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Thermogenic hydrocarbon biodegradation by
diverse depth-stratified microbial populations
at a Scotian Basin cold seep
Xiyang Dong 1,2✉, Jayne E. Rattray 2, D. Calvin Campbell 3, Jamie Webb4, Anirban Chakraborty 2,

Oyeboade Adebayo 2, Stuart Matthews2, Carmen Li2, Martin Fowler4, Natasha M. Morrison5,

Adam MacDonald5, Ryan A. Groves2, Ian A. Lewis2, Scott H. Wang2, Daisuke Mayumi6, Chris Greening 7,8 &

Casey R. J. Hubert 2✉

At marine cold seeps, gaseous and liquid hydrocarbons migrate from deep subsurface origins

to the sediment-water interface. Cold seep sediments are known to host taxonomically

diverse microorganisms, but little is known about their metabolic potential and depth dis-

tribution in relation to hydrocarbon and electron acceptor availability. Here we combined

geophysical, geochemical, metagenomic and metabolomic measurements to profile microbial

activities at a newly discovered cold seep in the deep sea. Metagenomic profiling revealed

compositional and functional differentiation between near-surface sediments and deeper

subsurface layers. In both sulfate-rich and sulfate-depleted depths, various archaeal and

bacterial community members are actively oxidizing thermogenic hydrocarbons anaerobi-

cally. Depth distributions of hydrocarbon-oxidizing archaea revealed that they are not

necessarily associated with sulfate reduction, which is especially surprising for anaerobic

ethane and butane oxidizers. Overall, these findings link subseafloor microbiomes to

various biochemical mechanisms for the anaerobic degradation of deeply-sourced thermo-

genic hydrocarbons.
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Marine cold seeps are characterized by the migration of
gas and oil from deep subsurface sources to the
sediment-water interface1,2. This seepage often contains

gaseous short-chain alkanes, as well as heavier liquid alkanes and
aromatic compounds3, which originate from deep thermogenic
petroleum deposits. Migrated hydrocarbons can serve as an
abundant source of carbon and energy for microorganisms in
these ecosystems, either via their direct utilization or indirectly
through metabolizing by-products of hydrocarbon biodegrada-
tion4. Multiple 16S rRNA gene surveys have revealed that cold
seep sediments at or near the sediment-water interface host an
extensive diversity of archaeal and bacterial lineages5–9. However,
much less is known about metabolic versatility of this diverse
microbiome, and how surface and subsurface populations are
distributed in different redox zones within the sediment col-
umn10,11. Most seep-associated microorganisms lack sequenced
genomes, precluding meaningful predictions of relationships
between microbial lineages and their biogeochemical func-
tions4,8,10–13.

Geochemical studies have provided evidence that micro-
organisms in deep seafloor sediments, including cold seeps,
mediate anaerobic hydrocarbon oxidation2,3. A range of efforts
have been undertaken to enrich and isolate anaerobic
hydrocarbon-oxidizing microorganisms from cold seep sediments
and other ecosystems rich in hydrocarbons (e.g., marine hydro-
thermal vents)5–9,14. Numerous studies have focused on the
anaerobic oxidation of methane, as methane generally is the
dominant hydrocarbon in cold seep fluids. This process is
mediated by anaerobic methanotrophic (ANME) archaea through
the reverse methanogenesis pathway, typically in syntrophy with
bacteria that can reduce electron acceptors such as sulfate, nitrate,
and metal oxides8,15,16. Investigations of enrichment cultures
have also revealed anaerobic bacterial or archaeal oxidation of
non-methane alkanes and aromatic hydrocarbons, including
ethane (e.g., Ca. Argoarchaeum and Ca. Ethanoperedens)17,18, n-
butane and propane (e.g., Ca. Syntrophoarchaeum and Desulfo-
bacteraceae BuS5)9,19, dodecane (e.g., Desulfosarcina/Desulfo-
coccus clade)6, and naphthalene (e.g., deltaproteobacterial strain
NaphS2)20,21. Alkane-oxidizing archaea normally do so in con-
sortia with sulfate-reducing bacteria whereas bacteria known to
degrade hydrocarbons usually couple this to sulfate reduction in a
single-cell process8,22. Long-chain alkanes can also be metabo-
lized in syntrophic partnerships, e.g., by bacteria in the genera
Smithella and Syntrophus, together with methanogenic
archaea23,24.

Despite this progress, it remains uncertain whether anaerobic
hydrocarbon-degrading isolates or consortia studied in enrich-
ment cultures play these roles in situ in deep sea sediments. Thus,
metabolic functions of microbial communities have also been
assessed using cultivation-independent approaches including
sequencing of phylogenetic and/or functional marker genes and
environmental metagenomics. Single-gene surveys, for example,
investigating the diversity of genes encoding enzymes for alkane
or aromatic compound activation via addition to fumarate3,11,25,
have increased our knowledge about the phylogenetic diversity of
hydrocarbon degraders. Most genome-resolved metagenomic
studies have focused on hydrothermally influenced sediments
that are rich in hydrocarbons, e.g., Guaymas Basin in the Gulf of
California26–28. These studies have provided insights into the
phylogenetic diversity and functional capabilities of potential
hydrocarbon-degrading microorganisms, including the discovery
of Ca. Helarchaeota from the Asgard superphylum with the
potential for hydrocarbon oxidation using methyl-CoM reduc-
tase-like enzymes28. However, studies integrating geochemical
processes and microbial metabolism in redox-stratified deep sea
sediments are lacking.

In contrast to hydrothermal sediments, there have been fewer
reports on the metabolism of hydrocarbons and other com-
pounds in cold seep sediments, especially in the deep sea4. One of
the best-studied cold seep areas is the Gulf of Mexico where
deeply sourced hydrocarbons rise through continental slope
sediments fractured by salt tectonics8,13,29. Compared with
hydrocarbon seep ecosystems along active margins and in pet-
roleum rich basins like the Gulf of Mexico, much less is known
about those along passive margins30. The Scotian Basin is at the
volcanic and non-volcanic transition continental margin,
extending over an area of ∼260,000 km2 in the northwest Atlantic
Ocean, offshore Nova Scotia in eastern Canada (Fig. 1). Based on
satellite and seismic reflection data, this area shows strong evi-
dence for seepage of thermogenic hydrocarbons with occurrences
of high‐pressure diapirs, polygonal faults, pockmarks, and gas
chimneys31.

