the idea that a kind of multi-phase, interrupted time
series study might perform well in certain scenarios is
intriguing and appealing. Note that multi-phase before-
and-after designs, such as those illustrated in Fig. 3, still
feature randomisation in that clusters are randomised to
phases. These designs depend heavily on modelling to
allow for time effects, but offer a simple and straightfor-
ward plan for conducting an evaluation. The less smooth
you think the time effect might be, the more phases you
should schedule. Staircase designs may offer a more ro-
bust approach to incomplete trial design, but will require
more complex scheduling.
We have illustrated how a computational approach

could help with the search for an efficient trial design
when this problem is otherwise intractable, though we
should be wary of the possibility that an algorithm such
as ours, which proceeds by small, incremental changes,
might become attracted to a local optimum in the design
space rather than a global one. Other approaches,

including stochastic searches [19], may be worth investi-
gating. Finally, we recognise that trial design in the real
world must consider practicality, simplicity and con-
straints on resources as much as numerical efficiency.
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