In this study, we combine geophysical, geochemical, and
metabolomic analyses with gene- and genome-centric metage-
nomics to understand the communities and processes responsible
for anaerobic oxidation of different hydrocarbons, as well as their
depth distributions, at a newly discovered deep sea cold seep
caused by salt tectonics in this area. Through this work, we
provide strong evidence supporting that (i) hydrocarbons are
thermogenic and experience biodegradation upon migration up
into surface sediment layers; (ii) these processes are actively
performed in the cold deep sea by bacteria and archaea
through diverse biochemical mechanisms; and (iii) the micro-
biome catalysing anaerobic hydrocarbon degradation at different
depths is dependent on metabolic adaptations for different redox
regimes.

Results
Migrated thermogenic hydrocarbons are subject to biode-
gradation. At a water depth of 2306 m, a 3.44-meter-long piston
core was retrieved from the Scotian Slope, off the coast of Eastern
Canada (Fig. 1a). The 3D seismic survey indicated that this site is
located above a buried salt diapir (Fig. 1b). An overlying seismic
amplitude anomaly was interpreted to be a direct hydrocarbon
indicator with salt diapir-associated crestal faults suggestive of a
potential conduit for fluid migration to the seafloor. In the bot-
tom of the core, at 332–344 cm below the seafloor (cmbsf), gas
hydrates were observed in frozen crystalized form and numerous
gas bubbles escaped during retrieval. A strong sulfide odor was
also detected during core retrieval and processing. Molecular and
isotopic compositions of two headspace gas samples subsampled
from the sediments adjacent to the gas hydrates (332–337 and
337–344 cmbsf) detected 7446 and 4029 ppm of total hydro-
carbon gases (THG), respectively, primarily made up of methane
(85% and 79%) with considerable proportions of C2-C4 gases
(3.22% and 6.54%) (Table 1). In order to assess the origin of the
hydrocarbon gases, their molecular and isotopic compositions
were compared to recently revised genetic diagrams32, focusing
on δ13C-C1, C1/(C2+ C3), δ2H-C1, δ13C-C1, and δ13C-CO2. All
measured geochemical parameters are within the range defined
for gases of thermogenic origin indicating that they migrated
upward from a mature petroleum source rock (Table 1). Ethane
and propane were 13C-enriched compared with methane, likely
reflecting the addition of some biogenic methane to the migrating
thermogenic gas, as well as biodegradation of ethane and pro-
pane32. Ratios of iso-butane to n-butane were 1.6–1.8 and suggest
preferential consumption of more labile n-alkanes3.

Sediments from four additional depths were analyzed for
extractable organic matter (EOM, i.e., C12+ hydrocarbons),
showing high yields (104–361 mg/kg rock) comprising saturated
hydrocarbons (25–52%), aromatic hydrocarbons (10–14%), and
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other components (Supplementary Table 1). Further gas
chromatographic analysis of these oil-laden sediments revealed
large unresolved complex mixture humps in the C13–C20 n-alkane
elution range (Supplementary Fig. 1), indicative of hydrocarbon
biodegradation3. Pristane and phytane, which are widely used
internal conserved markers for oil biodegradation33, were more
abundant than C17 and C18 n-alkanes, suggesting preferential
biodegradation of n-alkanes. Consistent with this, carbon dioxide
was isotopically heavy in these sediments (Table 1) and clearly
associated with secondary microbial degradation32.

Microbial communities are depth-stratified and metabolically
diverse. Deep shotgun metagenome sequencing was performed
for sediments based on porewater sulfate concentrations and
other geochemical data (Table 2 and Supplementary Fig. 1).
Alpha diversity was calculated using single-copy marker genes
from the metagenomic datasets34, and cell densities were esti-
mated via quantitative PCR of bacterial and archaeal 16S rRNA
genes. Differences in diversity and cell density were related to the
availability of migrated thermogenic hydrocarbons and sulfate
(Table 1 and Supplementary Table 1). Overall, the surface
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Fig. 1 Bathymetry and 3D seismic characterization of the study area. a Bathymetry of the Scotian Basin and the sediment sampling location. The Scotian
Basin is in the northwest Atlantic Ocean, offshore Nova Scotia in eastern Canada. A 3.44-meter-long piston core was retrieved at a water depth of 2306m.
The map was generated using the ESRI ArcMap v10.6.1 software. The background bathymetry data were retrieved from General Bathymetric Chart of the
Oceans (GEBCO) (https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_08.pdf). b Horizontal time slice through the
Tangier 3D seismic survey at−3500m depth (i.e., approx. 1200 mbsf) with the variance (coherence) attribute shows salt diapirism throughout the Scotian
Basin, including at the site chosen for the sediment core. Drawn with the Schlumberger Petrel v2018.1 software.

Table 1 Molecular and isotopic compositions of two gas samples sourced from sediments subsampled from the core regions
nearest gas hydrates.

Depth (cmbsf) 332–337 337–344

Features Bubbling gas Gas hydrate

THG compositions (%) Methane 85.10 79.00
Ethane 2.00 1.38
Propane 3.10 1.25
iso-butane 0.93 0.36
n-butane 0.51 0.23
ΣC2–C4 6.54 3.22
THG (ppm) 7446 4029
C1/(C2+C3) 16.7 30.0

Isotopic signatures (‰) C1 δ13C −42.2 −49.0
C1 δ2H −169 −177
C2 δ13C −24 −26
C3 δ13C −21.5 −22.3
i-C4 δ13C −22.6 ND
n-C4 δ13C −21.6 ND
CO2 δ13C −6.3 −7.7

C1 methane, C2 ethane, C3 propane, C4 butane. THG, total hydrocarbon gas. C1/(C2+C3), molecular ratios of methane to ethane and propane. δ13C and δ2H, stable carbon and hydrogen isotope
compositions. ND, not determined.
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sediment and near-surface sediment (20 cmbsf) harbored the
most diverse communities (Shannon index= 6.70 and 5.58) and
highest bacterial cell density (2.64 and 2.22 × 109 16S rRNA genes
g−1). In contrast, the sediment at 60 cmbsf harbored the most
distinct communities (Fig. 2a), the lowest microbial diversity
(3.60), and the highest archaeal cell density (1.23 × 109 16S rRNA
genes g−1). Deeper sediments (100–250 cmbsf) were composi-
tionally similar to each other and harbored moderately to highly
diverse and abundant communities (Table 2 and Fig. 2a).

For taxonomic profiling, the phyloFlash pipeline35 was applied
to reconstruct 16S rRNA gene fragments from metagenome raw
reads for each sediment depth. Dominant bacterial lineages in
surface sediments were Gammaproteobacteria (21%), Deltapro-
teobacteria (14%), Alphaproteobacteria (11%), and Planctomy-
cetes (14%), whereas Atribacteria (22–51%), Chloroflexi (5–32%),
and Deltaproteobacteria (5–11%) were predominant at and below
20 cmbsf (Fig. 2a). Thaumarchaeota (mainly class Nitroso-
sphaeria) were the most dominant archaea (92%) found in
surface sediment, but were in low abundance in subsurface
sediments (Fig. 2a). Methanomicrobia (Euryarchaeota) and
Lokiarchaeota (Asgard group) were predominant at and below
20 cmbsf. ANME-1 (Methanomicrobia) comprised 97% of
archaea at 60 cmbsf, consistent with the presence of its
previously observed syntrophic partner SEEP-SRB1 bacteria12,
suggesting that this depth was part of the sulfate-methane
transition zone (Fig. 2b, c). Taxonomic profiles produced by 16S
rRNA gene amplicon sequencing were broadly similar to
metagenomic profiling, but with differences in the relative
abundances of specific groups (e.g., Chloroflexi and Heimdal-
larchaeota) (Fig. 2a and Supplementary Data 1). Together, both
methods show that microbial communities throughout the
sediment column are diverse and consist of mostly uncultured
taxonomic groups.

Metagenomes were assembled for sediments from individual
depths, and a co-assembly was performed by combining metagen-
omes from all depths36 (Supplementary Data 2 and 3). Binning of
derived assemblies was based on tetranucleotide frequencies and
coverage profiles using several algorithms37. This analysis yielded
376 unique metagenome-assembled genomes (MAGs) with <99%
average nucleotide identity from each other, having >50%
completeness and <10% contamination based on CheckM
analysis38. Recovered MAGs (293 bacterial and 83 archaeal)
spanned 43 different phyla, most of which are poorly characterized
without cultured representatives (Supplementary Fig. 2; Supple-
mentary Data 2 and 4). Ten of these genomes could not be classified
due to lack of reference genomes and, based on their phylogeny,
might belong to five new candidate phyla (Supplementary Fig. 2).
Several MAGs were affiliated with the ClassMethanomicrobia (n=
24) within the phylum Euryarchaeota, including 12 MAGs
belonging to ANME-1 and ANME-2 lineages. Bacterial MAGs
were mostly represented by Chloroflexi (n= 93), Planctomycetes

(n= 32), and Deltaproteobacteria (n= 29). Overall, the 376 MAGs
captured the prevalent bacterial and archaeal lineages revealed by
16S rRNA gene analysis, which represented 63.3–90.6% of the
genera present in metagenomes for the deeper 20–250 cmbsf (cf.
only 12.2% for 0 cmbsf).

We further linked the structure of microbial communities to
their metabolic capabilities in carbon acquisition and energy
conservation strategies. Metabolic reconstructions of 376 MAGs
revealed versatile catabolic capabilities for assimilating carbohy-
drates, peptides and short-chain lipids (Fig. 3a and Supplemen-
tary Data 5–8). Also widespread is the capacity to conserve energy
and fix carbon using electrons derived from inorganic com-
pounds such as sulfide, thiosulfate, ammonia, nitrite, carbon
monoxide, and hydrogen (Supplementary Figs. 3–12). For
electron acceptors, while microorganisms capable of respiring
sulfate, oxygen, nitrate, and nitrite were detected, these capacities
were not prevalent (Supplementary Data 5). Many genomes
encoded putative reductive dehalogenase genes for organohalide
respiration (Supplementary Fig. 13 and Supplementary Data 9).
In line with other recent observations4, fermentation appears to
be a universal strategy in these sediments, with production of
hydrogen, formate, and acetate as major end products (Supple-
mentary Data 5); accordingly, the majority of the recovered
MAGs encoded bidirectional [NiFe]-hydrogenases (Fig. 3a).
Supplementary Note 1 further elaborates upon the broader
metabolic capabilities of the community. The sections below
focused on using gene- and genome-centric approaches to
identify novel microorganisms and specific catabolic pathways
involved in anaerobic degradation of deeply sourced thermogenic
hydrocarbons. Metabolomic analysis (Fig. 3b) was also performed
to identify signature metabolites for anaerobic hydrocarbon
biodegradation18,39.

Diverse Euryarchaeota mediate anaerobic oxidation of
methane and other short-chain alkanes. Certain archaea activate
short-chain alkanes (methane, ethane, propane, and butane) for
anaerobic degradation using methyl/alkyl-coenzyme M reduc-
tases17. Sequences encoding the catalytic subunit of this enzyme
(mcrA) were detected in metagenomes at all sediment depths
except 0 cmbsf, with the highest abundance found at 60 cmbsf
(Supplementary Fig. 14). A total of 20 MAGs within Eur-
yarchaeota harbored mcrA sequences (Supplementary Data 10).
Genome trees showed these microorganisms belonged to repre-
sentatives of three families of hydrogenotrophic methanogens
(Methanomicrobiaceae, Methanosarcinaceae, and Methanosaeta-
ceae)40, two clusters of anaerobic methanotrophs (ANME-1 and
ANME-2)41, and two lineages that have been shown to catalyze
non-methane alkane oxidation (the GOM-Arc1 lineage, and a
novel sister lineage to Ca. Syntrophoarchaeum)17,27 (Fig. 4a). In
agreement with this, phylogenetic analysis of mcrA sequences

Table 2 Key features of sediment samples used for microbiological analyses.

Samples Depth (cmbsf) Biogeochemical
zone

Filtered paired
reads

Shannon
index*

Bacterial 16S
rRNA (×109)**

Archaeal 16S
rRNA (×109)**

S1 0 Sulfate-rich 61,241,391 6.70 ± 0.04 2.64 0.113
S2 20 Sulfate-rich 59,469,560 5.58 ± 0.10 2.22 0.052
S3 60 Sulfate-rich 57,920,960 3.60 ± 0.23 1.57 1.230
S4 100 Sulfate-depleted 54,671,031 5.05 ± 0.13 0.13 0.010
S5 150 Sulfate-depleted 53,856,875 4.97 ± 0.10 0.14 0.022
S6 200 Sulfate-depleted 95,943,312 5.36 ± 0.08 0.06 0.004
S7 250 Sulfate-depleted 70,775,877 4.99 ± 0.12 0.23 0.016

*Shannon index was calculated from metagenomes using 14 single-copy marker genes.
**Bacterial and archaeal numbers were estimated by qPCR, expressed as 16S rRNA genes per g sediment.
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from these MAGs resolved three major groups (Fig. 4b), i.e., the
canonical group clustering with methanogens and ANMEs, and
two divergent groups clustering with GOM-Arc1 (e.g., Ca.
Argoarchaeum)17 and Ca. Syntrophoarchaeum19.

Metabolic pathways involved in the oxidation of methane and
non-methane gaseous alkanes were reconstructed17 (Fig. 5).
Twelve MAGs harbor canonical mcrA genes that cluster with
ANME-1 and ANME-2 methanotrophs, along with with fwd, ftr,
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mch, mtd, mer/metF/fae-hps and mtr that mediate subsequent
steps in the tetrahydromethanopterin-dependent “reverse metha-
nogenesis” pathway10,42 for oxidation of methyl-CoM to CO2

(Fig. 5a and Supplementary Data 10). Some MAGs lack specific
genes in this pathway, likely reflecting variability in genome
completeness (61–96%). Based on genome and gene trees,
S6_bin38 is closely related to putative ethane oxidizers within
the GoM-Arc1 group26,27,40, including the verified anaerobic
ethane oxidizer Ca. Argoarchaeum ethanivorans Eth-Arch117

(Fig. 4). In agreement with this, the signature metabolite ethyl-
coenzyme M (ethyl-CoM) was detected in most of the
deeper sediments (Fig. 3b). Like other GoM-Arc1 genomes,
S6_bin38 encodes methyltransferases that potentially transfer the
thioether (ethyl-CoM) derived from ethane activation to a
thioester (acetyl-CoA), as well as enzymes to mediate acetyl-
CoA cleavage (acetyl-CoA decarbonylase/synthase) and stepwise
dehydrogenation of the derived C1 units (oxidative Wood-
Ljungdahl pathway) (Fig. 5b and Supplementary Data 10). Like
other members of the GoM-Arc1 group, S6_bin38 lacks the β-
oxidation pathway which is unnecessary for anaerobic ethane
oxidation17.

Methanosarcinales Co_bin109 likely has potential to oxidize
butane and fatty acids present in the sediments (Table 1 and
Fig. 3b). This genome contains two mcrA genes that cluster
with high bootstrap support to the divergent alkyl-CoM
reductases from Ca. Syntrophoarchaeum (Fig. 4b) that is
capable of anaerobic degradation of butane and possibly

propane19. Also encoded by this MAG are heterodisulfide
reductase subunits (hdrABC) to reoxidize cofactors28, methyl-
transferases that potentially convert butyl-thioether to the
butyryl-thioester, and the β-oxidation pathway to enable
complete oxidation of the butyryl-thioester (Fig. 5c and
Supplementary Data 10). The presence of short-chain acyl-
CoA dehydrogenase (acd), butyryl-CoA dehydrogenase (bcd),
and long-chain acyl-CoA synthetase (fadD) may allow Metha-
nosarcinales Co_bin109 to oxidize long-chain fatty acids; this is
similar to the basal Archaeoglobi lineage Ca. Polytropus
marinifundus, which encodes two divergent McrA related to
those found in Ca. Bathyarchaeota and Ca. Syntrophoarch-
aeum43. Consistent with this, Co_bin109 encodes a Wood-
Ljungdahl pathway (including carbon monoxide dehydrogen-
ase/acetyl-CoA synthase complex) for complete fatty-acid
oxidation (Supplementary Data 10).

Members of Chloroflexi and Deltaproteobacteria potentially
degrade liquid alkanes and aromatic hydrocarbons. Other
community members are predicted to degrade aromatic hydro-
carbons and n-alkanes detected in the sediments (Table 1 and
Supplementary Table 1) via hydrocarbon addition to fumarate44.
Sequences encoding the catalytic subunits of alkylsuccinate syn-
thase (assA), benzylsuccinate synthases (bssA), and naphthyl-
methylsuccinate synthases (nmsA) were detected in metagenomes
at all sediment depths except 0 cmbsf (Supplementary Fig. 14).
Nine MAGs assigned to Dehalococcoidia, Desulfobacterales, and
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Syntrophobacterales encode alkylsuccinate synthase known to
mediate n-alkane activation (Fig. 6a and Supplementary Data 11).
Phylogenetic analysis confirms that these assA genes cluster clo-
sely with those of experimentally validated alkane oxidizers
Desulfatibacillum aliphaticivorans DSM 15576 and Desulfosarcina
sp. BuS5 within Deltaproteobacteria8,45 (Supplementary Fig. 15).
In most of these MAGs, more than one assA sequence variant was
identified, suggesting some bacteria may activate multiple sub-
strates by this mechanism46,47. In addition to assA sequences,
Dehalococcoidia Co_bin57 and Co_bin289 also encode related
glycyl-radical enzymes clustering with benzylsuccinate synthases
and naphthylmethylsuccinate synthases (Supplementary Fig. 15
and Supplementary Data 11), known to mediate the anaerobic
degradation of toluene or similar aromatic compounds. Meta-
bolomic analysis detected four succinic acid conjugates involved
in hydrocarbon activation, including conjugates of both toluene
and propane (Figs. 3b, 6). Most of the MAGs encoding assA or
bssA genes (except Dehalococcoidia Co_bin57) also encode the
required genes to further process the alkyl-/arylalkylsuccinate
compounds, convert them to acetyl-CoA through the β-oxidation
pathway, and regenerate fumarate through the methylmalonyl-
CoA pathway (Fig. 6a, c; Supplementary Data 11). Accordingly,
succinate and fumarate were also detected in the sediments
(Fig. 3b).

Anaerobic hydrocarbon degradation depends on subsequent
oxidation of acetyl-CoA. This can be achieved through a single-
cell process (e.g., coupled to sulfate respiration) or via syntrophic
interaction with another cell (e.g., with methanogens)8,45. Like the
related deltaproteobacterial isolate NaphS2, Desulfobacterales
MAGs S4_bin49 and S6_bin7 contain genes for both the

Wood-Ljungdahl pathway and dissimilatory sulfate reduction,
suggesting the same organism can couple alkane mineralization
directly to sulfate reduction (Supplementary Data 11). By
contrast, other MAGs containing genes for hydrocarbon addition
to fumarate, including Dehalococcoidia and Syntrophobacterales,
apparently lack terminal reductases or complete tricarboxylic acid
cycles. These organisms may be obligate fermenters dependent on
syntrophy with respect to the oxidation of n‐alkanes, as further
evidenced by identification of genes for mixed-acid fermentation
and hydrogen production in these genomes (Supplementary
Data 5 and 11) and as reported in closely related organisms from
both lineages46.

Detection of bssA and nmsA suggest that these cold seep
microbial communities are also capable of utilizing aromatic
hydrocarbons that were detected in the gas chromatography mass
spectrometry analysis (Supplementary Table 1 and Supplemen-
tary Fig. 14). Metabolites produced after initial activation
normally channel into the central benzoyl-CoA degradation
pathway (Fig. 6b). Benzoyl-CoA, as a universal biomarker for
anaerobic degradation of aromatic compounds48, is reduced by
benzoyl-CoA reductases of the ATP-dependent class I pathway
(bcr genes; e.g., in Thauera aromatica) or ATP-independent class
II pathway (bam genes; e.g., in sulfate reducers). These
genes were detected in 13 bacterial MAGs, including Dehalo-
coccoidia, Anaerolineae, Deltaproteobacteria, Planctomycetes,
Gammaproteobacteria, and candidate phylum AABM5-125-24.
Genes for further processing these compounds to 3-
hydroxypimelyl-CoA (i.e., oah, dch, and had) and acetyl-CoA
(β-oxidation pathway) were also detected (Fig. 6c and Supple-
mentary Data 12). Various compounds related to the benzoyl-
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CoA degradation pathway were also detected, including benzoate
and glutarate (Fig. 3b).

Depth distributions and in situ replication rates of
hydrocarbon-oxidizing organisms. To put the metabolic func-
tions of anaerobic hydrocarbon degraders into ecological per-
spective, relative abundances and cell replication rates were
assessed in different sediment depths. The 376 bacterial and
archaeal genomes were dereplicated at the species level (i.e., 95%
average nucleotide identity clustering) to avoid arbitrary mapping
between representatives of highly similar genomes. This process
yielded a total of 296 bacterial and archaeal species clusters
(Supplementary Data 13), with the MAG of highest genome
quality from each species cluster picked as a representative. Based
on metabolic pathway reconstruction, the capacities for anaerobic
degradation of hydrocarbons were detected in members from

Euryarchaeota, Chloroflexi and Deltaproteobacteria (Fig. 3a and
Supplementary Data 5). Distributions of these organisms spanned
from the near-surface sediment horizon to the deeper zones
where sulfate was depleted, with overall relative abundance ran-
ging from 1–42% at different sediment depths (Fig. 7 and Sup-
plementary Data 13). MAGs corresponding to Atribacteria,
Lokiarchaeota and Chloroflexi were also differentially enriched as
a function of sediment depth (Supplementary Data 13), consistent
with their dominance in these sediments (Fig. 2a) and their
occurrence in the deep marine biosphere more generally49,50.

MAGs with the highest relative abundance belonged to the
ANME-1 lineage, and together made up >40% of the microbial
community at 60 cmbsf (Fig. 7 and Supplementary Data 13), with
three distinct ANME-1 species (S3_bin4, Co_bin174 and
S3_bin12) being particularly abundant (27.47%, 7.33%,
and 4.69%, respectively). The ANME-2 lineage on the other
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hand was rare in this sediment, comprising only 0.04% of the
community at 60 cmbsf. This observation is supported by 16S
rRNA gene amplicon sequencing (Supplementary Data 1) and
stands in contrast to other thermogenic hydrocarbon seeps, e.g.,
in the Gulf of Mexico, where sediments are dominated by
ANME-2 lineages10,11. In agreement with analysis of 16S rRNA
gene fragments in metagenomic libraries (Fig. 2c), ANME-1 were
also present in deeper sulfate-depleted sediments, with cumula-
tive relative abundances ranging from 0.57% to 8.18% (Fig. 7).
Replication rates calculated using iRep51 suggested that ANME-1
were active in these deeper sediments. For example, ANME-1
S3_bin4 had higher replication rates (iRep values up to 2.03) as
compared to 1.20 at 60 cmbsf (Supplementary Data 13). Ethane
and butane oxidizers (S6_bin38 and Co_bin109) were also mostly
found in sulfate-depleted sediments, where they represented a
minor fraction of the community (0.04–0.25%). The iRep value of
S6_bin38 at 200 cmbsf was 1.37, suggesting that most cells were
undergoing genome replication51, which is consistent with the
detection of ethyl-CoM in the same sediment, despite the absence
of sulfate (Fig. 3b).

For anaerobic hydrocarbon oxidation to be energetically
favorable, it must be coupled to reduction of an electron acceptor
either directly or through interspecies electron transfer to a
syntrophic partner. None of the canonical terminal reductases
(e.g., for iron, sulfate, and nitrate reduction) reported in other
studies28,40 were detected in MAGs representing alkane-oxidizing
archaea (Supplementary Data 5). Various sulfate reducers
from Deltaproteobacteria and Zixibacteria were detected with full
gene sets for dissimilatory reduction of sulfate to sulfide (sat,
aprAB, and dsrAB) (Supplementary Fig. 5 and Supplementary
Data 5). Of these, SEEP-SRB1 S3_bin8 peaked (3.4% of the
community) at 60 cmbsf, which likely represented a sulfate-
methane transition zone. This coincides with the highest relative
abundance of ANME-1 (Figs. 2b and 7), in agreement with
observations that these two groups operate together as syntrophic
partners12. The presence of alkane-oxidizing archaea in sulfate-
depleted sediments suggests that alkane oxidation might be linked
to the reduction of alternative electron acceptors. Thirty bacterial
members belonging to lineages such as Epsilonproteobacteria
and Gammaproteobacteria were predicted to use nitrate or nitrite

as electron acceptors, but only dominated at the upper sediment
layers, similar to the observation in gene-centric analyses (Supple-
mentary Fig. 14 and Supplementary Data 5). These genomic
analyses seem to rule out nitrate reducers as possible syntrophic
partners. Even though no genomes were detected to encode genes
for iron/manganese reduction (i.e., mtrA and mtrC), multiheme
c-type cytochromes, hypothesized to mediate electron transport to
syntrophic bacteria and directly to iron oxides16, were found in
these archaeal MAGs (Supplementary Data 14). Therefore, metal
reduction may be coupled with oxidation of short-chain alkanes in
deeper sediments. Other unknown process might also possibly
consume electrons produced from oxidation of short-chain
alkanes. For example, it was recently proposed that bacterium-
independent anaerobic methane oxidation could be coupled to
reduction of elemental sulfur and polysulfide10. Consistent with
this model, genes encoding sulfide:quinone oxidoreductase-like
proteins were detected, e.g., in ANME-1 S3_bin4 and Co_bin174.

Bacterial liquid alkane and aromatic hydrocarbon degraders
were observed in higher relative abundance mainly in sulfate-
depleted sediments (1.59–2.69% in 100–250 cmbsf vs 0–0.60% in
0–60 cmbsf sediments; Fig. 7 and Supplementary Data 13),
consistent with most MAGs lacking genes for respiration
(Supplementary Data 5). Members of the Syntrophobacterales,
such as Smithella and Syntrophus, have been shown to be able to
degrade alkanes via addition to fumarate under methanogenic
conditions in syntrophic association with methanogens8,52.
Several MAGs from Methanomicrobiales, Methanosaetaceae,
andMethanosarcinaceae found at the same depths were identified
as typical methanogens (Figs. 4a and 7), thus syntrophic alkane
mineralization via hydrogenotrophic or acetoclastic methanogen-
esis represents another plausible route for hydrocarbon biode-
gradation in this setting (Supplementary Data 5). Accordingly,
potential alkane degraders like Syntrophobacterales S8_bin7
were mainly found in the sulfate-depleted sediments, co-
occurring with methanogens, e.g., Methanomicrobiaceae
S4_bin26 (Fig. 7). Similarly, Dehalococcoidia Co_bin289 and
Co_bin57 showed high replication rates (1.3–2.1) in sulfate-
depleted sediments, suggesting a syntrophic coupling of long-
chain alkane degradation by Chloroflexi with methanogenesis
(Supplementary Data 13).
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Discussion
Biodegradation by sedimentary microbial communities is an
important mechanism that controls natural emissions of hydro-
carbons from the deep subsurface. This study combines geo-
physics, geochemistry, metagenomics, and metabolomics to
characterize a newly discovered deep sea cold seep in unprece-
dented detail. Located in the poorly explored Scotian Basin in the
NW Atlantic, this seep is associated with salt tectonics, similar to
other oil- and gas-influenced seabed habitats8,13. Unlike hyper-
saline brine seeps like those in the Gulf of Mexico13,53, this
Scotian Basin sediment has a similar salinity to seawater in the
cold deep sea. Through gene- and genome-centric analyses,
diverse novel uncultured and undescribed anaerobic bacteria (e.g.,
new Dehalococcoidia lineages) and archaea (e.g., a novel sister
lineage to Ca. Syntrophoarchaeum) were inferred to consume
upward migrating gaseous and liquid thermogenic hydrocarbons
in situ. Metagenomic and metabolomic evidence reveal that
hydrocarbons are degraded through alkyl-CoM reductase and
fumarate addition pathways. Identification of succinate deriva-
tives39 (e.g., 2-isopropylsuccinate and benzylsuccinate) and ethyl-
CoM in porewater, together with determination of carbon stable
isotopic signatures for hydrocarbon gases (e.g., ethane and pro-
pane) and carbon dioxide32 provide direct evidence of active
biodegradation in these deep sea sediments. These findings point
to geological phenomena selecting for bacteria and archaea with
differing and complementary mechanisms for metabolizing
hydrocarbon substrates, with different bacteria oxidizing liquid
alkanes and aromatic hydrocarbons and different archaea oxi-
dizing methane and other short-chain alkane gases.

This cultivation-independent genomic investigation of in situ
seabed biogeochemistry points to a broader role for archaeal
multi-carbon alkane oxidation than previously suggested. This
recently described process17 co-occurs with anaerobic methane
oxidation by ANME archaea in these cold seep sediments.
Anaerobic methane oxidizers are most abundant, which is
unsurprising given high concentrations of methane relative to
other short alkanes; however, investigating an environment that
still has relatively high concentrations of C2+ gases (up to 6.5%),
the potential and importance of both GoM-Arc1- and Syn-
trophoarchaeaum-like archaea degrading thermogenic hydro-
carbons in deep seabed sediments is shown for the first time.
Previous observations of these phenomena and enrichment of the
corresponding microorganisms have focused mainly on hydro-
thermally heated sediments15,27,40 and hypersaline methane
seeps53,54. The results presented here therefore point to a wide-
spread significance for these microbial groups in submarine
carbon cycling throughout the global ocean, regardless of salinity
and temperature.

Combined metagenomics and metabolomics also suggest that a
range of electron acceptors support hydrocarbon degradation in
cold seeps. Depth profiles showed that bacteria capable of
degrading liquid alkane and aromatic hydrocarbons were mainly
detected in sulfate-depleted sediments, suggesting that they
mediated hydrocarbon metabolism as part of methanogenic
alkane-degrading consortia8,44,45. Also as expected, ANME-1
were found to be most abundant at the apparent sulfate-methane
transition zone, in agreement with the well-documented syn-
trophy between methane-oxidizing archaea and sulfate-reducing
bacteria in such settings22. These findings support that the
cooperation of key bacterial and archaea hydrocarbon degraders
with their partners is important for hydrocarbon degradation at
deep sea cold seep sediments. More surprisingly, contrary to the
paradigm that gaseous alkane-oxidizing archaea normally occur
where alkanes and sulfate coexist, we observed that ANME-1,
ethane-oxidizing and butane-oxidizing archaea were also actively
present in sulfate-depleted sediments. Based on their occurrence

and activity in shallow coastal sediment cores from Aarhus Bay
and White Oak River Estuary, ANME-1 has been proposed to be
capable of reverse methanogenesis in sulfate-methane transition
or sulfate-depleted sediments55–57. It is also possible that mem-
bers of ANME-1 are contributing to methane production in the
deep sea cold seep sediments investigated here. Given high con-
centrations of hydrocarbon gases and associated signature
metabolites (e.g., ethyl-CoM), another scenario is that these
alkane-oxidizing archaea utilize electron acceptors other than
sulfate, e.g., iron oxides, humic redox shuttles, elemental sulfur
and polysulfide10,58. Thus, despite sulfate availability being
thought to limit gaseous alkane oxidation, other electron accep-
tors may substitute. This advances our understanding of the
capacity and mechanisms for anaerobic methane, ethane, pro-
pane, and butane oxidation in archaea17,19,40,58.

Methods
Sampling and geochemical characterization. This study provides a detailed
analysis of a 3.44-meter-long piston core taken from the Scotian Basin seabed
(43.010478 N, 60.211777W) in 2306 m water depth on the Scotian Slope. The
coring location was chosen based on seismic interpretation using Petrel that
focused on identifying amplitude anomalies for direct hydrocarbon indicators. One
such indicator at this location was inferred to be associated with a possible seabed
seep by interpreting a subsurface hydrocarbon migration pathway in the form of a
fault to surface. Following piston coring, sediment subsamples were collected
immediately from the base of the core and stored in gas-tight isojars flushed with
N2 for headspace gas analysis. Multiple depths ranging from the deepest portion to
within approximately one meter of the top of the core, were subsampled for
geochemical analysis. Additional intervals were preserved separately for micro-
biological analyses. Detailed subsampling depths can be found in Tables 1 and 2 as
well as Supplementary Table 1.

Hydrocarbon compositions of headspace gas samples were analyzed using an
Agilent 7890 A RGA gas chromatograph equipped with Molsieve and Poraplot Q
columns and a flame ionization detector. Stable carbon and hydrogen isotopic
signatures were determined by Trace GC2000 equipped with a Poraplot Q column,
connected to a Thermo Finnigan Delta plus XP isotope ratio mass spectrometer
(IRMS). Sediment samples were analyzed for TOC and EOM using an Agilent
7890 A RGA gas chromatograph equipped with a CP-Sil-5 CB-MS column. A
Micromass ProSpec-Q instrument was used for determination of saturated and
aromatic fractions. Stable carbon isotope analyses of these fractions were
determined on a Eurovector EA3028 connected to a Nu Horizon IRMS.
Experimental procedures on these measurements followed “The Norwegian
Industry Guide to Organic Geochemical Analyses, Edition 4.0 (30 May 2000)”.

Sulfate measurement. Porewater sulfate concentrations were measured in a
Dionex ICS-5000 reagent-free ion chromatography system (Thermo Scientific, CA,
USA) equipped with an anion-exchange column (Dionex IonPac AS22; 4 × 250
mm; Thermo Scientific), an EGC-500 K2CO3 eluent generator cartridge and a
conductivity detector. Measured values of sulfate concentrations were corrected
with method-related factors based on a series of standard samples.

Metabolomic analysis. Porewater metabolites were extracted from sediment
samples according to previously reported methods4. Mass spectrometric (MS)
analysis was carried out using a Thermo Scientific Q-Exactive HF Hybrid
Quadrupole-Orbitrap mass spectrometer with an electrospray ionization source
coupled to ultra high-performance liquid chromatography. Data were acquired in
negative ion mode using full scan from 50–750m/z at 240,000 resolution with an
automatic gain control (AGC) target of 3e6 and a maximum injection time of 200
ms. For MS/MS fragmentation, an isolation window of 1m/z and an AGC target of
1e6 was used with a maximum injection time of 100 ms. Data were analyzed for
specific m/z ratios using MAVEN software59.

16S rRNA gene amplicon sequencing. DNA was extracted from sediment
samples using the PowerSoil DNA Isolation Kit (12888-50, QIAGEN). Amplifi-
cation of the v3-4 region of bacterial 16S rRNA genes and the v4-5 region of
archaeal 16S rRNA genes, used primer pairs SD-Bact-0341-bS17/SD-Bact-0785-
aA21 and SD-Arch-0519-aS15/SD-Arch-0911-aA20, respectively60. Amplicon
sequencing was performed on a MiSeq benchtop sequencer (Illumina Inc.) using
the 2 × 300 bp MiSeq Reagent Kit v3. Reads were quality controlled and then
clustered into operational taxonomic units (OTUs) of >97% sequence identity with
MetaAmp61. Taxonomy was assigned together with the SILVA database62

(release 132).

Quantitative PCR. Quantitative polymerase chain reaction (qPCR) analyses were
performed on the new DNA extracts using PowerSoil DNA Isolation Kit (12888-
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50, QIAGEN) to estimate the abundance of bacteria and archaea at different depths
in the sediment core. The mass of sediment used for DNA extraction was typically
0.5 g and was always recorded. PCR reactions were set up using Bio-Rad SsoAd-
vanced Universal SYBR Green Supermix. Amplification of bacterial and archaeal
16S rRNA genes used domain-specific primers B27F-B357R and A806F-A958R,
respectively. Triplicate PCR was performed on a Thermo Scientific PikoReal Real-
Time PCR Instrument, using reaction conditions described previously63. Results
were recorded and analyzed by PikoReal software 2.2.

Metagenome sequencing. DNA was extracted from the sediment samples using
the larger format PowerMax Soil DNA Isolation Kit (12988-10, QIAGEN)
according to the manufacturer’s instructions. Metagenomic library preparation and
DNA sequencing using NextSeq 500 System (Illumina Inc.) were conducted at the
Center for Health Genomics and Informatics in the Cumming School of Medicine,
University of Calgary.

Microbial diversity analysis. SingleM (https://github.com/wwood/singlem) was
applied to raw metagenome reads from each sample34. Shannon diversity was
calculated based on SingleM counts on 14 single-copy marker genes. The vegan
package was then used to calculate diversity based on the rarefied SingleM OTU
table across each of the 14 marker genes. The average was taken as the Shannon
index determination for each sample. To explore microbial composition of each
sample, 16S rRNA gene fragments were recovered from metagenomic raw reads
using the phyloFlash pipeline35 together with SILVA database62 (release 132).

Assembly and binning. Raw reads were quality-controlled by (1) clipping off
primers and adapters and (2) filtering out artifacts and low-quality reads using the
BBDuk function of BBTools (https://sourceforge.net/projects/bbmap/). Filtered
reads were co-assembled using MEGAHIT64 and were individually assembled
using metaSPAdes65. For co-assembly, one additional metagenome (315 cmbsf)
sequenced using the same method was also included. This depth was discarded for
other analyses owing to suspicions that it was contaminated with seawater. Short
contigs (<1000 bp) were removed from assemblies. For each assembly, binning
used the Binning module within metaWRAP37 (–maxbin2 –metabat1 –metabat2
options). Resulting bins were then consolidated into a final bin set with meta-
WRAP’s Bin_refinement module (-c 50 -x 10 options). All binning results were
combined and dereplicated using dRep66 (-comp 50 -con 10 options) at 99%
average nucleotide identity clustering (strain level). After dereplication, a total of
376 dereplicated MAGs were obtained. SingleM v0.12.1 (https://github.com/
wwood/singlem) was used to determine genome recovery efforts at genus level
(singlem appraise –imperfect –sequence_identity 0.89).

Calculating relative abundances and replication rates. For producing indexed
and sorted BAM files, quality-controlled reads from each sample were mapped to
the set of dereplicated genomes at 95% average nucleotide identity clustering
using BamM v1.7.3 “make” (https://github.com/Ecogenomics/BamM). To
calculate relative abundance of each MAG within a microbial community at a given
sediment depth, CoverM v0.4.0 “genome” (https://github.com/wwood/CoverM) was
used to obtain relative abundance of each genome (parameters:–min-read-percent-
identity 0.95 –min-read-aligned-percent 0.75 –trim-min 0.10 –trim-max 0.90).

Microbial replication rates were estimated with iRep51 for high-quality
dereplicated MAGs at 95% average nucleotide identity clustering (≥ 75% complete,
≤ 175 fragments/Mbp sequence, and ≤ 2% contamination). Replication rates were
retained only if they passed the default thresholds: min cov.= 5, min wins.= 0.98,
min r2= 0.9, GC correction min r2= 0.0. The require ordered SAM files were
generated using the Bowtie2 (-reorder flag)67.

Functional annotations. To compare abundances of metabolic genes at different
sediment depths, all quality-controlled reads were aligned against comprehensive
custom databases68 using DIAMOND BLASTx69 (cutoffs: e value: 1e-10, identity:
70%; best hits reserved).

For contigs, gene calling was performed using Prodigal (-p meta)70. Proteins
were predicted against the KEGG database using GhostKOALA71 and against the
Pfam and TIGRfam HMM models using MetaErg72. For individual MAGs,
completeness of various metabolic pathways was determined using KEGG
Decoder73 and KEGG-Expander (https://github.com/bjtully/BioData/tree/master/
KEGGDecoder). Annotations of key metabolic genes were also confirmed by
phylogenetic analyses as described below.

Genes involved in anaerobic hydrocarbon degradation were screened using
BLASTp (cutoffs: e value 1e-20+ pident 30%+ qcovs 70%) against local protein
databases4. After removal of short sequences, genes were further manually curated
using BLASTp against NCBI-based nr protein sequences by checking top hits to
relevant genes. For identification of McrA and DsrA, protein sequences were
screened against local protein databases74 using BLASTp (cutoffs: e value 1e-20+
pident 30%+ qcovs 70%). McrA and DsrA protein sequences were cross-checked
against MetaErg annotations and phylogenetic analyses, whereas hydrogenases
were confirmed and classified using the HydDB tool75. The dbCAN2 web server76

was used for carbohydrate-active gene identification based on retaining proteins
found by at least two of the tree tools (HMMER+DIAMOND+Hotpep) for

further analysis. To identify cytochrome C, MAGs with identified McrA were
screened for proteins with at least one CXXCH motif43. These proteins were
identified as cytochrome C if they also matched a protein domain related to
cytochrome C using Batch web CD-search tool77. Psortb78 was used to predict
subcellular localizations.

Taxonomic assignments of MAGs. Taxonomic assessment of MAGs was initially
performed by identification of 16S rRNA genes using anvi’o79. Predicted sequences
(52 out of 376 MAGs) were aligned and classified using SILVA ACT80. Subse-
quently the taxonomy of each MAG was temporally assigned using GTDB-Tk81

(using GTDB R04-RS89). Phylogenetic trees were reconstructed based on con-
catenation of 43 conserved single-copy genes using RAxML82 settings: raxmlHPC-
HYBRID -f a -n result -s input -c 25 -N 100 -p 12345 -m PROTCATLG -x 12345,
as reported previously4. Bacterial and archaeal reference genomes were down-
loaded from NCBI GenBank. Finally, MAGs were identified to appropriate taxo-
nomic levels according to the NCBI Taxonomy database, taking results of all three
of the above methods into account.

Phylogenetic analysis of metabolic genes. For mcrA, gene sequences were
aligned using the MUSCLE algorithm83 (-maxiters 16) and trimmed using Tri-
mAL84 with parameters: –automated1. A maximum-likelihood phylogenetic tree
was built using IQ-Tree85, parameters: -st AA -m LG+ C60+ F+G -bb 1000 -alrt
1000 -nt 20. For other key metabolic genes, sequences were aligned using the
ClustalW algorithm included in MEGA786. All alignments were manually
inspected. For amino-acid sequences of the group 3 [NiFe]-hydrogenase large
subunit, a neighbor-joining tree was constructed using the Poisson model with gaps
treated with pairwise deletion, bootstrapped with 50 replicates and midpoint-
rooted. For amino-acid sequences of other genes, maximum-likelihood trees of
were constructed using the JTT matrix-based model with all sites, bootstrapped
with 50 replicates and midpoint-rooted.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The links to the databases used in this study are listed below: Silva database (release 132):
https://www.arb-silva.de/documentation/release-132/; NCBI Taxonomy database:
https://www.ncbi.nlm.nih.gov/taxonomy; Pfam: https://pfam.xfam.org/; TIGRfam:
https://tigrfams.jcvi.org/cgi-bin/index.cgi; KEGG GENES Database: https://www.genome.
jp/kegg/genes.html; the custom database for anaerobic hydrocarbon degradation: https://
www.nature.com/articles/s41467-019-09747-0#additional-information. DNA sequences
have been deposited in NCBI BioProject databases under the accession number
PRJNA598277. Individual assembly for MAGs can be found at figshare (https://figshare.
com/s/bee9fd40f45054e71e8b). The authors declare that all other data supporting the
findings of this study are available within the article and its supplementary information
files, or from the corresponding authors upon request.
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